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The objective of this paper is to delineate a method for determining the yield strength of a material in a virtually nondestructive
manner. Conventional test methods for predicting the yield strength require the removal of large material samples from the in-
service component, which is impractical. In this paper, the power of neural networks in predicting the yield strength from the
data obtained by conducting tension test on newly developed dumb-bell-shaped miniature specimen is demonstrated using the
self-organizing capabilities of the ANN. The input to the neural network is the breakaway load obtained from the miniature test,
and the output obtained from the model is yield strength value. The value of the yield strength estimated by neural network is
found to be in good agreement (<5% error) with that of the actual value from the standard test. The neural network models are
convenient and powerful tools for practical applications in solving various problems in engineering.

1. Introduction

In the past, designers/engineers avoided material failure by
designing the structures for stresses well below the yield
strength of the material. However, when the same approach
was used with high strength materials under extreme condi-
tions, there were many catastrophic failures [1]. The material
behavior of in-service structural components is changing due
to in service loading, aging, irradiation, and other adverse
conditions leading to embrittlement, which requires an in
situ monitoring of the materials’ state. It is not feasible
to assess the degraded properties of these equipments and
components by performing standard destructive mechanical
tests, because this would mean damaging of equipments and
rendering them nonfunctional in addition to long shut down
[2]. In order to determine material parameters at various
locations, for example, in weldments or gradient materials,
the size of the material taken out for a test specimen should
be very small but representative. Over the years, the subsize
specimen test and miniature specimen test techniques have
been evolved to estimate the various mechanical properties
without seriously affecting the functionality of the compo-
nents. In this respect, the small punch test, ball indentation
test, disk bend test, shear punch test, and many other tests

are reported for evaluation of degraded material properties
of in-service components [3].

A variety of approaches have been employed to deter-
mine mechanical properties from small disks and coupons.
The earliest use of the 3 mm diameter disk specimen was an
attempt by Huang et al. [4] to assess the tensile ductility of
a set of irradiated steels. They used simply supported TEM
disks of 3 mm diameter, which were displaced by a spherical
tipped indenter. Mao and Takahashi [5] and Mao et al. [6]
investigated the deformation behaviour using small punch
test. Kullen et al. [7] employed a shear punch test technique
to determine the mechanical properties of neutron irradiated
9Cr-1Mo and 12Cr-1Mo steels. Pandey and Bhowmick [8]
further used the disk bend test specimen to predict tensile
properties and fracture toughness (Jic) for a number of
steels. Recently, Husain [9] employed small punch test on dif-
ferent materials having varieties of strength to establish a
general relationship between the data obtained from small
punch test and the yield strength.

The developments in artificial intelligence made the
researchers to have a look into the solution of nonlinear
problems in physical and mechanical properties of metal
alloys [10]. The field of ANN was born in an attempt to
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solve the complex problems that are difficult for conventional
computers or otherwise. Their capacity to identify the under-
lying functional relationship in the data, while neglecting
noisy and less significant input data strongly supports the
applicability of such methods for prediction of material
properties and other problems in engineering.

Recently, in material science and engineering fields, the
researchers have used neural network models to predict the
mechanical properties of materials. Ozerdem and Kolukisa
[11] used Cu-Sn-Pb-Zn-Ni (wt%) contents as input to the
neural network to get the yield strength value of cast alloys.
Similar exercise was performed using C%, Si%, and Mn%
contents as inputs to predict the yield strength of carbon steel
bars [12].

Forouzan and Akbarzadeh [13] predicted the effect
of thermomechanical parameters such as preheating time
and temperature, finish rolling temperature and the final
annealing temperature on mechanical properties such as
yield strength, ultimate tensile stress, and elongation using
neural network. ANN was used to predict the mechanical
properties of forged TC11 titanium alloy by using the
deformation temperature and the true strain as the inputs
to the network [14]. In the same manner, Guo and Sha [15]
modelled the correlation between processing parameters
and properties of maraging steels using artificial neural
network. The input parameters of their neural network
model consist of alloy composition, processing parameters
vis-a-vis cold deformation degree, ageing temperature and
ageing time, and working temperature. The outputs obtained
from ANN model include ultimate tensile strength, yield
strength, elongation, and reduction in area. Also, similar
exercise were performed for titanium alloys [16]. The effect
of alloy composition, microstructure and work temperature
on tensile properties of gamma-based titanium aluminides
also studied using artificial neural networks [17]. On the
other hand, Huang et al. [18] used ANN to predict the
flexural strength and fracture toughness of ceramic tool
materials. Zhang et al. [19] employed ANN model for the
prediction of properties of composite materials. Zeng et al.
[20] developed an expert system using neural network to
identify cheaper sintering process to efficiently achieve the
desired mechanical properties with respect to cost and time.
ANN was also used to predict ductile properties of cast iron
[21] and mechanical properties of annealed thin strip [22].
Huber and Tsakmakis [23] performed spherical indentation
test to obtain constitutive properties from the resultant
test data using neural network. They obtained a data base
for the training and validation of the neural network by
carrying out numerous finite element simulations using
commercially available ABAQUS code, for various sets of
material parameters. Abendroth and Kuna [24] used feed-
forward neural network model to find the material properties
and tested this on three steels using small punch test.

From [25], it was noted that different test techniques
have their own advantages and limitations. in the present
investigation, an ANN model is developed using the minia-
ture test load-elongation diagram to obtain the yield strength
of materials. In the present research a dumb-bell-shaped
miniature specimen has been designed and used to conduct
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the miniature test through the experimental setup described
elsewhere [26]. the miniature specimen is fabricated from the
material taken out from the structure for which the proper-
ties are to be determined. Then, the miniature specimen test
is conducted and the load-elongation diagram along with the
yield load is obtained. Then, using the trained ANN model
and the yield load, the yield strength of the structure can be
obtained.

2. Neural Network Model

Neural Network models belong to the class of data driven
approaches instead of model-driven approaches [27]. Their
ability to learn by example makes artificial neural networks
very flexible and powerful. Therefore, neural networks have
been intensively used for solving regression and classification
problems in many fields. Recently, neural networks have
been used in the areas that require computational techniques
such as pattern recognition, optical character recognition,
predicting outcomes, and problem classification, prediction
models for mechanical properties of materials [28].

3. Background of Ann

The basic units of neural network are the artificial neuron as
shown in Figure 1. Neural networks analyze data by passing
it through several simulated processors that are intercon-
nected and highly distributed. Neural network processes by
accepting inputs, x(n), which are then multiplied by a set of
weights, w(n). The neurons then nonlinearly transform the
sum of the weighted inputs, by means of a transfer function,
f, into an output value g, as shown in (1). The output of
a neuron, thus, depends on the neuron’s input and on its
transfer function. Sometimes a bias, b, is also added to the
network. The bias is then regarded as a weight with a constant
input of 1 [29]

a—f(pr) or a—f(pr+b>. (1)

In general, a neural network model is trained to reach
from a particular input to a desired target output until
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FIGURE 2: Multilayer network architecture used in the present study.

the network output matches with that of the target. Hence,
the neural network can learn all the systems. This system
of learning is known as supervised learning. The learning
ability of a neural network depends on its architecture
and applied algorithmic method during the training. In
addition, training procedure can be ceased if the network
output reaches close enough to the desired/actual output.
Thereafter, the network is ready to produce outputs based on
new input parameters that are not used during the learning
procedure.

Multilayer feed forward networks are one of the corner
stones of research in ANN. In this, the neurons are ordered
in layers, with an input set, hidden set and an output set of
neurons. The information (data) contained in the input layer
is mapped to the output layers through the hidden layers.
Each unit can send its output to the units on the higher layer
only and receive its input from the lower layer.

The neural network used belongs to the class of multi-
layer perceptrons or feed-forward neural networks as shown
in Figure 2. The two-layered neural network model had
“logsig” as activation function in its first layer, that is, hidden
layer, and the second layer has “purelin” as its activation
function. The number of neurons in the hidden layer varied
from 50 to 100 to achieve the optimal network model,
whereas the number of neurons in the output layer was 1. In
the present study, training of neural network is carried out
using MATLAB version 6.5.

The prediction of yield strength using neural network
is made using the load-elongation curve obtained from the
miniature test on dumb-bell specimen as shown in Figure 3.
In the present investigation, the study has been conducted
in various types of steels, that is, chromium steel (H11),
low carbon steel (LC) and medium carbon steel (MC), as
well as an aluminum alloy (AR66). The compositions of
above materials are presented in Table 1. The Al-alloy was in
optimum aged condition whereas the various steels were in
normalized condition.

4. Prediction of Yield Strength

The yield strength prediction scheme used in the present
study is shown in Figure 4. The procedure for the evaluation
of yield strength using a miniature specimen test along with
the neural network model is delineated in a stepwise manner
as follows.

2mm

+ 6 mm

2mm

FiGure 3: Configuration of the miniature dumb-bell specimen.

4.1. Input to the Neural Network. The neural network model
for the prediction of yield stress is trained by providing the
yield load (breakaway load) P, as the input and yield stress
as target output for different materials. The yield load is
obtained from the load-elongation curve of miniature test
on dumb-bell shaped specimens. A typical load-elongation
diagram for the specimen from the Al-alloy (AR66) is
shown in Figure 5. Different data points on the load-
elongation diagram are identified as (u;, f;), where u; is
the elongation in the specimen due to the corresponding
tensile force f; at the ith data point. These data points
are obtained directly from the miniature test. Similarly,
the load-elongation diagrams were obtained for all other
materials considered in the present study. Whenever the
distinct yield point is not appearing in the load-elongation
curve, yield load is obtained as yield offset corresponding to
0.2% of the elongation corresponding to the maximum load
as shown in Figure 6. The load at breakaway (P,) obtained
from miniature test load-elongation curve for the materials
considered in the present study is shown in Table 2.

4.2. Preparation of Database. (a) The database required
for the training of ANN was prepared by performing
experimental miniature tests on the materials for which the
values of yield strength are already known. The experimental
load-elongation curves from the miniature test are obtained
for all the materials. From the miniature test load-elongation
curve, the values of breakaway load are obtained for all the
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TaBLE 1: The chemical compositions (Wt%) of steels used in the present study.

Material C Mn Si Zn Ni Cr Mo Al Cu Zr Fe

Aluminum alloy (AR66) 0.0 0.0 0.0 6.3 0.0 0.0 0.0 Rest 1.55 0.14 0

Chromium steel (H11) 0.36 0.4 1.00 0.0 0.0 5.0 1.1 0.0 0.0 0.0 Rest

Medium carbon steel (MC) 0.35 0.68 0.15 0.0 0.01 0.02 0.02 0.01 0.03 0.0 Rest

Low carbon steel (LC) 0.19 0.44 0.14 0 0.15 0.1 0.04 0.02 0.13 0.01 Rest
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FIGURE 4: The scheme of material property prediction.

investigation.

SL. no. Materials Load(;’; ?izalljjaway
(1) ARG66 Al-alloy 129

(2) H11 steel 110

(3) LC steel 82

(4) MC steel 69

materials considered in the study and are denoted as (P)),
and the corresponding yield strength values of the material
are denoted as (0y); as shown in Figure 4. They are stored
in the database, where the subscript i varies from 1 to N
(N = number of different materials on which miniature test
is performed).

(b) Apart from the experimental data, also data were
collected for various materials from the available literature.
The collected data constitutes tensile properties (such as
Young’s modulus, yield strength, etc.), true tensile stress-true

strain diagram of the materials. Finite element simulation
was performed using ABAQUS [30] to obtain FE simulated
miniature test load-elongation curve for these materials. The
description about the finite element simulation of miniature
test is given elsewhere [31]. From the FE simulated miniature
test load-elongation curves, the values of breakaway load
were obtained and are denoted as (P)) ;, and the correspond-

ing yield strength values of the material are denoted as (ay)j

(see Figure 4), where j varies from 1 to M (M = number
of different materials on which FE simulation of miniature
test is performed). Now, the database contains number of
load at breakaway and corresponding yield strength values of
different materials. Out of the available data 75% data were
used for training the neural network and the remaining were
used for testing the network.

4.3. Training of Neural Network. Neural network was trained
by using the data stored in the database as described above.
The inputs to the neural network are the breakaway load
point (P,) from the database and the corresponding yield
strength values are the target output to the neural network.
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FIGURE 6: Procedure to find yield load from load-elongation curve
from the miniature test.

The network is said to be trained when the output from
the ANN matches closely with the target output within the
tolerance. The training includes selection of suitable training
algorithm for a particular problem. This is a very crucial step.
It depends on the complexity of the problem, the number
of data points in the training set, the number of weights
and biases in the network, and the performance goal as well.
The training is done by changing the weights between the
layers with an appropriate learning function. In order to
find the best suited training algorithm, a series of training
algorithms namely Traingdx, Traingda, Trainoss, Trainscg,
Traincgp, Traincgb, Traincgf, and Trains based on various
transfer functions have been tested for achieving the best
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FIGURE 7: The performance of neural network in prediction of yield
strength for whole set.

performance goal, that is, mean square error should be min-
imum and also the computational time should be minimum.
The following parameters were adjusted: transfer function,
optimization technique, and the number of neurons in the
hidden layer of the network. Efficiency was improved by
changing the number of hidden layers and the corresponding
transfer function based on the training algorithm. It is noted
from [25] that Trainscg algorithm gave best result with lowest
mean square error in minimum computational time. The
trained network model is now ready for predicting the yield
strength value with the use of miniature test load-elongation
curve of the desired material.

4.4. Yield Strength Prediction Scheme. With the trained
neural network model available, the value of yield strength
can be obtained for any material by obtaining miniature test
load-elongation curve either through experiment or by FE
simulation if the tensile properties such as Young’s modulus,
yield strength, and true stress-true strain diagram of the
material are known. The complete procedure is pictorially
presented in Figure 4.

4.5. Performance of the Neural Network. The performance
of the neural network is checked for the prediction of yield
strength over the whole data set and is shown in Figure 7.
The analysis of the network response was plotted in the form
of linear regression analysis between the network output
(predictions) and the corresponding targets (experimental
value) for the whole dataset. The neural network predicted
the values to an appreciable degree of accuracy. The correla-
tion coefficient (R?) value is also shown in Figure 7.

In order to test the effectiveness of the developed
neural network model, miniature tests were performed on
different alloys chosen for the present study whose chemical
composition is given in Table 1. In order to compare the
result obtained from neural network, standard uniaxial
tensile test also performed on these materials according
to the standards ASTM E8-03 [32]. The standard uniaxial
tensile test specimens were prepared according to ASTM
E8 and tests were carried out using Zwick/250 universal
testing machine. A calibrated extensometer was used to
measure the elastic and plastic strains. The least count
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TasBLE 3: Uniaxial tensile properties of different materials.
Sl no Materials Different mech‘anlcal properties
Young’s Yield Tensile
modulus strength strength
(GPa) (MPa) (MPa)
(1) ARG66 alloy 70 507 568
) HI1 steel 195 474 693
(3) LC steel 194 359 511
(4) MC steel 200 300 569

of the extensometer used was 1ym. Material properties
such as Young’s modulus, yield strength, tensile strength,
true stress, and true strain diagrams were obtained for all
the materials from the uniaxial tensile test. The values of
different parameters obtained from the uniaxial tensile test
are shown in Table 3.

4.6. Miniature Test Load-Elongation Curve. With the trained
neural network model now available, yield strength pre-
dictions may be made quickly for new sets of materials
without resorting to detailed finite element simulations or
the standard testing methods. Such techniques require a lot
of time and large volume of the materials for preparing
the standard test specimen, which is impractical in in-
service structures. In the present case, the miniature test
load-elongation diagrams are obtained for the each material
by performing miniature tensile test on the specimens
prepared from respective materials. From the resulting load-
elongation diagrams, the load at breakaway (P, ) is obtained
for each material. This load vector is given as input to the
neural network. The yield strength obtained for the materials
used in the present investigation using the trained neural
network are shown in Figure 8. The figure also shows the
experimental yield strength from standard tensile test for the
respective materials.

Further analysis of the performance accuracy was carried
out using statistical analysis of the error of neural network
predictions. Neural network predictions are compared to the
corresponding experimental values. The relative errors are
calculated using the relationship

Errorin % = 100 % (T = A) , (2)
T

where T is the experimental (measured) output value and A

is the predicted value by the neural network. Table 4 shows

the error in neural network predicted yield strength value.

It is observed from Table 4 that the ANN predicted yield
strength values are in good agreement with those of the
experimental values. For AR66 Al-alloy material, the yield
strength value predicted by ANN is 484.7 MPa, whereas the
experimental value is 506 MPa. The percentage error in this
case is maximum, that is, 4.20% when compared to other
materials. For all other materials, the percentage error is
within 4%. So, it can be used to predict the yield strength
value of any unknown material by using the output of
miniature test on dumb-bell-shaped specimen.
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TaBLE 4: Error in neural network predicted yield strength.

Materials Error in %
ARG66 Al-alloy 4.20
Chromium steel (H11) 0.40
Low carbon steel (LC) 3.90
Medium carbon steel (MC) 1.70

5. Validation of Neural Network Model

After testing the proposed neural network model with the
data obtained from experimental miniature test of different
materials, the trained network is also validated with the
data obtained from literatures [9, 33]. The required neural
network input (i.e., the load at breakaway point P, ) for the
material were obtained by performing the 2D finite element
simulation of dumb-bell-shaped miniature specimen using
the tensile properties as given in the literature. The simula-
tions were performed using ABAQUS.

With the trained neural network model readily available,
P, was fed as input to the network and the neural network
predicted the yield strength value of the material. The
results are presented in Table 5. It is observed that the yield
strength predicted by ANN for the die steel is 482.4 MPa in
comparison with the experimental evaluated yield strength
value of 483 MPa, that is, with the error of 0.12%. Similarly,
the ANN predicted the yield strength of medium carbon steel
as 317.2 MPa with the error of 1.49% when compared to its
experimental value of 322 MPa. Thus, the developed neural
network model along with miniature test result helped in
achieving yield strength value of the materials in efficient
way.

6. Conclusions

The yield strength value predicted by neural network model
with Trainscg algorithm is found to be corroborating well
with the standard test results as shown in Figure 8 and
Table 5. The yield strength value of AR66 Al-alloy predicted
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TaBLE 5: Validation of neural network model in yield strength
prediction.

Exb. vield ANN predicted
Materials stren pt'hy(MPa) yield strength Error in %
& (MPa)
Die steel [33] 483 482.4 0.12
Medium carbon
steel [9] 322 317.2 1.49

by ANN is 484.7 MPa, whereas the experimental value is
506 MPa, for the H11 steel the neural network predicted the
yield strength value as 475.9 MPa with an error of 0.40%
as compared to its experimental value that is, 474 MPa.
Similarly, the yield strength values predicted by the ANN
for the low carbon steel and medium carbon steel are 354.6
and 305.1 MPa, respectively, with the error of 3.90%, 1.70%
and when compared to their respective experimental yield
strength values. Also, the present neural network model
predicted the yield strength value of the materials taken from
the available literature to an appreciable degree with error
in their prediction varied from 0.12% to 1.50% for various
materials. The approach seems to have potential to predict
the other mechanical properties of the material, which could
be used in remaining life estimation of the costly energy
producing plants and other structures.

In addition, the proposed novel dumb-bell-shaped
miniature specimen can be prepared from the material taken
out noninvasively from the location of interest where adverse
conditions are present in the in-service component. The
properties of the material at this location of interest can be
obtained nondestructively through the approach employed
in the present study.
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