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New approaches are proposed for complex industrial process monitoring and fault diagnosis based on kernel independent
component analysis (KICA) and sparse support vector machine (SVM). The KICA method is a two-phase algorithm: whitened
kernel principal component analysis (KPCA). The data are firstly mapped into high-dimensional feature subspace. Then, the
ICA algorithm seeks the projection directions in the KPCA whitened space. Performance monitoring is implemented through
constructing the statistical index and control limit in the feature space. If the statistical indexes exceed the predefined control limit,
a fault may have occurred. Then, the nonlinear score vectors are calculated and fed into the sparse SVM to identify the faults. The
proposed method is applied to the simulation of Tennessee Eastman (TE) chemical process. The simulation results show that the
proposed method can identify various types of faults accurately and rapidly.

1. Introduction

The demand for safe operation in the industry has pro-
pelled research into fault detection and diagnosis methods.
Based on principal component analysis (PCA), independent
component analysis (ICA), partial least squares (PLSs), and
canonical correlation analysis (CVA), the statistical method
can represent high-dimensional process data in a reduced
dimension, which contains most of the variance of the
original data. These methods have been used in various
applications [1–4].

ICA is a statistical approach that has the potential ability
for blind source separation (BSS) without the prior infor-
mation about the mixtures under the source signals that are
statistically independent [5]. However, ICA fails to separate
the nonlinearly mixed source due to its intrinsic linearity.
One new nonlinear ICA technique for tackling the nonlinear
problem has been in development, which is called KICA
[6]. KICA can efficiently compute ICs in high-dimensional
feature spaces using the kernel matrix 𝐾. However, KICA
algorithm is difficult to diagnose faults since the mapping
function is unknown.

Sparse SVM is a learning strategy based on the Newton
method and conjugate gradient method. It is proposed in this
paper to diagnose faults, which is able to accelerate not only
the model selection process but also the training speed.

This paper is organized as follows. In Section 2, the kernel
ICA algorithm is introduced. In Section 3, sparse SVM is
proposed.The experimental results of this methods proposed
in this paper are also presented in Section 4. Finally, our work
of this paper is summarized in the last section.

2. KICA Algorithm

Let 𝑥
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Let 𝑄 = [Φ(𝑥
1
), . . . , Φ(𝑥

𝑛
)], then 𝑆𝐹 can be expressed by

𝑆
𝐹
= (1/𝑁)𝑄𝑄

𝑇. Let us form theGrammatrix𝐾 = 𝑄𝑄
𝑇.The

matrix is an𝑁 ×𝑁matrix, and its elements are as follows:
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We can center the Gram matrix𝐾 by
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(3)

Normalized 𝐾̃ using the following formula:

𝐾̂ =
𝐾̃

trace (𝐾̃) /𝑁
. (4)
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matrix form is 𝑉 = 𝑄𝐻Λ
−1/2.

The mapped data in feature space can be whitened by the
following transformation:

𝑦 = 𝐺
𝑇
Φ (𝑥) . (6)
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where𝐻 = [𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑑
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Centering and whitening are carried out in the KPCA
feature space. We designate the data after preprocessing as
𝑋normal, 𝑊, as well as 𝑆normal are obtained from the fast
ICA algorithm in the feature space. Data dimension can be
reduced by selecting a few rows of𝑊 based on the assumption
that the rows with the largest sun of squares coefficient have
the largest effect on the variation of 𝑆. The detailed algorithm
for fast ICA can be easily found in the literatures [7]. The
selected 𝑎 row of𝑊 constitutes a matrix𝑊

𝑑
(dominant part

of𝑊), and the remaining rows of𝑊 constitute a matrix𝑊
𝑒
.

Start

Remove the noise from data 
using wavelet packet 

transform

The statistics 
exceed the control 

limits 

End 

Normal operating data Testing data

Normalize the 
denoised data

Whiten the data 
using KPCA 

Calculate transform matrix 

Calculate the 
statistic 

Develop the confidence 
limits of the statistics 
using kernel density 

estimation 

Fault 

Normal

𝑊 using fast ICA algorithm

Figure 1: Fault detection algorithm flowchart.

For the new sampling data 𝑋new(𝑘), independent vector
that corresponds to the principal component space and resid-
ual space is 𝑆new 𝑑(𝑘) = 𝑊

𝑑
𝑋new(𝑘), 𝑆new 𝑒(𝑘) = 𝑊

𝑒
𝑋new(𝑘),

respectively [8].
We defined three process monitoring statistics [8]:

𝑈
2
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𝑇
𝑆new 𝑑 (𝑘) ,

SPE (𝑘) = 𝑒(𝑘)
𝑇
𝑒 (𝑘) = (𝑥 (𝑘) − 𝑥 (𝑘))

𝑇
(𝑥 (𝑘) − 𝑥 (𝑘)) ,

𝑈
2

𝑒
(𝑘) = 𝑆new 𝑒(𝑘)

𝑇
𝑆new 𝑒 (𝑘) .

(8)

And their confidence limits can be obtained by kernel density
estimation. For more details about kernel density estimation,
it can be found in the literature [9].

Specific implementation steps are shown in Figure 1.
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3. Sparse SVM

Consider the second-order norm soft margin constraints;
thus obtain the following optimization problem:

min
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The optimization problem can be written as an uncon-
strained one [10, 11]:

min
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Let us now consider nonlinear SVMs with a kernel
function 𝑘 and an associated the reproducing kernel Hilbert
space𝐻. The optimization problem (11) becomes

min
𝑓∈𝐻
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𝑖
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We have made a change of variable by introducing the
regularization parameter 𝜆 = 1/𝐶. We have also dropped the
offset 𝑏 for the sake of simplicity.

Suppose now that the loss function 𝐿 is differentiable
with respect to its second argument. Using the reproducing
property, (12) becomes

min
𝛽

𝜆𝛽
𝑇
𝐾𝛽 +
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For a given value of the vector 𝛽, we say that a point 𝑥
𝑖
is

a support vector if 𝑦
𝑖
𝑓(𝑥
𝑖
) < 1 and if the loss on this point

is nonzero. Let us reorder the training points such that the
first 𝑛sv points are support vectors. Finally, let 𝐼sv be the 𝑛 × 𝑛

diagonalmatrixwith the first 𝑛sv entries being 1 and the others
0. The gradient of (13) with respect to 𝛽 is

∇ = 2𝜆𝐾𝛽 + 2

𝑛sv

∑

𝑖=1

𝐾
𝑖
𝑦
𝑖
(𝑦
𝑖
𝐾
𝑇

𝑖
𝛽 − 1)

= 2 (𝜆𝛽 + 𝐾𝐼
sv
(𝐾𝛽 − 𝑦)) .

(14)

And the Hessian is𝐻 = 2(𝜆𝐾 + 𝐾𝐼
sv
𝐾).

Each Newton step consists of the following update: 𝛽 ←

𝛽 − 𝛾𝐻
−1
∇, where the step size is found by one-dimensional

search method.

Function: 𝛽 = PrimalSVMENM (𝐾, 𝑦, 𝜆)

sv ← {1, . . . , 𝑛}; 𝛽 old = 0

Repeat
𝛽 = 0;
𝛽sv = (𝜆𝐼

𝑛sv + 𝐾sv,sv)
−1
𝑦sv;

step = 𝛽 − 𝛽 old;
𝛾 = 1;

While Ω(𝛽 + 𝛾 ⋅ step) > Ω(𝛽) + 𝜇𝛾 ⋅ (∇
𝑇
⋅ step)

𝛾 ← 𝜌 ⋅ 𝛾;
End
𝛽 ← 𝛽 + 𝛾 ⋅ step;
𝛽 old ← 𝛽;
sv ← 𝑖, 𝑖 satisfy 𝑦

𝑖
(𝐾
𝑇

𝑖
𝛽) < 1;

Until sv has not changed.
Where 𝜇 ∈ (0, 0.5), 𝜌 ∈ (0, 1).

Algorithm 1: SVM based on the modified Newton optimization.

Combining (14) and𝐻 as ∇ = 𝐻𝛽 − 2𝐾𝐼
sv
𝑦, we find that

after the update:

𝛽 = (𝜆𝐾 + 𝐾𝐼
sv
𝐾)
−1

⋅ 𝐾𝐼
sv
𝑦 = (𝜆𝐼

𝑛
+ 𝐼

sv
𝐾)
−1

𝐼
sv
𝑦. (15)

Using the fact that the lower left block 𝜆𝐼
𝑛
+ 𝐼

sv
𝐾 is 0, the

update (15) turns out to be 𝛽sv = (𝜆𝐼
𝑛sv + 𝐾sv)

−1
𝑦sv.

Therefore, the algorithm of SVM based on the modified
Newton optimization is performed as shown in Algorithm 1.

We now consider the optimization parameter is [𝑏, 𝛽𝑇].
The augmented Hessian is

𝐻 = 𝑆[
1
𝑇
𝐼
sv
1 1

𝑇
𝐾𝐼

sv

𝐾𝐼
sv
1 𝜆𝐾 + 𝐾𝐼

sv
𝐾
] , (16)

where 1 should be understood as a vector of all 1.
We still use the former method of choice to choose the

right “basis functions” and realize the purpose of building
sparse SVM. Assume that the choice of “basis functions”
collection is 𝐽; then the selection of the next “basis function”
𝑗 is equivalent to ensuring that 𝛽

𝐽
is constant and optimizing

the following questions:

min 𝜆 [𝛽𝑇
𝐽

𝛽
𝐽
] [

𝐾
𝐽𝐽

𝐾
𝐽𝑗

𝐾
𝑗𝐽

𝐾
𝑗𝑗

] [
𝛽
𝐽

𝛽
𝑗

]+∑

𝑖∈sv
(1−𝑦
𝑖
(𝐾
𝑖𝐽
𝛽
𝐽
+𝐾
𝑖𝑗
𝛽
𝑗
))
2

.

(17)

Through the introduction of the Cholesky decomposition
and the corresponding rank 1 update strategy, based on
unconstrained optimization SpSVM with the following steps
to achieve the following:

(1) update matrix 𝜆𝐼
𝑛sv +𝐾sv using the Cholesky decom-

position;
(2) optimize 𝛽

𝐽
using Newton’s method (Algorithm 1). If

sv changes, update matrix 𝜆𝐼
𝑛sv + 𝐾sv using rank 1

update strategy;
(3) if the “basis function” collection 𝐽 is equal to the size

of preset value, end of the program, otherwise, turn to
step 4;
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Figure 2: KPCA monitoring for fault 5.

Table 1: Results of fault identification.

Diagnostic precision 𝑛sv

V SVM1vr MKLDT SpSVM1vr SVM1vr MKLDT SpSVM1vr

0 100% 100% 100% 97 40 19
0.02 99.2% 98.1% 98.9% 130 48 29
0.05 98.8% 96.2% 98.2% 165 61 46

(4) select the next “basis function” 𝑗 : 𝐽 ← 𝐽 + 𝑗,
transferred to step 1.

4. Experimental Results

The proposedmethod is applied to the simulation of the Ten-
nessee Eastman chemical process to achieve fault detection
and fault diagnosis. SVM training involved in the QP and the
QCQP problem can be by optimizing the package MOSEK
method based on the interior point, and the SVM training
data are preprocessing.

The process has 12 manipulated variables, 22 continuous
process measurements, and 19 composition measurements
sampled less frequently. The process contains the Gaussian
noise. TE process includes 20 predefined failure modes,
representing a step, random changes, slow drift, and other
fault type, its process flow diagram and detailed process, see
the text [12]. We use the control strategy in paper [13] to
conduct closed-loop control. Simulation data for a 960 × 52

matrix are obtained as follows: 52 represent the number of
process variables, and 960 represent the sampling points of
each variable.The simulation is running 48 hours.The failure
was in the introduction at the first 8 hours.

In order to verify the effectiveness of the KICA monitor-
ing algorithms, KPCA and KICA were applied to detect fault
5. The monitoring charts of KPCA for fault 5 are shown in
Figure 2. The figures indicate that 𝑇2 and SPE statistics can
also detect the happening of faults, but there will be false
positives and false negatives in some sampling points. The

monitoring charts of KICA for fault 5 are shown in Figure 3.
In contrast to KPCA, it can be seen that the 𝑈2, 𝑈2

𝑒
, and SPE

statistics all respond strongly to the faults.
If the statistics exceed the control limits, it indicates a

failure occurrence. We select 52 variables for the condition
attributes and select 15 groups for the decision attribute,
respectively, on behalf of 15 different types of failures. The
training set is composed of 600 data, 40 samples data of each
category. Test set is composed of 1200 data, 80 samples data
of each category. We use 1-a.-r-mix strategy to achieve the
multiclass classification SVM.The factor𝐶 is then set to 1000.
The size of the alternative set 𝜅 in SpSVM is 20. Specific
diagnostic results are shown in Table 1.

5. Conclusions

In this paper, KICA and sparse SVM are proposed for the
complex industrial process monitoring. KICA can efficiently
compute ICs in high-dimensional feature spaces by means
of integral operations. The method using sparse SVM can
reduce the number of support vectors without reducing
the classification accuracy. The application results show the
effectiveness of proposed method.
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