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The deployment of a fault diagnosis strategy in the Smart Distance Keeping (SDK) system with a decentralized architecture is
presented. The SDK system is an advanced Adaptive Cruise Control (ACC) system implemented in a Renault-Volvo Trucks vehicle
to increase safety by overcoming some ACC limitations. One of the main differences between this new system and the classical ACC
is the choice of the safe distance. This latter is the distance between the vehicle equipped with the ACC or the SDK system and the
obstacle-in-front (which may be another vehicle). It is supposed fixed in the case of the ACC, while variable in the case of the SDK.
The variation of this distance depends essentially on the relative velocity between the vehicle and the obstacle-in-front. The main
goal of this work is to analyze measurements, issued from the SDK elements, in order to detect, to localize, and to identify some
faults that may occur. Our main contribution is the proposition of a decentralized approach permitting to carry out an on-line
diagnosis without computing the global model and to achieve most of the work locally avoiding huge extra diagnostic information
traffic between components. After a detailed description of the SDK system, this paper explains the model-based decentralized
solution and its application to the embedded diagnosis of the SDK system inside Renault-Volvo Truck with five control units

connected via a CAN-bus using “Hardware in the Loop” (HIL) technique. We also discuss the constraints that must be fulfilled.

1. Introduction

In order to respond to the increasing demands of safety
and driving comfort, more and more electronic functions
are embedded in the vehicles such as engine control (to
optimize fuel economy and to reduce pollution), Antilock
Braking System (ABS), and Electronic Stability Program
(ESP), Each global safety or comfort system contains one
or more functions which may be distributed on several
Electronic Control Unit ECUs. Most of these functions are
modular and respecting some norms (such as AUTOSAR).
They exchange information (e.g., vehicle speed) with other
functions via communication interfaces. That means that if
the system is not equipped with a certain diagnosis strategy,
any fault generated from a function may influence all the
functions are related to it. This fact highlights the problem
of fault propagation and the need of an on-board (i.e., on
running car) fault diagnosis in the vehicle.

An increasing number of vehicles are being equipped
with adaptive cruise control (ACC). The ACC adjusts the
brake and/or throttle, within limited ranges, to maintain
a constant headway from any other vehicle that intrudes
upon the path of the driver’s vehicle. While ACC provides
a potential safety benefit in helping drivers to maintain a
constant speed and headway Davis [2], as with other types
of automation, there is the potential for misuse and disuse
Parasuraman and Riley [3]. It provides assistance to the
driver in the task of longitudinal control of his vehicle
during motorway driving. For ACC to be effective, drivers
need to understand the capabilities of the technology,
which include braking and sensor limitations. Based on this
understanding, they must be able to intervene when a given
situation exceeds ACC capabilities. However, drivers have
difficulties in understanding how ACC functions Stanton
and Marsden [4]. As a result, they tend to rely on the system
inappropriately. For instance, Nilsson [5] showed that drivers



failed to intervene when approaching a stopped queue of
vehicles because they believed that the ACC could effectively
respond to the situation. Stanton et al. [6] introduced an
unexpected acceleration into the ACC system during routine
driving conditions, which resulted in a collision 33 percent
of the time. Whether or not drivers can respond effectively
when automation fails depends on their understanding of the
type of failure that occurs and the context in which it occurs
Lee et al. [7].

To ensure safe and effective use, ACC limits of operation
should be identifiable and interpretable Goodrich et al. [8].
One approach to help drivers to detect and to respond to
these limits is to match the limits of the ACC algorithm
to the natural boundaries drivers use to switch between
car-following and active braking behaviors, as defined by
environmental cues (e.g., time headway (THW) and time
to collision (TTC)). In order to avoid several problems
that may be produced because of the misuse or the disuse
of the ACC, the Smart Distance Keeping (SDK) system is
proposed. (The SDK system is an advanced Adaptive Cruise
Control (ACC) system implemented in a Renault-Volvo
Trucks vehicle to increase safety by overcoming some ACC
limitations.) This system must be understood as a function
to enhance the driver’s capability to manage his longitudinal
environment and is dedicated to a use on highways or
expressways (straight line, low curvatures, oneway roads).
The SDK is based on the immediate front environment
sensing on one hand, and on the automated management of
the truck longitudinal actuators (brakes, engine, gearbox) on
the other hand, all this being monitored and controllable at
any time by the driver through the in-cabin human machine
interface and the conventional driving commands (pedals,
switches). This system is composed of many subsystems
(micro controllers, cables, CAN or FlexRay bus, sensors,
actuators, etc.) coming from different suppliers. That is why
its diagnostic is a challenging task.

In this work, we will focus on the modeling and the
fault diagnosis of the SDK system. Faults study is limited
to those that may be produced on sensors measurements
due to their direct influence on the SDK system decision.
So, they should be always checked to ensure that they are
within their expected operating range. Simple checks on the
recent rate of change or variance of the output can also
be incorporated. Faults which cause the sensors to have an
offset or altered gain will affect the control system but may
not be detected by this first level approach. The traditional
approach to sensor fault checking is to include hardware
redundancy for sensors. If two sensors measure the same
quantity disagree, there is likely to be a fault in one of them,
and if three or more measurements are available, the fault is
likely to be in the sensor which disagrees most. But due to
the high cost of providing direct hardware redundancy for
sensors, the analytic redundancy techniques were proposed.
Conceptually, this equates to creating virtual sensors from
other available measurements, to compare with the one
being monitored. Analytic redundancy is used in available
passenger car control systems.

Considering the size and the complexity of the SDK
system, a centralized on-board diagnosis is not adequate
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because it requires the establishment of a global model of
the system and too much communication and memory
resources and prevents to act immediately each time a
diagnosis could be found at local level. To detect and
isolate possible faults in the SDK system and manage its
architectural complexity, we have chosen to apply the model-
based fault diagnosis approach (FDI) Patten et al. [9] in a
decentralized manner. A local diagnoser is associated with
each component of the SDK system based on a modular
modeling of the plant elements. All local diagnosis decisions
are transmitted via CAN-bus and merged by a dedicated
supervisor in order to obtain a global decision and carry
out any recovery action. A strategy for applying this merging
operation was developed in order to be efficient.

The paper is organized as follows. In Section 2, we
present a general description and modeling of the SDK
controller with its environment system. The modeling in this
work includes a simplified mathematical model of the wheels
and the engine. Then, in Section 3, decentralized algorithm
and strategy for the detection and the isolation of sensors
faults that may affect the overall system are developed.
Section 4 explains how to deploy this approach in order
to achieve on-line diagnosis of the SDK system. Then,
we evaluate the proposed diagnosis approach in Section 5.
Finally, we conclude with a discussion on the related work.

2. System Description and Modeling

2.1. Smart Distance Keeping System. Smart Distance Keeping
(SDK) or “enhanced Adaptive Cruise Control (ACC)” is a
system which automatically controls the vehicle’s longitu-
dinal velocity, by acting on the engine, gearbox, retarder,
and braking system. This requires the vehicle to be equipped
with a radar system connected to a dedicated control unit as
shown in Figure 1.

The global SDK system may be decomposed into two
main parts, the SDK controller and the SDK physical system
displayed in Figure 2.

The main functions of the SDK controller (the block
“SDK Function”) are to

(i) receive the distance between the truck and the object-
in-front,

(ii) find the deceleration (acceleration) needed to realize
the correct functioning of the SDK system (main-
taining a minimal safety distance with the vehicle-in-
front),

(iii) use a control algorithm for acting through engine,
braking system, and so forth in order to adjust the
velocity of the truck.

A realistic representation of the SDK controller is given
by the Input Output Symbolic Transition System (IOSTS)
model as shown in Figure 3. This model describes exhaus-
tively the relevant driving situations where the distance
control intervenes. Apart from the “Refresh (R)” mode
(initial state), three categories of “basic” modes can be
distinguished: the “Cruise Control (C)” mode, the “Approch
(A)” mode, and the “Follow (F)” mode. The variables of this
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FIGURE 1: Radar installed on the Renault Magnum truck.
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FIGURE 2: Environment of the SDK system.

IOSTS system are T'S(= TruckSpeed), RS(= RelativeSpeed),
and RD(= RelativeDistance), while the communication
channels are acq(= acquisition) and spd(= speed) where
acq?(TS,RS,RD) and spd!(-5,-1,0, 1).

The decision of the SDK controller depends essentially
on the data issued from some sensors: truck velocity sensor,
wheels angular velocity sensors, radar, and engine sensors.

2.2. The Radar. The SDK needs to be informed about the
object-in-front presence, and about its relative position and
velocity. Within this work, the sensor is a 3-beam Doppler
effect ARS100 Radar. This radar monitors the traffic in front
of the vehicle using three stationary independent millimeter
waves.

Moving and stationary objects are detected and their
distance and relative velocity are measured and processed
sixteen times per second.

((RS< 0)A (7S < 90)) [spd :(1)]

(RS=0)V(RS < 0))A(7S = 90))) [spd :(0)]

((RS>0) v (15>90)) [spd :(—1)]
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((RD <90) Vv (RD >150) Vv (|RS|= 20))

\“‘ [acq?(tS,RS,Rd)]

[spd :(1)]

[spd :(0)]

[spd:(-1)]

((RD < 50)A(RS > 0)) [spd :( —=5)]

F1GURE 3: IOSTS system of the SDK controller.

Due to its physical nature, the radar sensor is offering
excellent performance characteristics even in adverse weather
conditions.

Since the data issued from the radar depend on the
external object, then in order to realize any simulation,
several scenarios should be prepared for the movements of
the SDK vehicle and of the object-in-front. In this work, we
suppose that the distance and the relative velocity between
the SDK vehicle and the vehicle-in-front are the inputs to the
system (depending on the scenarios that we are choosing).

2.3. The Wheels. The linear truck velocity, which is one of the
important inputs to the SDK controller, is calculated based
on the angular velocities of the six wheels.

The wheel rotational dynamics is given in (1) by applying
Newton’s Law:

L, Wi = R;Fx, + Torque(m;) — Torque(b;), (1)
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where I,,, is the moment of inertia of the wheel number i, R;
its effective radius, w; is the angular velocity of the wheel, Fy,
is the friction force, Torque(m;) is the applied tractive torque,
and Torque(b;) is the braking torque.

2.4. Motor and Power Train. Modern diesel engines are
essentially made up of the following subsystems.

We present in this section the simplified model for the
diesel engine (see Figure 4) that we have developed, in order
to be used by the SDK controller. Based on Peysson et al. [1],
the dynamics of motor rotation is given by.

]ewe(t) = Mind(t - Ti) - Mf(t) - Mload(t)) (2)

where w, is the crank shaft angular velocity, Miyq is the in-
dicated torque, 7; is the delay, M is the friction torque, Mioad
is the torque due to the load, and J, is the effective inertia of
the engine.
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In this work, the transmission system is represented as in
the Figure 5. For simplification purposes, the “Transmission
System” block is composed only of several constants, depend-
ing on the gearbox state.

2.4.1. The Admission and Intake Manifold. The temperature
T;m of the intake manifold is assumed to remain constant
due to the intercooler. Therefore, the analysis will be based
essentially on the variation of the pressure Piy,. In this study,
the input flow is characterized by the output flow #1, of the
compressor (see (3)):

7, V4N, . RT;

B+ Py = ,
m 0V, ™ ey,

3)

where Vi, is the volume of the intake manifold, 7, is the
volumic efficiency, V; is the exchange volume in the engine,
and N, is the rotational velocity of the engine in rpm (N, =
60w,/2m).

2.4.2. The Indicated Torque Ming. In order to calculate the
indicated torque, we should calculate firstly the indicated
efficiency. Normally, this efficiency is a specific characteristic
to the engine and it is found from empirical data. This
efficiency is higher when the mixture is light, and it may be
approximated by (4)

Uind = a+bA+ cA?, (4)

The coefficients (a, b, ¢) are found by identification (three
different tests have been made) and A is defined by (5)

)= (PimWeVd(47TR)Tv. (5)
Timmf
Then the indicated torque Minq can be found by (6)
Ming = 117 pe,fhinds (6)

where 71y is the flow of fuel and p,, is a characteristic for the
diesel (40000000 JKg™1).

2.4.3. The Injection. The injection system controls the quan-
tity of fuel that will be introduced into the combustion
chamber. The mixture Air/fuel should be capable to auto
ignite by the effect of temperature and the high pressure. The
calorific power of combustion is related to the quantity of
fuel injected. The following model gives the flow of fuel 1
in function of the position x,, of the accelerator pedal and the
engine speed (see (7)) Peysson et al. [1]:

iy = ig + Ariyspx) + Ay,

. . 2 (7)
Amy = w3<11 + Xy +i3X, + 14we),
where iy characterizes the minimal injection flow (greater
than zero, when the engine is idle) and A1y models the
variations of the flow around iy. ij,..., i4 are constants
obtained by identification following simplification on the
flow control model (regulator slide).
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FIGURE 6: Model-based fault diagnosis using residual approach.

2.4.4. The Friction Torque My. The friction torque may be
calculated by

M; = (c0+clv;/e+clw§)Vd. (8)
nr

2.4.5. The Load Torque Miod. The torque Mjo.q depends on
the type of the road, the vehicle velocity, the turnings, and
so forth. In this work we will suppose that this torque is an
input to the system and has a constant value.

3. Decentralized Diagnosis

In most automated systems, the command part (which
implements the control of the operative part) is generally
represented through a model to be applied to the operative
part (mechanical components which should be controlled by
means of actuators, such as engines). Realizing a diagnosis
requires also to be able to represent the state of the operative
part using a model that can be integrated to the one of
the command part, separated or mixed. Thus, when a
fault occurs, it is possible to get information regarding the
process and to compare model and process. This is called
model-based diagnosis, more particularly Fault Detection
and Isolation (FDI) Darkhovski [10].

The method of FDI is based on the use of model-based
analytical redundancy, that is, relations among the measured
variables (see Figure 6). It can be divided into several steps
Patten et al. [9].

(1) First, data containing information about the process
states are transmitted to the residual generation
module. This module generates a vector that carries
information about symptoms and particular possible
faults.

(i) Second, the successive generated vectors are evaluated
and filtered in order to extract the primary cause of
the observed evolution, that is, to achieve fault local-
ization and identification,. The structured residual

approach Chow et al. [11] has been chosen in order
to perform this stage.

3.1. Motivations. A decision-making structure for fault di-
agnosis must be defined to face combinatorial explosion
and real-time problems and/or communication problems
between various components of a process. The choice of
a structure depends on the distribution of the available
information (model and observation): centralized or dis-
tributed, and on the nature of the process: simple with
only one control unit or complex with several local control
units. There are therefore three main structures of decision-
making methods for diagnosis: centralized, decentralized,
and distributed.

The centralized structure consists in associating to one
global model of the process a single diagnostic module
(called diagnoser). It collects the different process informa-
tion before making its final decision about the operating
status of the process Sampath et al. [12]. Although successful
in terms of diagnosis for simple systems, the centralized
structure is difficult to use for large systems. Indeed, the
acquisition of a global model of the process rises difficulties
and often leads to combinatorial explosion problem, when
it is not just impossible due to the presence of several
manufacturers for the different parts of the process and
privacy rules.

The decentralized structure is based on several local
independent diagnosers that are associated to one global
model of the process. Each diagnoser receives the observa-
tions which are specific to it and takes a local decision based
on its local observations. However, this structure involves
problems of indecision when some global specifications
require consistency checking between decisions of local
diagnosers. To solve these cases, each diagnoser sends its
local decision to a coordinator (or supervisor) which will
manage the different problems of ambiguity between these
diagnosers and will take the final decision Wang et al. [13].

In the distributed structure, the process is modeled
through its components (or subsystems) by several local
models. Each one is equipped with a local diagnoser
responsible of it. In the case of global specifications, a com-
munication protocol allows directly the communication
between the different diagnosers to manage conflict decision
Qiu [14]. Each diagnoser makes its decision based on its own
local observation and that reported by other local diagnosers
as answers to its queries. This structure permits to throw off
the construction of a coordinator but implies the definition
of a protocol for decision making through communication
between diagnosers, often impractical because without guar-
antee of convergence in bounded time and generating more
important communication traffic and delays.

In this paper, we adapt the decentralized/distributed
structure. In other words, a local diagnoser is associated
with each component of the process based on a modular
modelling of the plant elements. All local diagnosis decisions
are transmitted via a communication environment and
merged by a dedicated supervisor in order to obtain a global
decision and carry out any recovery action (see Figure 7).
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This fusion can be realized by a coordinator based on a set
of rules. The goal of this coordinator is to solve the problem
of decision conflict and/or ambiguity among local diagnosers
in order to obtain a diagnosis performance equivalent to
that of a centralized diagnoser. This approach allows carrying
out on-line diagnosis without computing the global model
and overcoming both the combinatorial and communication
traffic explosion problems.

3.2. SDK Algorithm. As shown previously, the decision of
the SDK controller depends essentially on the data issued
from some sensors (wheels angular velocity sensors, radar,
and transmission sensor), which means that any faulty data
will influence the SDK system decision. That is why one local
diagnoser is associated with each one of these sensors in
order to diagnose an SDK fault by using the decentralized
model-based approach (see Figure 7).

3.3. Decentralized Diagnosis of the SDK. A model of the SDK
environment, that is, the part of the vehicle required to close
the loop, is necessary to perform diagnosis (see Figure 7).
So, by applying the laws of dynamics, a simplified model of
the diesel engine has been developed. It permits to identify
the angular velocities of the six wheels and the crank shaft
angular velocity in response to an action (on braking system
or accelerator pedal or gearbox).

3.3.1. Wheels Diagnoser. The six wheels angular velocities
w; are the inputs of a local algorithm able to detect and
isolate any fault that occurs in the wheels velocity sensors.
Indeed, it is possible by using these redundant measurements
to generate a set of structured residuals and afterwards detect
and isolate single or multiple fault.
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TaBLE 1: Angular velocity comparison for the wheels 1, 3, and 5.

Difference wp — W3 Wy — Ws W3 — Ws

Soddi fi3 fis S

TaBLE 2: Angular velocity comparison for the wheels 2, 4, and 6.

Difference Wy — Wy Wy — W Wy — W

feven i f24 f 26 ﬂG

TasLE 3: Comparison of the angular velocity of the wheels: 1, 2, 4,
and 6.

Difference W — W Wy — Wy Wy — Ws

S S fia fis

TaBLE 4: Comparison of the angular velocity of the wheels: 3, and
2,4, 6.

Difference w3 — Wy W3 — Wy w3 — We

f3i f32 f34 f36

TaBLE 5: Comparison of the angular velocity of the wheels: 5, and
2,4,6.

Difference W5 — W, W5 — Wy W5 — W

fi fs2 fsa S6

Two cases are considered based on steering angle.

(i) Case of Straight Line Motion. In this case, we suppose
that the angular velocities of the six wheels should
be approximately equal. Then in order to apply this
strategy, we suppose that we have two groups: group
1 (for the wheels: 1, 3, 5), and group 2 (for the
wheels: 2, 4, 6), and we calculate the differences in the
angular velocities as shown in Tables 1 and 2. Then
if (w; — w;) < €, we suppose there is no fault, and
fij = 0, else we have a fault and f;; = 1. To localise
the fault in the case of f;; = 1, a small algorithm
is realized. This algorithm is able to localise from 1
to 4 faults. In the case of more than four, it gives a
signal that all the wheels are faulty The realization
of this algorithm is based on Tables 1, 2, 3, 4, 5. By
completing these tables, the localization of the fault
will be evident.

(ii) Case of a Curve Motion. in this case, we follow the
same strategy proposed in the previous case, with the
five tables, but the main difference here, in the case
of the curve, is when we compare a wheel in group
1 (for the wheels: 1, 3, 5) to a wheel in group 2 (for
the wheels: 2, 4, 6), we should take in consideration a
small difference that can be calculated geometrically
based on the Ackerman angle theory and based
essentially on the steering angle. So we should replace
€ with €'.

The outputs of this algorithm are the state (nor-
mal/abnormal) s; of the wheels sensors. In addition, it
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computes the longitudinal speed TS, of the truck which is
approximated based on the nonfaulty sensors:

(51552, 53, 545 S5, 6, T Syw) = wheels(wy, wa, w3, wa, s, we ).

)

3.3.2. Transmission Diagnoser. Since there is no redundancy
measurement, the algorithm just computes the longitudinal
truck speed T'S; by using the value of the crank shaft angular
velocity w, (the gear box output) and the transmission rate
number #:

TS; = transmission(w,, n). (10)

3.3.3. Radar Diagnoser. The basic data detection require-
ment is to measure distance, relative speed, and reflection
signal amplitude of moving and stationary objects in three
beams. Angular position is calculated by the interpolation
algorithms based on signal levels in adjacent beams.

Several scenarios for the radar fault detection analysis ar
as follows:

(i) First, if the radar is faulty and does not detect any
object. So, without the help of another device, we can
do nothing,

(ii) Second, if the radar works but gives incorrect dis-
tances (with a certain shift of x meters): for example
(150m — (150 — x)m) where x is a constant term,
then, we cannot detect this fault.

(iii) Third, if the relative velocity and the distance between

the vehicles are measured separately (two different
measurement tools), then it is important to check at
each period (e.g., 2 seconds) if the variation in the
distance corresponds to the variation in the relative
velocity. If there is a difference then we say that there
is a fault.
Exemple: suppose that we initially have the relative
velocity RS and the distance RD between the SDK
truck and the vehicle-in-front (see Figure9), so if
we consider that the period (that we choose for
checking) is equal to 2 seconds, then we should
obtain

d(t) —d(t —2) = 2 % Avera(Rs), (11)

where Avera(RS) is the average value of RS during the
period of 2 seconds.

(iv) Fourth, suppose that the radar was detecting a
vehicle-in-front (see Figure 9).

As we have shown before, the relative speed RS is a
measurement given by the radar. And also, the SDK vehicle
velocity T'S is measured from other sensors (wheels angular
velocities or vehicle velocity); then we can find the velocity of
the vehicle-in-front: FS = RS+ T'S.

Getting the velocity of the front vehicle, we can analyze
as follows: if there is a strong sudden variation (and then its
acceleration (deceleration) is not realistic), then we have one
of the three following cases:

(i) there is a fault in the radar sensor;
(ii) the value of the SDK vehicle velocity is faulty;

(iii) an intruder vehicle comes in front of the SDK vehicle
(see Figure 10).

In all the aforementioned cases, it is important to observe the
velocity of the front vehicle for several points before taking
any decision.

In some of the previous cases, the calculation of the front
vehicle acceleration (deceleration) may give a nonrealistic
values. A study about the maximum (minimum) possible
acceleration (deceleration) can be given as follows:

S F,
m

|0y | max = Max = max = max

//"NZ‘
m

‘u-m-g‘
m

< Umax-g-
(12)

A maximum friction coefficient (4max) determines max-
imum acceleration or deceleration. In order to estimate
Umax, sliding mode observers can be applied. A hierarchical
observer is needed for this estimation. In the first step, an
observer based on the dynamical equation of the wheels
should be developed. This observer takes as an input the
applied motor torque (which is estimated statically (existing
maps)) and the braking torque, which can be easily found
based on the hydraulic pressure sent to the wheels shraim
[15]. Then, in parallel to this observer, a sliding modes
observer is used to estimate the vertical forces. This observer
is based on the suspension system modeling. Then by
calculating the longitudinal force and the vertical force,
we apply the following formula to estimate the adherence
coefficient:

min(s", F,)’ (13)

Hmax

where 7 is the number of the wheels (equals 6), and F,, and
F,, are, respectively, the longitudinal and the vertical forces
applied at the wheel i.

If a nonrealistic acceleration (deceleration) value is
found, then if there is no intruder vehicle, we can suppose
that there is radar fault. Thus, the outputs of the local
algorithm are the radar state (normal/abnormal) s, and the
velocity of the object-in-front:

(sr, FS) = radar(RD, RV, TV, Sinf, fhmax) » (14)

where sinf is a signal precising if the truck velocity is faulty or
not.

3.3.4. Global Diagnoser (or Supervisor). It takes as inputs the
outputs of the local diagnosers and its goal is to do some
global consistency checking and to merge the local diagnosis
decisions in order to obtain one global diagnosis decision
and carry out the appropriate recovery action:

(¢, TS) = global(si, 52, 53, S45 S35 56> 51> T'Sw»> TSy). (15)



¢ and TS represent the control (recovery action) and the
truck speed, respectively.

Several fault scenarios and recovery actions have been
analyzed. The first class of scenarios is composed of wheel
sensors failures and/or sensor failure on the rotation speed
of the shaft engine (transmission fault). The global diagnosis
and recovery actions are described as follows.

(a) If 1 to 3 wheels sensors are faulty out of the 6
(determined by the wheels diagnoser), the recovery
action consists for the SDK function in using the
truck speed T'S,, calculated as average values provided
by the correct sensors (between 3 and 5). The global
diagnoser compares TS, to TS, and, in case of
discrepancy, concludes also to a faulty transmission
SEensor.

(b) If 4 wheels sensors are faulty (determined by the
wheels diagnoser), a comparison between the speed
TS, computed from the two ones assumed to be
correct and T'S; is performed by the global diagnoser.
In case of consistency, the recovery action decided by
the global diagnoser consists in using the truck speed
calculated as average values provided by the correct
wheel sensors and the transmission sensor (3 out of
7).

(¢) In all other cases, that is, when at most 2 sensors out
of 7 provide consistent measurements, the recovery
action decided by the global diagnoser consists in
disabling the SDK function.

The second scenario category includes the radar failure.
It may pass unnoticed, in particular if RD and RS mea-
surements are not independent, because we cannot provide
analytical redundancies between the truck and the front
vehicle. In absence of such redundancy, the only check we
can do is to verify that the behavior of the front vehicle,
in terms of velocity and acceleration, as deduced by the
global diagnoser from the truck’s behavior (T'S) and the
radar measurement, is not physically impossible, that is,
does not violate the laws of dynamics. In case of physical
impossibility detected, then the recovery action taken by the
global diagnoser consists in disabling the SDK controller.

Obviously both scenarios can combine, allowing multi-
ple fault diagnosis of the wheels and transmission sensors
and of the radar.

4. Diagnosis Deployment

In this section, we propose a deployment solution of
the decentralized model-based fault diagnosis strategy (see
Figure 8) in the electronic architecture of a Renault Truck’s
vehicle. The SDK electronic architecture part is composed
of three Electronic Control Units (ECUs) that communicate
between them through a bus topology. The ECUs exchange
messages that follow the Control Area Network (CAN)
protocol, which is low cost and very wide spread in the
road transport domain. The three ECUs (ECUL, 2, and 3)
are, respectively, linked to wheels, transmission and radar
(+SDK algorithm) control functions. We also assume that
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FiGUrE 8: Decentralized model-based fault diagnosis of the SDK
system.
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FiGure 9: SDK Vehicle and the vehicle-in-front.

there is at least another ECU (ECU4) in the vehicle for other
high level control functions, which is a very likely situation
in modern vehicles. ECU4 will be used for embedding the
global diagnoser and recovery functions.

We first list the manufacturing constraints that motivate
the adopted deployment solution. We next present the
classical on-board diagnosis techniques in vehicles. Finally,
we describe the principle of our on-board diagnosis strategy,
based on the previous electronic architecture. The next
section will present an integration and validation platform.

4.1. Motivations. From an end users point of view, break-
downs and malfunctioning can lead to a loss of safety
for the driver and his environment—a major breakdown
which necessitates an emergency stop and repair—or a
company’s performance penalty, due to the need of a vehicle
maintenance. From the vehicle manufacturer point’s of view,
these risks must be avoided because they can mostly cause a
loss of corporate image and in-field yield.

Beside that, the road transport industry is a very compet-
itive market and the integration of innovative features, such
as diagnosis, is highly driven by economical considerations.
That is why most of control organs of modern fuel vehicles
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FiGgure 10: SDK Vehicle and the front vehicle AV with intruders
(vehicle).

are embedded and architectured around a limited number
of ECUs and communication buses. This evolution towards
a very wide use of ECUs was also pushed by the need to
reach new challenges such as environmental, performance,
security, and driving assistance requirements.

As a result, the following four major requirements have
driven our diagnosis deployment strategy:

(i) the number of ECUs has to remain unchanged;

(ii) the number of buses has to remain unchanged and
the same communication protocol should be used if
possible;

(iii) the additional bus load related to diagnosis infor-
mation must not affect the current real time perfor-
mance;

(iv) the diagnosis procedure must be achieved within a
bounded time.

Note that, here, we do not address the problem of ECUs load
sharing and balancing between the control functions already
embedded in them and the diagnosis control ones that will
be embedded. Nevertheless, the response time of a control
function mainly depends on the total communication delay
along the bus lines.

Due to the robustness of the CAN-based bus technology,
it is a good candidate for enabling the deployment of a
decentralized diagnosis strategy. The electronic architecture
remains unchanged (no additional ECU and bus). In order
to achieve the two last requirements, we developed an SW-
based diagnosis service that is an SW middleware built
on the top of any ECU operating system. It enables the
communication of diagnosis information between the local
diagnosers and the global diagnoser (as shown in Figure 8)
over a loaded CAN bus. It also processes any alert with
a bounded time whatever the bus load. It enables the
message exchanging with a bounded time while the real-time
requirements are verified (no more than 2% of delay time)
whatever the bus load.

4.2. Classical Diagnosis Approaches. On-board vehicle diag-
nosis (OBD) refers to vehicle self-detection, localization,
identification, and reporting capabilities (O’Reilly [16] and
Greening [17]). Early OBD versions for fuel vehicle managed
by electronic simply switched on a malfunction indicator
light in the vehicle if any problem was detected. The
diagnosis was next performed by an operator in a garage
with the aid of a terminal connected to the vehicle electronic.

Efficient diagnosis tools were developed for tracking the
problem such as Ressencourt [18].

Modern OBD provides real-time diagnosis data in addi-
tion to standardized diagnosis trouble codes (DTCs) which
rapidly allow the vehicle to self-identify and, possibly, self-
repair by itself the problem during the driving. Otherwise,
some vehicles activate a downgraded mode that allows the
vehicle driving in safe conditions even in the presence of
problems Fromion [19]. In parallel, the vehicle switches on
a driver indicator light that points the need of an emergency
maintenance (the driver must reach the closest garage) or
stop.

Current SAE (Society of Automobile Engineers) and
ISO (International Standardization Organization) standards
specify the hardware (connector, network) and communi-
cation protocol (Open System Interconnection model) for
exchanging diagnostic data over the ECUs and external
terminals. Some engineering companies propose tools that
allow the ECU original equipment manufacturers (OEMs)
implement the standardized DTC and customer-specific
diagnosis requirements in their ECU, such as Frank et al. [20]
(diagnostic-oriented process flow).

4.3. Deployment of the Decentralized Diagnosis. The decen-
tralized diagnosis system, described in Section 3, is deployed
in an electronic architecture of four ECUs which communi-
cate over a single CAN-based bus.

The local diagnosers only transmit boolean signals,
which take two states: normal or abnormal, to the global
diagnoser. Note that the local diagnosers do not exchange
directly diagnosis information with each other. A local
diagnoser outputs a normal state whenever no fault is
detected. During this normal state, no additional bus load
is due to the diagnosis protocol. Conversely, an abnormal
state indicates that a problem has likely occurred in a sensor,
and when it appears, the local diagnoser must immediately
send diagnosis information to the remote global diagnoser in
order to compute a global diagnosis and, if the need arises, to
perform a recovery procedure.

For enabling this event-based procedure, we insert a
Local Diagnosis Service (LDS) in every ECU that embeds
a local diagnoser. An LDS reads the outputs of the local
diagnoser (normallabnormal). When an event “normal —
abnormal” occurs, it virtually creates a high-priority commu-
nication channel between the local diagnoser and the global
diagnoser, so that the former can immediately transmit the
diagnosis information to the latter within a bounded time.
The diagnosis information is embedded in CAN messages.
In addition, a CAN message contains a control header that
especially defines the transmitter and receiver identifiers and
the priority level of the communication. On the opposite
side, a Supervision Diagnosis Service (SDS) is inserted in
the global diagnoser ECU. It monitors the bus load and
gathers the diagnosis information sent by any LDS. It next
triggers the global diagnoser. Note that the LDS and SDS can
periodically check if, respectively, the SDS or any LDS is safe
and ready.

Figure 11 illustrates the different behavior phases of both
LDS and SDS before and after the occurrence of a problem.
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Monitoring phase

I: Send initialization message A: Active

W : Wait for start request

W: Wait for initialization message E: Event notification

S: Send start request S: Suspended

P: Store partial information

B: Build diagnosis message G: Compute global diagnosis

R: Apply reactions + send restart order

FIGURE 11: Decentralized diagnosis protocol over a CAN bus.

Initialisation Phase. The first phase consists in the establish-
ment of the list of available LDSs. Each LDS sends to the
SDS a specific CAN message for initialization which includes
its identification number. When the SDS has received the
initialization message from all LDSs, the protocol enters
the monitoring phase. This instant is materialized by the
broadcasting of a specific message from the SDS to all LDSs.

Monitoring Phase. During this phase, no messages are
exchanged between the LDSs and the SDS. This phase
corresponds to a situation where the system is operating
normally, without local diagnosis event from the local
diagnosers. This implies that there is not any overtraffic due
to the diagnosis during the normal operation of the system.

Alert Phase. This phase begins when an abnormal event is
detected by a local diagnoser. At this moment, the LDS of
the concerned ECU sends a specific alert event message to
the SDS. The instant of the first alert event message emission
materializes the beginning of a period when the SDS is
waiting for other alert event messages that would complete
the information for the global diagnosis. At the end of this
period, the SDS gives the order to the global diagnoser to
compute the global diagnosis. When this is done, the SDS
broadcasts a specific message to all LDSs for entering again
in the monitoring phase.

Vivacity Check. While the protocol is in monitoring phase,
the SDS can initiate a vivacity check: the SDS broadcasts a
specific CAN message to all LDSs. When the LDSs receive
this message during their monitoring phase, they send an

acknowledgement message for proving that the on-board
diagnosis is correctly running.

5. Evaluation of the Diagnosis

5.1. Evaluation of the Diagnosis Algorithms

5.1.1. Presentation of the Scenarios. Several fault scenarios
were chosen to valid the diagnostic approach for this SDK
system. The selection was done according to

(i) relevance of fault during SDK system operation,
(ii) ease of inducing the fault,

(iii) exclusion of danger possibly caused by the induced
fault.

Such faults in the SDK system are failures of the wheels,
the transmission, and the radar. All these failures can occur
intermittently. Moreover, single or multiple faults may be
considered.

5.1.2. Evaluation of the Scenarios. We developed a physi-
cal simulation model of the SDK environment in MAT-
LAB/Simulink in order to evaluate our model-based diag-
nosis approach. The simulation serves as a virtual test bed
where we can easily study a large number of fault scenarios
to develop our diagnosis models and test our algorithms.
We adopted a component-based modeling paradigm, where
parameterized simulation models of generic components
(SDK controller, radar, wheels, transmission, engine, and
supervisor) were developed within a component library.
The different local models are constructed by instantiating
different components from the library, specifying their
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FiGure 12: Simulink block diagram for detection of SDK sensor faults.

parameters, and connecting the components to each other in
the appropriate fashion. The top level of the Simulink block
diagram is illustrated in Figure 12.

Except the supervisor, each component model includes
its associated fault modes. The fault mode, time of fault
injection, and fault magnitude (where applicable) can all be
specified. In general, each fault mode is mapped to a change
in component mode and a fault-dependent magnitude
parameter. Because each fault mode is parameterized within
the Simulink model, a fault can be injected programmatically
(i.e., the fault mode, injection time, and magnitude are
specified) either at the beginning of the simulation or while
the simulation is running.

As mentioned previously, a fault will be detected by
observing residual values which should be close to zero in
the nominal behavior of the process, otherwise, significantly
different from zero. Ideally the residual signal should carry
only information about faults but, practically, it also contains
disturbances, which is the effect of model uncertainty. It is
necessary in this case to establish thresholds on residuals to
avoid false alarms. The fault occurs only when the residual
values exceed the prescribed threshold. For this, we have
analyzed the residual values in the absence of fault, which
helped determine the residual magnitude in functioning
healthy state. The resulting thresholds are then used to the
fault detection mechanism.

By using this simulator, the fault scenarios and recovery
actions presented in Section 3.3 have been performed. Then,

the injected fault has been detected and localized. Finally, the
appropriate recovery action has been applied.

5.2. Performance Evaluation of the CAN Integration. A pro-
totype of the diagnosis system has been realized, according
to the diagnosis organization presented in Section 3 and
using the deployment scheme described in Section 4. The
objective of this prototype is to validate the functionality of
the diagnosis implementation and the performance of the
deployment architecture. More specifically, we want to check
the real-time property provided by the proposed deployment
scheme. For that, we developed a validation environment
that allows the emulation of both LDS and SDS modules
with a high accuracy (real time simulation). In the following,
a description of the experiment will be done; then we will
present and analyze the results.

5.2.1. Prototype Presentation. As represented in Figure 13,
some parts of the prototype are emulated with a simulation
tool while others are implemented in a real hardware ECU.
The electromechanical truck subsystem models and the local
diagnosis algorithms are modeled with the Matlab Simulink
simulation tool. Every LDS module, presented in Section 4,
is modeled in the CANoe tool Frank and Schmitds [20],
which is a suitable emulator of CAN-based systems. This
tool simulates the behavior of a CAN-based system with
a high accuracy (real time). In addition, this tool allows
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FIGURE 13: General diagram of the prototype of embedded diagnosis of the SDK function.

a cosimulation with a real CAN-bus and real ECU. For
performance evaluation, a CAN based traffic generator was
included for generating different reference loads that are
adjusted for evaluating under which condition the LDS-
SDS protocol under study verifies the real-time condition.
In addition, the priority of the bus load can be configured
as lower or higher, compared to the messages’ priority
of our diagnosis protocol. The global diagnosis algorithm
(Section 4), the SDS module (Section4), and a human-
machine interface (HMI) are implemented in a hardware
ECU which is the Freescale board MAC7100EVB, equipped
with an ARM MAC7111 microprocessor, which includes 4
CAN peripherals, one of which is used by our application.
The CAN bus is configured at a bit rate of 250 kbit/s.

For stimulating the diagnosis protocol between the LDSs
and the SDS, a fault is injected in the electromechanical
model of the truck. The fault generates a divergence between
the model and the golden model of the local diagnosis. We
considered 8 scenarios that correspond to various configura-
tions of load values and priorities. For each scenario, a series
of 20 faults is applied. The different scenarios are given in
Table 6.

5.2.2. Performance Results. The experimental results are
presented in Table 7. We observe that if the bus load does
not exceed 60%, no particular impact can be noticed on the
processing latency of the diagnosis, for higher and lower load
priorities. But when the load priority is high and the load is
over 60%, an impact on the latency can be measured, which
is growing with the bus load level. These configurations must
be avoided for ensuring a reliable use of this decentralized
diagnosis algorithm.

In practice, the CAN bus load of vehicles never exceeds
40% by design, for avoiding congestion problems, so consid-
ering this statement, our decentralized diagnosis algorithm

TABLE 6: Scenarios for the evaluation of the CAN integration.

Configuration Load priority Load level (%)
Config0 No Load 0
Configl Lower 2.67
Config2 Lower 8.11
Config3 Lower 62.44
Config4 Higher 2.65
Config5 Higher 8.06
Config6 Higher 62.02
Config7 Higher 97.18

TaBLE 7: Performance evaluation of the CAN integration.

Processing latency of the diagnosis (s)

Configuration
Min Max Average Std. dev.

Config0 20.72 21.09 20.91 0.37
Conﬁgl 20.82 22.22 21.17 0.52
Config2 20.75 22.24 21.34 0.65
Config3 20.60 21.02 20.87 0.13
Config4 20.75 22.00 21.11 0.41
Config5 20.67 21.05 20.93 0.12
Config6 20.68 28.09 21.81 2.26
Config7 21.06 101.76 32.90 30.37

verifies the real-time condition, that is, the delay between
the LDS and SDS over the network remains quite constant
whatever the bus traffic conditions.
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6. Conclusions

In this paper, we have developed a diagnosis algorithm of the
SDK system and a software architecture in order to board it
inside truck vehicle in a decentralized manner. The model-
based diagnosis approach has been used because it presents
the advantage that no prior knowledge of possible faults or
symptoms is needed. It relies only on a given model of the
correct functioning of the system and proceeds by comparing
the behaviors of the model and of the actual system (as
known through the observations given by sensors).

The originality of the accomplished work is based on two
contributions. The first one is the distribution of diagnosis
algorithms on several ECUs by using the decentralized
diagnosis approach (the method has only been applied, in the
practical context of industrial applications, in a centralized
manner). This approach uses a set of diagnosers. Each
diagnoser observes a part of the SDK system and takes
a local decision about the occurrence of a fault and its
localization. The construction of the local diagnosers is
based on a modular modeling of the plant elements. All
local diagnosers decisions must be merged by a dedicated
supervisor in order to obtain one global diagnosis decision
and to take also any recovery action. This fusion can be
realized by a coordinator. The second contribution is the
design and deployment of the decentralized model-based
fault diagnosis approach for the SDK system. The attention
was paid to minimize the additional traffic generated by
the diagnosis function and to respect the real application
constraints (performance, diagnosis latency, etc.). An on-
board diagnosis using Hardware-in-the-Loop scheme under
specifications (constrains) near to a truck “Renault Trucks”
has been performed.

The decentralized embedded diagnosis for the SDK
system inside real vehicles is mature from the point of
view of research and of feasibility. However, we should
extend and develop algorithms robustness, take into account
the protocols and details of the hardware architecture and
existing software, conduct tests on many scenarios, and
measure in situ the quality (correctness, precision, time
delay) of the diagnosis and its compatibility with existing
functions (induced traffic on the CAN-bus, transparency).
Moreover, in order to verify a priori that the set of local
diagnosers and supervisor is capable of diagnosing a given set
of faults within a bounded delay, a notion of diagnosability
must be studied.
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