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Humans can often conduct both linear and nonlinear control tasks after a sufficient number of trials, even if they initially do not
have sufficient knowledge about the system’s dynamics and the way to control it. Theoretically, it is well known that some nonlinear
systems cannot be stabilized asymptotically by any linear controllers and we have reported by an f-MRI experiment that different
types of information may be involved in linear and nonlinear control tasks, respectively, from a brain function mapping point
of view. In this paper, from a controllability analysis, we still show a possibility that human may use a linear control scheme for
such nonlinear control tasks by switching the linear controllers with a virtual constraint. It is suggested that the proposed virtual
constraint can play an important role to overcome a limitation of the linear controllers and to mimic human control behavior.

1. Introduction

In the fields of control engineering, system engineering, and
brain sciences, the excellent human’s control abilities have
been widely studied [1–6]. Among such studies, Wolpert and
Kawato [7] have proposed a new model of human control
mechanism called Modular Selection And Identification
Control (MOSAIC) in which many elemental prediction and
control system modules are combined in order to conduct
the desired motion. Imamizu et al. [8] have evaluated the
MOSAIC model using linear control tasks. They used a func-
tional MRI (f-MRI) scanner to observe brain activities dur-
ing the control tasks and reported plausibility of the model.

However, human ability is not limited to the linear
control case. In fact, humans can often achieve difficult
control tasks after a sufficient number of trials, even if they
initially do not have sufficient knowledge about the system’s
dynamics and the way to control it. For example, Goto et al.
[9] have reported manual control ability to operate a 2-link
planar under actuated manipulator (2PUAM). The 2PUAM
is a nonlinear system with a nonholonomic constraint and

cannot be stabilized asymptotically by any linear controller.
In this case, to control such nonholonomic manipulator, the
operators have to plan the object’s trajectory first and then
control the system to follow the trajectory. To do so, the
operator must use shape information of the manipulator
while the operator does not need such shape information to
control linear manipulators.

To verify this difference between linear and nonlinear
control tasks, we have conducted another f-MRI experiment
using the 2PUAM [10]. The results suggest that the difference
can be observed through the brain activities. In fact, a
specific area involving the shape information processing was
activated with a significant difference compared to the linear
task only when subjects control the 2PUAM.

In this paper, to further clarify the experimental results,
a new model-based analysis is conducted. The model is a
multiple model-based reinforcement learning (MMRL) [11]
for nonlinear controls but it is a linear controller. Using
the MMRL, we attempt to explain the f-MRI results of the
human information processing for the 2PUAM control task
from a control theory point of view.
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2. 2-Link Planer Under Actuated
Manipulator (2PUAM)

In this study, we use the 2PUAM shown in Figure 1 as
the control object. The 2PUAM moves in a horizontal
plane. Thus, the 2PUAM is free from gravity, and arbitrary
positions are equilibrium points. Motor is mounted on the
first joint. Then the dynamic equations of the 2PUAM are

M11θ̈1 +M12θ̈2 + C1 = T1 + Tf r1,

M21θ̈1 +M22θ̈2 + C2 = T2 + Tf r2,
(1)

where

M11 = (m1 +m2)l22 +m2l
2
2 + 2m2l1l2 cos θ2,

M12 =M21 = m2l
2
2 +m2l1l2 cos θ2,

M22 = m2l
2
2,

C1 = −m2l1l2θ̇1

(
2θ̇1 + θ̇2

)
sin θ2 + c1θ̇,

C2 = m2l1l2θ̇
2
1 sin θ2 + c2θ̇2.

(2)

Here, as shown in Figure 1, m1 and m2 are the mass of the
first and second links, l1 and l2 are the length, c1 and c2 are
the resistance coefficient, respectively, θ1 and θ2 are angles,
θ̇1 and θ̇2 are angular velocities, and θ̈1 and θ̈2 are angular
accelerations of joints, respectively. The right-hand sides of
(1) are the input and friction torques. In this study, we
simplify the model as follows:

m1 = m2 = m, l1 = l2 = l,

c1 = c2 = 0, T2 = Tf r1 = Tf r2 = 0.
(3)

It is known that the 2PUAM is not controllable by the
standard continuous feedback. This implies that reaching
the 2PUAM and stopping it at some point is a difficult
task. Although some indirect methods have been proposed
to control the 2PUAM from the control engineering point
of views [9], it is still unclear how human can control the
nonlinear object such as the 2PUAM.

3. Summary of f-MRI Experiments

3.1. Control Tasks and Training. Here, human operator is
required to feed an input torque τ ∈ [−1, 1] so that the
end effector of the arm will be driven to the goal point and
kept at the point. Since the position of the first joint is fixed,
there are at least two objective positions of the second joint
as shown in Figure 2: the upper position of the second joint
p1 and the lower p2.

The manual control experiment was conducted by 6
neurologically normal subjects (19–24 years of age; six males)
participated in the experiments. All subjects were right-
handed. Informed written consent was obtained from each
participant. They had no knowledge about the dynamic
response of the system before the experiment. They observed
the virtual manipulator’s states (positions, angles, and veloc-
ities of the 2PUAM) through visual data displayed on an LCD
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Figure 1: 2-link planner under actuated manipulator (2PUAM).
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Figure 2: Positioning task.

monitor and fed the torque by using a joystick. The time
limit was 30 seconds for each trial, and 300 training trials
have been conducted outside of the MRI scanner before the
following scanning sessions. The duration of 300 training
trials depended on the subject’s willingness and tiredness, but
all the subjects completed them for 2-3 days.

For each trial, the performance index defined by the
following equation was recorded:

J =
T∑

k=0

√
(x(k)− xG)2 +

(
y(k)− yG

)2
. (4)

Here (x(k), y(k)) denotes the position of the end effector
at time kΔt (k = 0, 1, 2, . . . ,T), Δt is the interval of time
step, (xG, yG) is the position of the goal point, and T is the
maximum steps of each trial. The performance index J has
been displayed on the monitor to guide subjects’ criterion.

3.2. MRI Scanning Sessions. In scanning sessions, the trained
subjects control two kinds of virtual manipulators whose
shapes are projected on a screen in the MRI scanner as
shown in Figure 3, by using an optical (magnet-free) joystick
[10]. Both manipulators are the same in shape, but the first
manipulator is the 2PUAM and the other is a manipulator
which has a linear input and output relation (subjects can
control it like a PC mouse). Controlling the 2PUAM is the
main task while the linear control task is a comparative one,
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Figure 3: Experimental system.

and thus the former is called test trial and the latter is baseline
trial, and their duration are called test and baseline periods,
respectively. In other words, subjects can directly operate
the coordinate of the end effector of the manipulator by
the joystick in baseline trial. On the other hand, subjects
operate only the torque of the first joint of the manipulator
by the joystick and indirectly control the coordinate of the
end effector in test trial. In each trial, subjects try to move
the end effector of the manipulator to the goal point and keep
it at the goal. The coordinates of the goal points are chosen
randomly and displayed on the screen when trial starts.

MRI scanner (1.5T SIEMENS: Symphony 1.5T) was used
to obtain blood oxygen level-dependant contrast functional
images. Images weighted with the apparent transverse relax-
ation time were obtained with an echo-planner imaging
sequence (repetition time: 3.0 s; echo time: 50 ms; flip angle:
90; field of view: 256×256 mm). High-resolution anatomical
images of all subjects were also acquired with a T1-weighted
sequence.

3.3. Results. Figure 4 indicates regions significantly more
activated during test periods than baseline periods (t >
5.89, P < .001). Activities in the primary motor cortex, the
somatosensory cortex, the somatosensory association cortex,
the prefrontal cortex, the inferior temporal gyrus, and the
fusiform gyrus were observed [10].

In the nonlinear control task, significant activities of
the inferior temporal gyrus and the fusiform gyrus were
observed. These areas are known to have an intimate involve-
ment in recognizing the characteristic (color and shape) of
the object. On the other hand, the prefrontal cortex is known
as a region that receives the information that is necessary
for action planning from both the temporal association area
and the occipital association area and assembles complicated
action plan. These suggest that in operating 2PUAM, subjects
use the information about shape or position of 2PUAM and
make trajectory planning of the positioning task based on
that information. From a viewpoint of control theory, it may
be worth to mention that such information is not needed for
the linear control, but it is necessary for the nonholonomic
systems control.

4. Controllability Analysis

The difference between linear and nonlinear control tasks
observed through the significant brain activities can be a

reflection of the human control mechanism that can cognize
the target nonlinear dynamics and use an appropriate piece
of information. However, this is not sufficient to conclude
that human does not use any linear control scheme. Instead,
the hypothesis proposed in this paper is that human can use a
linear control scheme by switching linear controllers respon-
sible for specific regions where the linear approximation can
work well for the target nonlinear task. The following linear
model can then be employed to verify the hypothesis.

4.1. Multiple Model-Based Reinforcement Learning (MMRL).
MMRL has multiple modules that are pairs of prediction
model which predicts future state of the controlled objects
and reinforcement learning controller which learns the
control output. “Responsibility signals” are calculated from
the softmax function of the prediction errors. The prediction
model which outputs the more accurate prediction has the
larger responsibility signal. By weighting control signal and
learning of the each module with responsibility signals, these
modules are adapted to the corresponding specific situations,
respectively.

In this study, we use a multiple linear quadratic controller
(MLQC) by using multiple linear prediction and quadratic
reward models as an efficient implementation of the MMRL
[11]. Change in the state vector of the target system, x ∈ R4,
is given by

ẋ(t) = f (x(t),u(t)), (5)

where x is the state vector of the system, and u is the control
output. Each variable of the vector for the 2PUAM can be
defined as

x1 = θ1, x2 = θ̇1, x3 = θ2, x4 = θ̇2. (6)

Linear prediction models of the MMRL can be repre-
sented as follows:

̂̇xi(t) = fi(x(t),u(t)) = Aix(t) + Biu(t), i = 1, 2, . . . ,n.
(7)

where n denotes the number of modules. State prediction
̂̇x is given by a weighting sum of prediction models with
responsibility signals λi [11]:

̂̇x(t) =
n∑

i=1

λi(Ei(t))̂̇xi(t) =
n∑

i=1

λi(Ei(t))(Aix(t) + Biu(t)), (8)

where Ei(t) is a short-time average of the prediction error
ẋ(t) − ̂̇x(t). Learning of each prediction model in (7), i ∈
{1, 2, . . . ,n}, is conducted by changing its parameter vector
wi consisting of all the elements of the matrices Ai and Bi as
follows:

ẇi(t) = ηwλi(Ei(t))

(
∂ fi
∂wi

)T(
ẋ(t)− ̂̇x(t)

)
, (9)

where ηw (> 0) is an update coefficient. Schematic diagram of
the multiple predictor-controller pair architecture is shown
in Figure 5.
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Figure 4: Significant activated areas of test period compared to baseline period (for more details, see [10]).
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Figure 5: Schematic diagram of multiple predictor-controller pair architecture [11].

4.2. Controllability of 2PUAM. We obtain the following state
equation of the 2PUAM from (1) and (6) under the condition
in (3):

ẋ1 = x2,

ẋ2 = 1
2− cos2x3

{
(3 + cos x3)x2

2sin x3

+x2x4sin x3 + u/ml2
}

,

ẋ3 = x4,

ẋ4 = −(1 + cos x3)ẋ2 − x2
2sin x3.

(10)

Equation (10) can be described using the vector form as

⎡
⎢⎢⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎥⎥⎦ = f

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎥⎦,u

⎞
⎟⎟⎟⎠. (11)

Here, we define the microscopic fluctuation at some posi-
tions xa in phase space as δx = x−xa, δu = u−ua. Calculating
the Taylor series of (11) and ignoring the higher-order terms
from the second order, we get

δẋ = Aδx + Bδu. (12)

Here matrices A and B are

A = ∂ f

∂x
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0
∂ẋ2

∂x2

∂ẋ2

∂x3

∂ẋ2

∂x4
0 0 0 1

0
∂ẋ4

∂x2

∂ẋ4

∂x3

∂ẋ4

∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B = ∂ f

∂u
= 1
aml2

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

−(1 + cos x3)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(13)

where

∂ẋ2

∂x2
= (2x2(3 + cos x3) + x4) sin x3

a
,

∂ẋ2

∂x3
= (6x2 + x4)x2cos2x3 − 2x2

2

a
+
u sin 2x3

ml2a
,

∂ẋ2

∂x4
= x2 sin x3

a
,

∂ẋ4

∂x2
= −(1 + cos x3)

∂ẋ2

∂x2
− 2x2 sin x3,

∂ẋ4

∂x3
= ẋ2 sin x3 − (1 + cos x3)

∂ẋ2

∂x3
− x2

2 cos x3,

∂ẋ4

∂x4
= −(1 + cos x3)

x2 sin x3

a
,

a = 2− cos2x3.

(14)

Since the MMRL is a linear controller, it cannot control
the 2PUAM. Indeed, the rank of the controllability matrix
Uc = [B AB A2B A3B] at any equilibrium position x0

becomes 2, which is not the full rank, 4. That is, let us denote
an equilibrium point by using arbitrary values θ10 and θ20

x0 =
(
θ10 0 θ20 0

)T
(15)
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with no input u = 0. Then, from (14),

A = ∂ f

∂x

∣∣∣∣∣
x=x0

u=0

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B = ∂ f

∂x

∣∣∣∣∣
x=x0

u=0

= 1
a0ml

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

−(1 + cos θ20)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(16)

where a0 = 2− cos2θ20. In this case, the rank of the Uc is not
equal to the full rank, 4, but is 2 as follows:

rank [Uc] = rank
[
B AB A2B A3B

] = 2. (17)

4.3. Possible Control Strategy. The rank of the controllability
matrix can, however, be the full rank, 4, at some positions xs
in the phase space where angular velocity of the first joint is
not exactly zero, θ̇1 /= 0, even if the θ̇1 is very close to zero, as
shown in Figure 6.

To verify the controllability, let us denote positions xs in
the phase space by using arbitrary values θ1s, θ2s, and θ̇2s:

xs =
(
θ1s θ̇1s θ2s θ̇2s

)T
, θ̇1s /= 0. (18)

Then, from (14),

As =
∂ f

∂x

∣∣∣∣∣
x=xs

u=us
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

0
∂ẋ2

∂x2

∂ẋ2

∂x3

∂ẋ2

∂x4
0 0 0 1

0
∂ẋ4

∂x2

∂ẋ4

∂x3

∂ẋ4

∂x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Bs =
∂ f

∂x

∣∣∣∣∣
x=xs

u=us
= 1
asml2

⎛
⎜⎜⎜⎜⎜⎜⎝

0

1

0

−(1 + cos θ2s)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(19)

where as = 2 − cos2θ2s. In this case, the rank of the
controllability matrix is 4, the full rank:

rank [Ucs] = rank
[
Bs AsBs A2

s Bs A3
s Bs
]
= 4. (20)

Thus, it is confirmed that 2PUAM cannot be stabilized at
any equilibrium point, but if θ̇1s /= 0, the end effector of the
2PUAM can approach any geometrical point with any slow
speed.

4.4. Discussions. The slow speed approach verified above
might be an interesting result because, nevertheless human
subjects can control the 2PUAM very well, it is often very
hard even for human subjects to stop the 2PUAM completely
in the manual control tasks [9, 10]. The linear controller can
be responsible only for a small region in which the linear
approximation can work well. Thus, by switching multiple
linear models, there is a possibility to control the 2PUAM
with the MMRL.

Different from (16), we assumed the condition in (19)
where ∂ẋi/∂xj /= 0, i = 2, 4, and j = 2, 3, 4 to make the
rank of controllability matrix be the full rank. The condition
implies a virtual constraint of the manipulator’s shape (joint
movement) because, for example, ∂ẋ2/∂x3 /= 0 implies the
virtual existence of relation between θ̈1 and θ2 that makes a
constraint on the angular acceleration depended on the angle
of the manipulator shape. Interestingly, if human subjects
could feel and realize such virtual constraint on the 2PUAM
control (joint movement), the control task can sometimes be
achieved relatively easier [9].

According to the f-MRI results, subjects may use the
shape and position information of the 2PUAM. The virtual
constraint discussed above can further be created in order
to make the control easier. Unfortunately, the controllability
analysis does not prove this hypothesis, but there is a
possibility that in operating the 2PUAM, subjects use the
shape information to switch the controllers [10] and create
the virtual constraint to make the control easier [9]. In
this sense, MMRL can be regarded as a linear model for
controlling the 2PUAM. Then, if human’s superior learning
ability to control the complex nonlinear system could be
based on such linear control schemes, its implementation on
a robot system might be easier than we expected.
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5. Conclusions

In this paper, by using a controllability analysis, we have
revised the previous f-MRI experimental results that reveal
significant activation areas for the nonlinear control task
compared to the linear one. Even the useful pieces of
information for the linear task may be different from
nonlinear ones, the analysis suggests some possibility to
control the 2PUAM with a set of linear control models in
a similar way by which human subjects can control it. In
fact, to stop the 2PUAM at an equilibrium point completely
seems very hard or almost impossible, but to approach
there with any arbitrary slow speed seems an easier task.
The additional information of shape and position of the
2PUAM can then be used for switching the linear controllers.
Although the internal relation between the virtual constraint
and the controllability of the nonlinear task is still unclear
and should be clarified further from both computational and
brain sciences point of views, the hypothesis proposed in this
paper implies that it could be possible to design or realize
robots with the human-level learning ability in an easier way.
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