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To the end of realizing a quantum network on-chip, single photons must be guided consistently to their proper destination both on
demand and without alteration to the information they carry. Coupled cavity waveguides are anticipated to play a significant role
in this regard for two important reasons. First, these structures can easily be included within fully quantum-mechanical models
using the phenomenological description of the tight-binding Hamiltonian, which is simply written down in the basis of creation
and annihilation operators that move photons from one quasimode to another. This allows for a deeper understanding of the
underlying physics and the identification and characterization of features that are truly critical to the behavior of the quantum
network using only a few parameters. Second, their unique dispersive properties together with the careful engineering of the
dynamic coupling between nearest neighbor cavities provide the necessary control for high-efficiency single-photon on-chip
transfer. In this publication, we report transfer efficiencies in the upwards of 93% with respect to a fully quantum-mechanical
approach and unprecedented 77% in terms of transferring the energy density contained in a classical quasibound mode from one
cavity to another.

1. Introduction

In order to obtain an efficient quantum computing architec-
ture, the general consensus is that various implementations
of the qubit should be combined. This calls on the one
hand for stationary qubits that are good for storage, such
as atoms to be used at quantum network nodes, and on the
other hand for flying qubits that have desirable properties for
travel, such as photons to be used as quantum interconnects.
Moreover, the storage qubits can map their quantum state
onto the traveling qubits and vice versa by means of
coherent interfaces [1–3]. With the intention of realizing an
efficient quantum computing architecture, this composite
qubit approach to a quantum technology has been proposed
for ion trap qubits [4] and also for neutral atoms [5]. We,
in addition, have proposed a similar approach in connection
with semiconductor-based artificial atoms or quantum dots

[6]. Regardless of choice, these various implementations of
the composite qubit architecture are only possible if single
photons are able to be guided from one node to another with
both high efficiency and fidelity.

Recently, the on-chip generation and transfer of
microwave single photons have been demonstrated in con-
nection with superconducting qubits via transmission line
cavities [7–10]. In addition, the generation and transfer of
single photons on photonic crystal chips using a 25μm long
defect waveguide structure has been studied by England
et al. showing 12% transfer efficiency with quantum dots
inside the nodes and 49% transfer efficiency without [11].
In this publication, we investigate the use of a photonic
crystal coupled-cavity waveguide (CCW) for the generation
and transfer of single photons on-chip. Such approach to an
on-chip quantum network present several advantages. For
example, since the photons we use have a wavelength of
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Figure 1: Two high-Q cavities connected via a coupled-cavity waveguide.
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Figure 2: Dispersion of a 12 coupled-cavities waveguide.

around 1μm (IR) as opposed to 1 cm or more (microwave),
the surface area of a quantum network in any optical
system would be a great deal smaller and thus much more
suitable for on-chip integration. In addition, the transfer
of microwave photons was shown to take few hundred
nanoseconds, whereas the transfer of optical photons inside
the photonic crystal chip is anticipated to take no more than
few tens of picoseconds.

Furthermore, CCWs offer a truly unique and sophis-
ticated control over the transport of single photons [12].
Because modes of CCWs resemble those of the high-Q cavity
modes and possess the same field symmetries, these devices
can be used to make bends with no reflection. In addition,
they can dramatically slow down optical waves, and because
of their versatile dispersion properties (both positive and
negative dispersion are achievable), they allow for a great deal
of control over a single-photon pulse propagation. Moreover,
since each mode is strongly localized, the guided mode is
composed of a linear combination of these individual bound
modes. This renders the propagating mode easy to model
quantum-mechanically [13], therefore allowing for their
guiding behavior to be optimized with respect to maximized
fidelity of quantum operations inside the quantum network.
And, once their guiding behavior has been characterized
with a few parameters, namely, the coupling coefficient κ
and resonant frequency ωc, their physical structure can be
constructed to emulate their intended behavior.
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Figure 3: Group Velocity.

The paper is organized as follows. The modeling of
the on-chip single-photon transfer dynamics is described in
Section 2. Included in that section are the single-photon
pulse propagation characteristics, the engineering of the
source/target cavity to waveguide dynamic coupling as well
as resulting transfer efficiencies. A physical implementation
of a CCW based on a photonic crystal structure for the
purpose of transferring single photon on-chip is presented in
Section 3. An analysis and discussion of the performance of
CCWs is provided in Section 4, followed by a final summary
and conclusions in Section 5.

2. Modeling On-Chip Single-Photon
Transfer Dynamics

The device under investigation is depicted in Figure 1. It
consists of two cavities, cavity 1 and cavity N , linked to one
another by means of a CCW, consisting of cavity 2 through
cavity N−1. In this specific example, N is 12. The coefficient
Γ describes the weak coupling between the cavities forming
the waveguide.

A general Hamiltonian for this system is derived from the
tight-binding Hamiltonian and it is shown in (1). â†j and â j
are the creation and the annihilation for the field in the jth
cavity, ωc is the resonant cavities frequency, VC1−W (t) is the
time-dependent interaction between the first cavity and the
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waveguide, and VW−CN (t) is the time-dependent interaction
between the waveguide and the last cavity

̂H =
∑

j

�ωcâ
†
j â j +

N−2
∑

2

Γ
(

â†j â j+1 + â†j+1â j
)

+VC1−W (t) +VW−CN (t).

(1)

Our key concern in this publication is the engineering of
the interaction between cavities and the waveguide structure
VC1−W (t) and VW−CN (t). First, we consider the waveguide
by itself and design its characteristics. Then, both the
cavities and the waveguide are considered, and the system
is engineered such that the photon is unloaded into the

waveguide and transferred to its destination with minimum
loss.

2.1. Waveguide. First, it is useful to consider a CCW by
itself. The Hamiltonian that can describe such a waveguide
is exactly the tight-binding Hamiltonian in

̂HTB =
∑

j

�ωcâ
†
j â j +

∑

j

Γ
(

â†j â j+1 + â†j+1â j
)

, (2)

In the Wannier representation, essentially a real-space pic-
ture of localized orbitals, this Hamiltonian matrix is written
as

̂HTB =
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where state |1 n〉 corresponds to the Wannier function
localized in the first cavity forming the CCW, and state |2 n〉
corresponds to the Wannier function localized in the second
cavity forming the waveguide, and so on. The diagonal
matrix element for each site is Ec, this is the energy of the
resonant mode for each cavity. Periodic boundary conditions
are expressed at the waveguide ends as â†1 = â†12 and
â1 = â12.

2.2. Dispersion, Group Velocity, and GVD. It is assumed
that the wavelength of the single photon λph of 1.182μm,
which is a realistic wavelength for a GaAs/InGaAs-based
QD emitter. This wavelength corresponds to the cavity
resonant frequency ωc = 1.594 · 1015 rad/s, where Ec =
�ωc. Next, assuming a quality factor Q = 1000 for
each cavity of the CCW, the coupling rate between neigh-
boring cavities is thus calculated to be Γ = 1.594 ·
1012 rad/s, where Γ is defined as ωc/Q. This definition of
Γ assumes that coupling to the nearest neighbor cavity
is the only loss channel, that is, out-of-plan losses are
ignored.

The dispersion relation of this CCW is solved from
the diagonalization of the Hamiltonian matrix. Although
working in a real space representation, the problem is fully
equivalent to the reciprocal space-based Bloch representa-
tion. In fact, for N sites, Nk points exist in reciprocal space
and are defined as k = 2πK/Na where K is a quantum
number such that K = −N/2 + 1, . . . ,N/2 and a the lattice
constant of the periodic waveguide. As a result, the same
energy eigenvalues are obtained. They are plotted in red for
the normalized positive k points of the first Brillouin zone in
Figure 2.

The dispersion obtained numerically matches very well
the theoretical dispersion for CCWs in (4) in the linear
dispersion approximation. Under this approximation, we
assume weak coupling, which means that photons may only
leak into the nearest neighbor cavity [14–18]. The tight-
binding model yields the optical carrier frequencies

ωk = ωc[1 + κ cos(ka)], (4)

where ωc is the resonant frequency of a single cavity, κ is
the coupling coefficient between cavities, k is the Bloch wave
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Figure 4: Group Velocity Dispersion.
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number, and a is the lattice constant. For this waveguide, the
coupling coefficient was found to be κ = −0.002.

An expression for the group velocity vg can be derived
from (4) as follows:

vg = ∇kωk = −ωcκa sin(ka). (5)

The group velocity vg normalized over c (the speed of light
in vacuum) is plotted in Figure 3 throughout the normalized
coupled cavity waveguide band. It is obtained by taking the
derivative of obtained energy eigenvalues with respect to k.
At the edges of the waveguide band, that which corresponds
to when k is 0 or 1, the group velocity tends toward zero.

This result has two important consequences. First, the
group velocity dispersion is ill defined when k is 0 or 1
according to the standard definition in (6). Second, the
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group velocity dispersion may be either positive or negative
depending on which band edge k is closest to

GVD = −
(

2πc
λ2

)

d

dω

(

1
vg(k)

)

. (6)

The group velocity dispersion (GVD) for the 12 cavities
forming the waveguide is plotted in Figure 4 within the CCW
band. For practical applications, Mookherjea derived more
appropriate definitions of GVD that satisfy a small fractional
change of the GVD coefficient over the range of frequencies
of interest [19].

2.3. Single-Photon Propagation. A single-photon pulse is
shown propagating for the waveguide composed of 12 cav-
ities in Figure 5. The time dependence for the coupled-cavity
waveguide is obtained numerically using the Louiville or Von
Neumann Equation (similar to the approach discussed in
[20]) in conjunction with the tight-binding Hamiltonian to
solve for the time evolution of the density matrix whose states
correspond to the Wannier functions localized in the cavities
forming the waveguide. It is assumed that there are neither
any out-of-plane losses or material absorption causing the
CCW mode to decay nor any scattering resulting in a sudden
change of the phase.

The single photon pulse can be seen traveling from cavity
1 to Cavity 12 in about 9 picoseconds before being reflected.
An oscillatory structure at the trailing edge of the pulse can
be noticed. We believe this feature has to do with the single-
photon pulse defined initially at a precise point in space
and time. The consequence is a wideband single-photon
pulse, and therefore higher-order terms can no longer be
neglected resulting in envelope distortion. It is also helpful
to compare that propagation time with the decoherence time
of atoms or QDs. The time it takes to transfer a photon
from a source cavity to a target cavity is a relatively fast
process compared to the decoherence processes associated
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Figure 7: Unloading/loading by means of time-varying coupling coefficients.

with electron spin qubits in self-assembled QD (our storage
qubit of interest). In a recent publication of ours [20],
we showed how the coherent exchange between a photon
qubit and an electron spin qubit in a QD is affected by
decoherence resulting from hyperfine interactions. Although
these decoherence processes prevented the interacting qubits
from reaching maximum entanglement, there were at least
partially entangled. It is important to note that these
interactions were taking place over a longer period of time,
about 1 to 2 orders of magnitude longer than the time
needed for a photon to propagate down 12 cavities. In
addition, a novel scheme based on ultrafast optical spin echo
shows that decoherence times on the order of microseconds
are achievable [21]. Therefore, it is anticipated that the
propagation time of the photon will not be much of an issue
over small to medium range distances.

Figure 5 also depicts the single-photon pulse propagation
in the linear region of the CCW; therefore, the single-photon
frequency is tuned to the middle of the waveguide band.
(This corresponds to a normalized frequency equal to 1 in
Figure 2.) As a result, ignoring the oscillatory structure at
the trailing edge of the pulse, a pulse propagates mostly
unchanged in shape. On the other hand, when the single-
photon pulse propagation is determined by the flat region of
the CCW dispersion corresponding to one of the edges of the
transmission band, there exists a considerable slowing of the
group velocity. Figure 6 depicts the travel time from cavity 1
to cavity 12 as a function of coupling coefficient κ.

2.4. Engineering Cavity-Waveguide Couplings. Dynamically
coupling the end cavities to the waveguide can be achieved
in two different ways. On one hand, this can be done
by setting all the resonant modes to be the same for all
cavities including the end cavities while varying the coupling
coefficients between the end cavities and the waveguide in
time in order to load and unload the photon from and
onto the waveguide. This is depicted in Figure 7, and its
corresponding Hamiltonian is described in

̂H =
∑

j

�ωcâ
†
j â j +

N−2
∑

2

Γ
(

â†j â j+1 + â†j+1â j
)

+ Γ1(t)
(

â†1 â2 + â†2 â1

)

+ Γ2(t)
(

â†N−1âN + â†N âN−1

)

.

(7)

On the other hand, dynamic coupling can also be completed
by setting coupling coefficients to be the same for all cavities
including the end cavities while varying the resonant modes
of cavity 2 and cavity N − 1 in time in order to load and
unload the photon from and onto the waveguide. This is

depicted in Figure 8, and its corresponding Hamiltonian is
described in

̂H =
∑

j /= 2,N−1

�ωcâ
†
j â j + �ω2(t)â†2 â2 + �ωN−1(t)â†N−1âN−1

+
N−1
∑

1

Γ
(

â†j â j+1 + â†j+1â j
)

.

(8)

In practice, both of these approaches can be realized by
means of a spatial modulation of the refractive index
within the quantum network. In order for these loading
and unloading operations to be feasible in a functioning
quantum network though, they must be performed at speeds
much greater than usual decoherence possesses therefore
requiring the assistance of ultrafast optical pulses. Methods
for the dynamical tuning of refractive index are based on
nonlinear effects, carrier injection by linear absorption of
an optical pump (free-carrier plasma dispersion effect),
carrier injection using a PIN diode, or thermal tuning via
optical heating. We are interested in carrier injection by
linear absorption of an optical pump which many groups
have shown to be a viable method. For example, Tanaka
et al. demonstrated a change in cavity Q from 12,000 to
3,000 in 4 ps [22]. Lipson’s group at Cornell University
used a 100 fs pump pulse to generate a 18 ps index change
pulse [23] and also demonstrated how a 1.5 ps pump pulse
corresponding to a 25 ps index change pulse could change the
Q factor of a cavity from 60000 to 17000 [24]. Tanabe et al.
generated a 14 ps pump pulse resulting in a change in photon
lifetime from 320 ps to 70 ps inside a high Q cavity [25].
Carrier injection using PIN diode is an interesting alternative
and allows for both the injection and extraction of carrier
simultaneously. The resulting shape of the free carrier index
change looks a lot like a square pulse. Gardes et al. showed a
7 ps rise and fall time in the index change was possible [26].

2.5. Transfer Efficiencies. On-chip on-demand single-photon
transfer stipulates that the photon is unloaded onto a
waveguide from a cavity 1 at a time t1 allowing it to travel
down the waveguide before being loaded into a cavity 2 at
a time t2. Considering the two approaches mentioned in the
previous section, a critical question to be answered is what
transfer efficiencies can be obtained.

First, we consider the case of time-varying coupling
coefficients. The unloading of the photon onto the waveguide
is achieved by dynamically switching the magnitude of the
coupling coefficient between cavity 1 and cavity 2 starting
at t1. Perhaps, this can be realized using an approach similar
to Noda’s [22]. Then, the loading of the photon from
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the waveguide into cavity N is achieved by once again
dynamically switching the magnitude of coupling coefficient
between cavity N − 1 and cavity N starting at t2.

Design parameters of interest for both switching func-
tions, Γ1(t) and Γ2(t), are their shape or time dependence,
the range of coupling strength over which they are varied,
the window in time over which they should be varied. There
are also few design constraints. The temporal width of Γ1(t)
or FWHM should be larger than the natural cavity decay
into the CCW so as to allow the photon to escape yet
smaller than round trip time. Similarly, properties of Γ2(t)
will greatly depend on factors such as the CCW length, the
group velocity, or the group velocity dispersion. Figure 9
shows the switching functions Γ1(t) and Γ2(t) qualitatively.

It was found that the optimum shape of switching
functions Γ1(t) and Γ2(t) is a Gaussian profile. In a CCW
with constant coupling between its cavities, when a photon is
allowed to propagate freely, though highly localized initially
(effectively represented by a delta function in space), it
eventually exhibits a distribution in space that happens to
be well approximated by a Gaussian. It may be that the
distribution could be also approximated by other functions,
for example, a squared hyperbolic secant. The authors believe
it is worth further investigating the mechanism behind the
broadening associated with the probability of finding the
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photon in space. In any case, this is certainly related to
the fact that the coupled cavities have a finite Q which
introduces an uncertainty in the time over which the photons
actually hops from one cavity to the next. That being said,
the context of Figure 9 is slightly different as it relates not
just to a waveguide with constant coupling coefficient but
to time-varying coupling coefficients. In other words, the
coupling constant between two quasi-bound modes that are
degenerate in frequency is varied. And the cavity Q depends
on the coupling Γ(t) where Q = ω/Γ(t). Providing that the
switching function Γ(t) has a Gaussian shape, the Q(t) will
also have a Gaussian shape, thus allowing for minimum
reflections at the target cavity boundaries since the incoming

Figure 14: Structure of the high-Q cavity intended as a classical
embodiment to the j = 1 and j = N cavities in the quantum model
above.
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photon also has a Gaussian-like probability distribution in
time.

As far as the range over which the coupling strength
should be varied for Γ1(t), it is assumed that there is
not any coupling, initially, between cavity 1 and cavity 2,
yielding Γ1(0) = 0. However, the maximum of the Gaussian
shaped switching function is designed to be Γmax = 1.594 ·
1012 rad/s, which corresponds to the regular coupling rate
between neighboring cavities of the CCW. The minimum
FWHM for Γ1(t) that allows the entire photon to leak out of
the cavity was found to be 3 ps. The characteristics of Γ2(t)
are engineered so as to maximize the transfer efficiency.

Figure 10 shows transfer efficiencies for various FWHM
for Γ2(t) and a large range of t2. These transfer efficiencies are
calculated assuming Γ1(t) with a FWHM equal to 3 ps, a peak
coupling rate equal to 1.594·1012rad/s, and t1 equal to 1.5 ps.
A maximum transfer efficiency of 93% is obtained for Γ2(t)
with a FWHM equal to 2.75 ps and a starting time t2 equal
to 7.25 ps. The transfer efficiency is defined as the ratio of
the probability of finding a photon in cavity N following its
capture (once Γ2(t) goes back to zero) over the probability of
finding a photon in Cavity 1 before its release (when Γ1(0) =
0), which is always unity.

Next, the case of time-varying resonant frequencies is
considered. The unloading of the photon onto the waveguide
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Figure 16: Dispersion relation for the L3s2 CCW structure
described above. (a) we see that many modes exist in the crystal’s
photonic band gap, some with high confinement that result in
no dispersion and others that allow coupled-cavity resonance for
propagation that result in the sinusoidal k-relation from (4). The
mode of interest is selected and zoomed in upon for (b).

is achieved by dynamically switching the resonant frequency
of cavity 2 from ωc +Δ to ωc starting at t1. Then, the loading
of the photon from the waveguide into cavity N is achieved
by dynamically switching the resonant frequency of cavity
N − 1 from ωc +Δ to ωc starting at t2 and subsequently from
ωc back to ωc + Δ.

Design parameters of interest for both switching
functions, S1(t) and S2(t), are their shape or time depen-
dence, the range of frequencies over which the cavity
resonant frequencies are varied, the time window over which
resonant frequencies should be varied. As far as design
constraints, it is desirable that the amount of detuning Δ
for the resonant frequency of the “barrier” cavities to be
larger than the waveguide bandwidth to avoid any significant
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Figure 17: (a) represents the spectra inside a single L3s cavity
isolated from any other cavities, while (b) represents the spectra
through a 7 cavity coupled L3s2 system. Results calculated from
FDTD.

coupling between the waveguide and the end cavities. Also,
the duration of S1(t), which is the time during which the
resonant frequency of cavity 2 is switched from ωc +Δ to ωc,
should be large enough for the photon to escape, yet smaller
than the round trip time. Similarly, S2(t) needs to be large
enough for the photon to be captured. Figure 11 shows S1(t)
and S2(t) qualitatively.

It was found that the optimum shape for S1(t) and S2(t)
is a square profile. In the case of the time-varying frequency
scheme, the coupling is mostly dictated by ω (Γ � ω),
so until the frequency of the “barrier” cavity matches the
frequencies of adjacent cavities, the probability of tunneling
through is insignificant. That explains why a square profile
is more appropriate. Earlier, in the case of the time-varying
coupling coefficient scheme, the difference was that all
the ω’s were the same; therefore, the probability of tunneling



Advances in OptoElectronics 9

Figure 18: Simulated CCW modes in the L3s2 system. On the left, a PWE calculation of the allowed mode corresponding to the dispersive
mode in Figure 15 matches well with the FDTD simulation of the propagating mode on the right, both showing the out of plane field
component (Hy).
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Figure 19: Cavity resonance shifting due to a change in material
index of refraction. Using a standard index of 3.4 (red) as our
base, to comply with Si or GaAs substrates, switching the barrier
regions of our heterostructured cavity to an index of 3.3 (yellow)
offers negligible overlap between “barrier” cavity resonances and
the waveguide bandwidth (grey). Further confinement would be
possible with lower switched index but is less physically reasonable.

through was only depending on Γ(t). In fact, much higher
transfer efficiencies were achieved for the time-varying
frequency scheme with a square shape switching function
with the prescribed duration (about 75%) compared to a
Gaussian shape switching function with a wide range of
duration (no more than 10%). The authors believe that the
transfer efficiency could further be improved if the switching
function was switched on and off adiabatically, resulting in
a rounded square shape. In addition, the switching function
duration is now chosen to correspond to approximately twice
the photon lifetime in the “barrier” cavity since the photon
has to both enter and exit the “barrier” cavity before it can
reach the target cavity.

As far as the range over which the resonant frequency of
the “barrier” cavities should be varied, we assume that each

cavity in the CCW has a Q of 1000 resulting in a coupling
coefficient of Γ = 1.594 · 1012 rad/s at the wavelength of
interest and a bandwidth of BW = ω ± κ = 1 ± 0.002 in
normalized units of frequency. In our case, this corresponds
to BW = 1.59 · 1015 ± 3.18 · 1012 rad/s. Consequently, we
designed the detuning parameter to be Δ = 3.24 · 1012 rad/s
such that |κ| ≤ Δ � ω. Therefore, by switching “barrier”
cavity frequencies from ωc to ωc + Δ, we are able to prevent
coupling between the end cavities and the CCW.

Figure 12 shows transfer efficiencies for various FWHM
for S2(t) and a large range of t2. These transfer efficiencies
are calculated assuming S1(t) with a FWHM equal to 4.875 ps
and t1 equal to 1.5 ps. A maximum transfer efficiency of 75%
is obtained for S2(t) with a FWHM equal to 3.985 ps and a
starting time t2 equal to 5.7 ps.

3. Physical Design

As a sort of proof of principal, a classical optical system was
designed to compare and contrast the propagation properties
of light in CCW systems. Using photonic crystal as a means
to integrate such a coupled system allows great potential for
high density integration of waveguides and high-Q cavities
that are readily reproducible in fabrication. There has been
much work showing from both theory and experiment, that
photonic crystal CCW systems can exploit the unique disper-
sive properties discussed previously for applications of slow
light pulse compression and transparency [27–30]. Many
different systems have been shown to stop light including
traditional defect waveguides with side-coupled integrated
sequence of resonators. Initially, these systems seem identical
to CCW structures; they both exhibit a cosine-like dispersion
relation inside the photonic bandgap, which is eventually
flattened adiabatically to stop the light. Differences become
apparent when one consider the photonic wave function.
In the CCW system under consideration, a highly localized
photonic wave function is anticipated once the light is
stopped, that is, within a single cavity. On the other hand, for
defect waveguides with side-coupled integrated sequence of
resonators, the photonic wave function would be spread over
the defect waveguide and several cavities. For the reasons just
mentioned, a CCW structure decrease device footprint. In
addition, CCW structures lend themselves more readily to
cavity QED applications. In this publication we focus on the
maneuvering of light through a network of cavities only.
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Figure 20: (a) spectra of 3 coupled cavities simulated through FDTD. (b) the first and third cavities have been index switched to show
spectra that now represents an isolated heterostructured High-Q cavity. The spatial mode profile of this High-Q mode is also shown in (c).
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Figure 21: High Q cavity mode release and capture process. A
shows the confined cavity with both barriers activated with an index
of 3.3. B shows the opening of the inside cavity by index switching
to n = 3.4. With the second cavity’s outside barrier closed, C, the
energy accumulates and is then trapped by closing the inner barrier
of the second cavity in D.

The coupling of cavity modes to waveguide modes has
been a topic of intense research effort for the realization
of both quantum and classical integrated optical circuit
[11, 31, 32]. It is therefore useful, in photonic crystal
devices, to design similarities between isolated cavity modes
and propagating CCW modes. This similarity makes for
efficient coupling toward the effort of release and capture of
optical energy as well as bends and splitters for waveguide
routing [33, 34]. The bandwidth of a CCW band may
also be adjusted by changing localization properties of the
cavities, or the coupling strength (overlap integral) between

the localized cavity modes. For instance, decreasing the
intercavity distance leads to a wider bandwidth [35].

With many such degrees of design freedom that impact
the modes of both the isolated cavity and the CCW, use
of photonic crystal cavities for analysis of a coupled cavity
system is a fruitful choice. The remainder of this section
will review the methods and findings of the design and
characterization of a CCW system with isolated cavity release
and capture switching ability.

3.1. Numerical Methods. Analysis of our classical system
makes use of the standard numerical simulation tools
employed in photonic crystal devices, Plane Wave Expansion
(PWE), and Finite-Difference Time Domain (FDTD). The
proposed embodiment of this CCW system in a photonic
crystal featuring a triangular lattice of circular holes will be
performed for TE (even) polarized light only. This choice
of polarization allows both a more comfortable band gap
in which to engineer defects as well as a more accurate
approximation from a 3D slab to a 2D effective index method
approximation for future work. All results presented herein
may be taken as approximations to a 3D finite slab or simply
as a proof of concept in an infinite 2D system. The potential
barriers and loss mechanisms for moving to a fully 3D model
will be discussed later.

PWE provides an initial glimpse of the resonant behavior
of these index-periodic metamaterials. The band in which
the structure exhibits this periodicity-induced resonance, as
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Figure 22: Three step release of an optical mode in a high-Q cavity
into a CCW and capture into a second high-Q cavity with 77%
efficiency. Energy density (a) and field evolution (b) are shown to
illustrate the process.

shown in Figure 13 represents a range of frequencies in which
light is not allowed to propagate in the structure.

It is then, in this forbidden spectral range that engineered
crystal defects lead to allowed optical modes that may be
localized (cavities) or allowed to propagate (waveguides).
PWE will also provide the means to find the dispersion
relation for our coupled-cavity waveguide modes which is
key to the calculation of GVD.

Finally, FDTD is implemented to study the spectral
response as well as the operational efficiency of these devices.
This simulation tool allows the designers to observe how
their device would operate under perfect conditions.

3.2. Structure. The envisioned system will consist of coupled
cavities which exhibit guided modes as well as well-confined
cavities that will exhibit high Q-factors in comparison.
Lengths of CCW cavities will act as transmission lanes
between the high-Q cavities and so the resonances of the two

structures will have to align. We choose, as a simple proof of
concept, to implement L3s cavities for both the CCW unit
cavity as well as the high Q cavity. L3 is the representation
of a defect line cavity of three missing holes, while the s
denotes that the holes on the ends of the cavity are reduced
in size. This size reduction enables the designer to sculpt
the cavity resonance but is not considered variable for the
current study. The CCW will be a chain of these cavities as
defects in a triangular array of air hole circles of r =0.4awith
2 hole spacers (r = 0.3a) between each cavity as shown in
Figure 14. The variable a is the lattice spacing of holes in the
crystal.

In order to create the optical isolation necessary between
the high-Q cavity and the CCW chain, barriers of variable
index material will be used. These regions represent targets
for optically induced refractive index switching using off
resonant excitation [22].

3.3. Coupled Cavity Waveguide. Implementation of our PWE
scheme with the above device shows that light will be nondis-
persive and therefore strongly confined along the M crystal
direction but will exhibit dispersion and therefore propagate
along the K crystal direction, as shown in Figure 15.

By orthogonalizing the k-vectors calculated in the PWE
scheme so as to consider only the K direction, we may
increment the PWE’s eigenvalue calculations along only the
direction of propagation to simulate the CCW structure’s
dispersion relation, shown in Figure 16.

The resulting spectral signature of this mode dispersion
is shown in Figure 17 and will result in as many peaks over
the range of resonant frequencies as there are coupled cavities
in the chain.

Finally, it is important for the spatial field mode profiles
of our cavity and CCW to be similar in order to maximize
coupling between the two structures. Using both PWE
and FDTD simulation methods, we verify the spatial field
dependence shown in Figure 18 of our mode of choice.

3.4. Cavity. Relying on FDTD and the analysis of spectra,
the design of our cavity is made through observation of the
behavior of cavity resonance with changes to surrounding
regions. First, an isolated L3s cavity is simulated to establish
a basis for the types of modes this sort of cavity is likely to
support. This sort of isolated defect is unable to be readily
released into a CCW chain, and so a heterostructured cavity
is implemented by including index-switchable regions to act
as barriers to confine light away from the CCW portion of
the device. Because the resonances of identical cavities shift
in materials of different refractive index, shown in Figure 19,
it is possible to use this resonance mismatch as a confining
mechanism.

By implementing switched index cavities as barriers
for the generation of a high-Q cavity, the mode of inter-
est for both barrier-open (left) and barrier-closed (right)
three cavity segments are shown in Figure 20. While the
heterostructured cavity is greatly diminished in Q-factor
when compared to a single well isolated L3 cavity, it still
represents a functional and well-confined optical mode that
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is effectively isolated from the neighboring CCW chain. With
a Q-factor just under 2000, this proof of concept cavity
represents an area for future research in optimization if
strong coupling is desired.

Now, as we look toward coupling this cavity mode to the
CCW chain, it should be noted that the cavity resonance
of our isolated cavity is now centered to the CCW spectral
feature. With these tools, the release and capture of an optical
cavity mode is now outlined.

3.5. Implementing Coupling Mechanism. To perform release
of the cavity mode into the CCW chain, one cavity barrier
is index switched (opened) by optically induced carrier
injection. Now matching the chain region, the cavity mode is
allowed to couple to the CCW resonance and propagate from
cavity to cavity down the chain. As the energy propagates
down the chain, it becomes distributed amongst the coupled
cavities and must be collected in a two step process by which
the propagating mode is stopped by the outside secondary
cavity barrier and allowed to accumulate before the inside
secondary cavity barrier is activated, trapping the mode in
the secondary heterostructured cavity. The full three step
release and capture process is diagrammed here in Figure 21.

4. Results and Discussion

Through the switching protocol described above, transfer of
energy from the optical mode in one high-Q cavity, through
a chain of 5 coupled cavities, to a second high-Q cavity
was achieved in a 2D FDTD scheme with 77% efficiency.
Confinement at the first cavity, propagation between cavities,
and capture in the second cavity is shown in Figure 22.

5. Conclusion

We have demonstrated that in theory using both a quantum
model and a classical model that single photons can be
transferred efficiently on-chip from a high-Q cavity to
another using coupled cavity waveguides if the dynamic
coupling between nearest neighbor cavities is carefully
engineered. From the quantum model, as far as single-
photon trapping and releasing mechanisms are concerned,
dynamically switching coupling coefficients between “end”
cavities and the waveguide yields much higher single photon
transfer efficiencies (93% versus 75%) than dynamically
switching the resonant frequencies of the “barrier” cavities.
However, so far, only the single-photon trapping and
releasing mechanism based on dynamically switching the
resonant frequencies of the “barrier” cavities was able to be
implemented in a practical way within our classical model.
The endeavor to realize this system in a realistic form of
a 3D photonic crystal slab (PCS) presents two hurdles:
increased numerical cost, and out of plane loss mechanisms.
It is expected that the increased numerical cost may be
greatly alleviated by using 2D approximation methods for TE
(even) polarization. However, due to the low group velocity
of CCW modes and the zero group velocity of the high-
Q state, careful engineering of the Fourier components of

the field distributions in this system will be necessary to
avoid coupling to out-of-plane radiative modes. Until then,
though, the two models shown in this work yield strikingly
similar single-photon transfer efficiencies (∼75%), which
reinforces the versatility of CCWs and the advantage of using
such structures to implement photonic quantum networks.
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