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Wireless sensor networks (WSNs) consist of a large number of small-size, energy-constrained nodes and generally are deployed
to monitor surrounding situation or relay generated packets in other devices. However, due to the openness of wireless media and
the inborn self-organization feature of WSNs, that is, frequent interoperations among neighbouring nodes, network security has
been tightly related to data credibility and/or transmission reliability, thus trust evaluation of network nodes is becoming another
interesting issue. Obviously, how to describe node’s behaviors and how to integrate various characteristics tomake the final decision
are two major research aspects of trust model. In this paper, a new trust model is proposed to detect anomaly nodes based on fuzzy
theory and revised evidence theory. By monitoring the behaviors of the evaluated nodes with multidimensional characteristics and
integrating these pieces of information, the malicious nodes in a network can be identified and the normal operation of the whole
network can be verified. In addition, to accelerate the detection process, a weighting judgment mechanism is adopted to deal with
the uncertain states of evaluated nodes. Finally extensive simulations are conducted, and the results demonstrate that the proposed
trust model can achieve higher detection ratio of malicious nodes in comparison with the previously reported results.

1. Introduction

In general, wireless sensor networks (WSNs) consist of a
large number of small-size, energy-constrained nodes, which
are responsible for data sensing, collecting, and relaying.
Compared with the traditional networks, WSNs are more
intelligent and flexible to organize network elements to sup-
port some predefined applications. Nowadays, with the rapid
advances in information and communication technology
(ICT), WSNs have been widely deployed in a variety of appli-
cations like environment monitoring, intrusion detection,
and other civilian or military applications [1, 2]. Obviously,
although the sensing objectives of these applications are not
unique and highly application-dependent, for most WSN
systems, the common performance criterion is to prolong
network lifetime while satisfying coverage and connectivity
in a certain deployment region.

However, due to the long-term exposure in natural envi-
ronments and the inherent vulnerabilities of open spectrum,
the reliability of data transmission between elements inWSNs
becomes fragile. Thus security of WSNs has attracted wide

attention from researchers and institutions. For instance, in
military scenarios, the sensor nodes deployed in awar district
have to keep on working for several months, which will
undoubtedly increase the possibility of nodes being captured
and turned into malicious nodes under intentional attacks.
What is more, compared with the existing networks, the
largest challenge of WSN is its limited resource capacities,
including energy, memory, and computing power. As a
result of this, some of the existing security technologies
which work well in traditional wired networks, such as key
management and host-based intrusion detection, cannot be
directly extended toWSNs [3–5].Therefore, to propose some
energy efficient anomaly detection schemes for WSNs is an
essential but a vital step on the way to practical application.

As the name suggests, anomaly detection is the identifica-
tion of items, events, or observations which do not conform
to the expected patterns. In a sensor network domain, the
anomalous items are always referred to as intrusion or intru-
sion attempt to a network through tampering or intercepting
data, altering data transmission direction or other ways of
depleting nodes’ energy. In other words, anomaly detection
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is a technology used for assessing node behaviors that violate
the normal operations of network, so its ultimate goal is
to detect and report the unauthorized or abnormal nodes
in communication networks. On the other hand, the idea
trust assessment has attained much more consideration from
academic institutions [6–8]. It was firstly proposed in the
realm of e-commerce to select reliable transaction objects
and now has been extended to other domains, including
finance and navigation. Recall that trust is a common concept
used in human society which facilitates the interactivity and
communication between human beings, while anomalous
always means doubtful and harmful.

For a communication network, according to where the
attacks come from, generally the individual doubtful or illegal
behaviors can be divided into two categories: one is by the
internal nodes and the other is by external nodes. To combat
external attacks, the existing identity authentication and
data encryption theories have already been quite mature [9,
10], which can prevent most external nodes from intruding
into a network so avoiding the eavesdropping from them.
In contrast, to detect compromised members to eliminate
internal attacks is a much more difficult task and still under
study. Recently, some trust-based detectionmodels have been
proposed to fulfill this purpose; however some related issues
remain open and challenging [11–13] for researchers.

Although these existing trustmodels play important roles
in improving security in many aspects such as peer-to-peer
networking and grid and cloud computing, trust evaluation
is still a challengeable issue. Generally, trust evaluation is
directly related to the past behaviors of a participant like
transmission, control, and random access and then combined
with the reputation from other recommenders, which means
trust value of a node can be obtained from two ways: direct
trust evaluation and indirect trust evaluation. Direct trust
value is determined by periodically monitoring behaviors of
an evaluated node and fusing all the information at each
end of sampling period. However, how to calculate enough
accurate trust value for a node in a realistic situation is under
study [14], which is the major research motivation of this
paper. On the other hand, indirect trust value is determined
by collecting the recommended information from some
neighboring nodes. However, to the best of our knowledge,
the credibility of the recommended information has not yet
been fully considered in existing literatures [15], which is
anothermotivation of this paper. Finally, by integrating direct
trust value and indirect trust value, a unique trust value is
obtained to detect amalicious node fromother normal nodes.

In this paper, aiming to address the above challenges,
we propose a new trust model, shown in Figure 1, to
detect malicious nodes in WSNs. First, the evaluation node
collects multidimensional characteristics of the evaluated
node’s behaviors including energy consumption and packet
processing, and then in accordance with the predefined fuzzy
membership functions [16], it uses fuzzy set theory to deduce
trustworthiness levels of every characteristics. Second, the
evaluation node fuses all these pieces of level information to
obtain a direct trust value by the evidence theory [17, 18].
Third, the evaluation node collects all credible recommended
information from the evaluated node’s one-hop neighbors

Direct trust evaluation

Monitor the evaluated nodes

Count bad and good
behaviors

Calculate direct trust values

Indirect trust evaluation

Collect recommending
messages

Weight information

Calculate indirect
trust values

Integrate direct and indirect trust values

Make decision on the final trust value

Figure 1: The framework for the proposed model.

and weights these pieces of information according to their
credibility. Finally, the direct trust value and indirect trust
value are integrated. It is noted that here the running state
of the evaluated node is judged according to the decision
rules and should be broadcasted to the evaluation node’s
surrounding nodes, which can be embedded in MAC or
routing module. And, when the state of the evaluated node
is uncertain for the evaluation node to decide, a weighting
judgment algorithm is further introduced in this paper
to accelerate the evaluation procedure. Finally simulation
results show that the new trust model can achieve higher
detection rate and lower false alarm rate compared with the
group-based trust management model (GTMS) [19].

The remainder of this paper is organized as follows.
Section 2 presents a review of relatedwork. Section 3 presents
a fundamental introduction of fuzzy theory and evidence
theory, which will be applied in the trust model. Section 4
presents the proposed trust model in detail, including
five process phases and some practical implement issues.
Section 5 presents a weighting decision approach. An exper-
imental evaluation of this proposed model is conducted in
Section 6. Finally, in Section 7, we make some concluding
remarks.

2. Related Work

It is well known that WSNs are valuable to various applica-
tions related to data collection and some security purposes;
however, due to the inherent characteristics, there are also
some risks to be faced. According to where the executors
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come from, there are two categories of malicious attacks in
WSNs: internal attacks and external attacks [20]. Most of the
external attacks take advantage of powerful transceivers’ abil-
ity to receive and transmit long distance signals to interfere
with the network’s normal operation, such as spoofing attack
and sniffing attack. In comparison to these external attacks,
the threat posed by internal attacks on a network is greater
andmore difficult to resist because the promise of its purpose
is to detect these malicious ones from normal nodes while
these malicious nodes always imitate themselves like normal
ones. Thus in complex practical scenarios, it is so difficult to
detect malicious nodes.

Recently, there have appeared some research works on
internal attacks in WSNs [21, 22]. In [23], Tian and Geor-
ganas propose an acknowledgement (ACK) based anomaly
detection model, which makes use of the idea that each next-
hop node loopbacks ACK packet to the source node after it
has received a data packet correctly. Thus the source node
can make sure whether there is any unreliable transmission
between itself and these intermediate nodes. Although this
model is simple, the detection rate is not high enough and
there are some difficulties existing in its implementation. In
order to achieve a higher detection rate, Chatzigiannakis and
Papavassiliou propose a data fusion-based anomaly detection
method in [21], where they take advantage of the data
association nature among adjacent nodes and adopt so-called
principal component analysis (PCA) to check the complete-
ness and accuracy of the collected data.However, thismethod
needs to collect information as much as possible. In other
words, it has a strict requirement on distribution density of
nodes in a monitoring area and is not universally applicable.
To relieve this limit, da Silva et al. introduce an efficient
method in [24] to identify anomaly node based on statistical
information.The characteristics of a behavior are gathered by
monitoring the evaluated node and matching the character-
istics with the behavior rules which are predefined according
to experiences. Comparing to themalicious behavior patterns
saved in the rule database, this method can detect anomaly
nodes rapidly and correctly. However, this method strongly
depends on the accuracy of rules and will become invalid
when new types of attack appear in the network if they have
not been described in the rule database. In fact, it is so difficult
to accurately describe some behaviors’ statistical information.
To free the detection procedure from modeling behavior,
Pissinou et al. propose a classical probability model based on
statistical analysis to find anomaly nodes in networks [14].
However, this scheme does not take into consideration any
recommended information from other nodes. As a result,
it may lead to a high false alarm rate. In view of this
situation, Zhang and Lee try to improve the performance
by combining the direct observed characteristics with the
indirect information to obtain an integrated trust value
[15]. However, there are some inadequacies existing in their
model because it only simply takes the attitude of full trust
to the recommended information and does not take into
consideration the credibility of the information. Thus, how
to introduce credibility in the schemes has become a focus of
this type of approaches. In [25], moving average technique is
used to balance between direct and indirect trust value based

on recommendation credibility, and in [26] fuzzy logic is
applied to quantify the trust recommendation relationships.

It is well known that amodel selected to describe behavior
has to deal with multiple input parameters, so how to fuse
these pieces of informationwith different properties is amore
important problem. By applying fuzzy theory,Moon andCho
[22] propose an intrusion detection scheme for discovering
and combating sinkhole attack in directed diffusion based
sensor networks. In the scheme, some nodes act as master
nodes and periodically send out packets, that is, a type of path
reinforcement message, in their respective coverage areas,
and then a detection value is derived from the received mes-
sages for each area using fuzzy logic. However, this scheme
is mainly designed to handle sinkhole attack and does not
consider other attack types fully. To fuse multidimensional
characteristics, in [27] Chang and Liu introduce evidence
theory in their anomaly detectionmodel where D-S evidence
theory is used to fuse current state information with the
historical information to obtain a comprehensive assessment
value, which can improve detection rate. However, because
hard threshold is adopted in the scheme to determine a node’s
state, high false alarm rate will frequently appears especially
under some complex situations.

In this paper, we proposed a new trustmodel, which com-
bines fuzzy theory with evidence theory to detect anomaly
nodes in WSNs. Although fuzzy theory has been applied in
[22], only reinforcement and radius information are fuzzed
up there and our model handles five different behavior
characteristics to obtain node’s trust value. Based on nodes’
behaviors and modified evidence theory, Feng et al. have
proposed a trust evaluation algorithm for wireless sensor
networks in [28]. In the scheme, fuzzy set is employed to
generate a basic input vector for evidence calculation, and
weighted fusion is used to calculate a direct trust value.
Meanwhile, the evidence difference among the indirect and
direct trust values is noticed, which leads to the revised
D-S evidence combination rules to finally synthesize the
integrated trust values. All these aspects are similar in some
degree to this paper. However, it does not fully take into
consideration the uncertain states when waiting for the next-
ring trust assessment. In this paper, a weighting mechanism
is proposed to speed up the convergence procedure in
determining nodes’ states.Thus after observing the behaviors
of the evaluated nodes, we are able to identify malicious
nodes in a network and guarantee the normal operations of a
network.

3. Preliminary

In this section, the fundamental concepts of Dempster-
Shafer (D-S) evidence theory, fuzzy set theory, and weighting
algorithm are introduced briefly, whichwill be involved in the
other sections.

3.1. D-S EvidenceTheory. D-S evidence theory is a method of
uncertainty reasoning which was first proposed by Dempster
[17] in 1967 and then further promoted by Shafer [18] in
1976. The theory can be regarded as a generalized broaden of
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the classical probabilistic inference theory in finite fields
and has been widely applied in probabilistic inference,
probabilistic diagnosis, risk analysis, and decision support.
Furthermore, evidence theory can clearly express uncertainty
and effectively deal with uncertain information in case of no
prior information, so it has been widely applied in expert
systems, medical diagnostics, and so forth.

3.1.1. Reliability Functions and Distributions. If all obtained
possible outcomes for an issue of jurisdiction are regarded
as members of a set, this complete set is called a frame
of discernment (Θ) and consists of all possibilities of the
problem. An evidence can provide support to one or more
propositions, which can be shown by some basic probability
assignment functions.

Definition 1. If there is a mapping 𝑚: 2Θ → [0, 1] (2Θ is the
power set of Θ) which satisfies the following requirements,
𝑚(Θ) is called a basic probability assignment (BPA) function
of the frame of discernment Θ or a mass function:

𝑚(Φ) = 0,

𝑛

∑

𝑖=1

𝑚(𝐴
𝑖
) = 1, 𝐴

𝑖
⊆ Θ.

(1)

It is said that𝑚(𝐴) represents the precise level of trust to
proposition 𝐴. In this paper, empty set is denoted asΦ.

Definition 2. If a subset 𝐴 of Θ satisfies 𝐴 ⊆ Θ, 𝐴 ̸= Φ, and
𝑚(𝐴) > 0, 𝐴 is named a focal element of𝑚.

It is noted that, in D-S evidence theory, two basic
functions, belief (Bel) and plausibility (Pls), are defined to
characterize the uncertainty and to support certain hypothe-
ses. Bel measures the minimum or necessary support to the
hypothesis, whereas Pls measures the maximum or potential
support.

Definition 3. Belief and plausibility functions are two mea-
sures, derived frommass values, and are defined as amapping
from a set of hypotheses to interval [0, 1] which is shown as
follows:

Pls (𝐴) = ∑

𝐵∩𝐴 ̸=Φ

𝑚(𝐵) ,

Bel (𝐴) = ∑

𝐵⊆𝐴

𝑚(𝐵) .

(2)

Belief function is also regarded as the bottom limit of the
BPA function, while plausibility function is the top limit.

3.1.2. Dempster Combination Rules. The synthesis rules in
evidence theory represent a method that is used for infor-
mation combination of multiple independent information
sources.

Denote 𝑚
1
, 𝑚
2
are two BPA functions based on two

independent evidences and come from the same frame

of discernment, and their focal elements are, respectively,
denoted as 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑘
and 𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑙
. If they satisfy

𝐾 = ∑

𝐴𝑖∩𝐵𝑗=⌀

𝑚
1
(𝐴
𝑖
)𝑚
2
(𝐵
𝑗
) < 1, (3)

where𝐴
𝑖
, 𝐵
𝑗
⊆ Θ and𝐾 is themeasure of confliction between

two different independent evidences, using Dempster combi-
nation rules, we can turn two BPA functions into synthesis.

Definition 4. Dempster combination rules are

𝑚(𝐴)

=

{{{

{{{

{

0, 𝐴 = Φ,

∑
𝐴𝑖∩𝐵𝑗=𝐴

𝑚
1
(𝐴
𝑖
)𝑚
2
(𝐵
𝑗
)

1 − 𝐾
, 𝐴 ̸= Φ, 𝐴

𝑖
, 𝐵
𝑗
⊆ Θ,

(4)

where 𝐴 is a subset of Θ and coefficient 1/(1 − 𝐾) is used
as a normalization factor to prevent a nonzero value being
assigned to an empty set. The closer the value of 𝐾 being to
1, the greater the confliction between two evidences, and vice
versa.

3.2. Fuzzy Set Theory. As an extension of classical set theory,
fuzzy set theory was first proposed by Zadeh [29] to map
linguistic variables within decision-made process in 1965 and
then was extended to other various fields, such as natural
science, social science, and engineering fields [16].The differ-
ence between classical set theory and fuzzy set theory is that,
in fuzzy set theory, the concept of membership degree is used
to indicate a degree with which an element belongs to a fuzzy
set. The way of this method to recognize a target is similar to
the thinking mode of human being. Each element in a fuzzy
set has an exclusive corresponding membership function, so
all these membership functions determine an exclusive fuzzy
set. The outputs of these membership functions define the
degrees with which the specified concentration belongs to a
fuzzy set, which assign each element multiple grades within
the interval [0, 1]. Membership function and membership
degree of a fuzzy set are defined as follows.

Definition 5. The collection of all objects is called the domain
of a fuzzy set, denoted by𝑈. The domain of a fuzzy set can be
continuous or discrete.

Definition 6. Let 𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be the domain of a

fuzzy set; a fuzzy subset 𝐴 of 𝑋 is defined as follows: for any
𝑥 ∈ 𝑋, there exists a value 𝜇

𝐴
(𝑥) ∈ [0, 1]. The mapping is

denoted as

𝜇
𝐴
: 𝑋 󳨀→ [0, 1] (5)

or

𝑥 󳨀→ 𝜇
𝐴 (𝑥) ∈ [0, 1] . (6)

Map each 𝑥
𝑖
∈ 𝑋 to a certain value 𝜇

𝐴
(𝑥) ∈ [0, 1], which

is called the membership degree with which 𝑥 belongs to set
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𝐴. The mapping 𝜇
𝐴
is called a membership function of fuzzy

set 𝐴.
Generally, for 𝑛 fuzzy subsets 𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
with the

same domain 𝑈, if there are 𝑚 evidences 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑚

existing with an identical object: ∀𝑥 ∈ 𝑈, all possible
membership degrees can be written down as follows:

𝜇
1,𝐴1

(𝑥) , 𝜇1,𝐴2
(𝑥) , . . . , 𝜇1,𝐴𝑛

(𝑥)

𝜇
2,𝐴1

(𝑥) , 𝜇2,𝐴2
(𝑥) , . . . , 𝜇2,𝐴𝑛

(𝑥)

.

.

.

𝜇
𝑚,𝐴1

(𝑥) , 𝜇𝑚,𝐴2
(𝑥) , . . . , 𝜇𝑚,𝐴𝑛

(𝑥) .

(7)

3.3. The Weighting Algorithm. Weighting algorithm is vital
to combination and decision process of multidimensional
information because its output will directly reflect each
factor’s importance and position in the final results [30]. In
the process of fusion, assume there are 𝑛 attributes in system
and the 𝑖th attribute’s weight is denoted as 𝜔

𝑖
; these 𝑛 weights

are subject to

𝜔
1
+ 𝜔
2
+ ⋅ ⋅ ⋅ + 𝜔

𝑛
= 1. (8)

The core ideas behind the weighting algorithm are expert
evaluation method, fuzzy statistics, and duality contrast
sorted method. However, if the weight values are simply
determined from expert experience, which is subjected to
the primary characteristic, they cannot objectively reflect
the actual circumstance and sometimes even result in false
decision-made process. Therefore in this paper, evidences’
weights are obtained according to their distances from the
mean value and their historical contribution. Considering
actual application environment, the attribute’s importance is
fully taken into account to assure the evidence importance
by combining the objective weights and subjective weights
from experience knowledge. As a result, it will lead to a more
accurate final output than under the situation that weight
values only depend on the experience knowledge.

4. Anomaly Detection Model

The trust-based anomaly detection model consists of five
phases: the monitoring phase, the fuzzy phase, the trust
fusion phase, the collection phase of recommended infor-
mation, and the decision phase. Note that, in the proposed
algorithm, the related participants will be classified into
three roles: evaluation node, evaluated node, andneighboring
node. As shown in Figure 2, node𝐴 assesses node𝐵, so nodes
𝐴 and 𝐵 are, respectively, named evaluation node and evalu-
ated node. And, nodes 𝐶 and𝐷 are called neighboring nodes
when they can provide some recommending information of
𝐵 to 𝐴, which means that both nodes 𝐶 and 𝐷 may have
done some interactions with node 𝐵. Note that, in fact, here
connections exist between 𝐴 and 𝐵, 𝐶, and𝐷.

4.1. The Monitoring Phase. In most of previous models,
a node is assessed according to only one factor, such as

A B

C

D

Figure 2: A topology example of trust assessment.

packet loss rate and data flow. However, it is well known
that different attack types have different impacts on nodes’
different characteristics, so only considering a single factor
is not enough to detect various attacks. In this paper, we
present a multidimensional feature extraction model, which
monitors a node from five aspects specifically: energy con-
sumption rate, packet receiving rate, packet sending rate,
packet forwarding rate, and data consistency. For instance, if
node 𝑖 needs to assess node 𝑗, it has to monitor the following
five measures of node 𝑗. Note that, in this paper, Δ indicates
the update period of trust assessment and 𝑡 represents the 𝑡th
update period.

4.1.1. Energy Consumption Rate (ECR). Recall that sensor
nodes may have limited energy and any behavior of a
node needs to consume its stored energy, which means that
a malicious node will consume energy more quickly due
to more stimulated actions than normal nodes, including
transmitting, processing, and receiving. Thus we can know
the energy consumption information of a node by comparing
its energy consumption rate with the normal level. If node
𝑖 makes assessment of node 𝑗, the calculation formula is
defined as

ECR (𝑡) = |Δ𝐸 (𝑡) − Δ𝐸|
Δ𝐸

, (9)

where Δ𝐸(𝑡) = 𝐸
𝑗
(𝑡) − 𝐸

𝑗
(𝑡 − 1) represents the energy con-

sumption difference of node 𝑗 in the (𝑡−1)th and 𝑡th sampling
period and Δ𝐸 represents the normal consumption level in
update period Δ.

4.1.2. Packet Receiving Ratio (PRR). The ACK-mechanism
is also taken into consideration to calculate the number of
packets received by the evaluated node during a sampling
period. By this way, we can determine whether there is heavy
packet loss happening on the evaluated node:

PRR (𝑡) =
𝑅
𝑗 (𝑡)

𝑆
𝑖 (𝑡)

, (10)
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where 𝑅
𝑗
(𝑡) indicates the number of data packets received in

node 𝑗 that are sent by node 𝑖 during the 𝑡th period, which is
equal to the number of ACK-messages that node 𝑖 can receive
from node 𝑗 (here assume that all ACK-messages can be
received successfully), and 𝑆

𝑖
(𝑡) is the total number of packets

sent by node 𝑖 to node 𝑗 during the 𝑡th period.

4.1.3. Packet Sending Ratio (PSR). After an evaluated node
has been compromised, it may fabricate some packets and
send to its neighboring nodes. This behavior will result
in unnecessary energy loss in the neighboring nodes and
network congestion.The difference of two successive periods
is more accurate to describe the evaluated node’s state and is
defined as

PSR (𝑡) =
󵄨󵄨󵄨󵄨󵄨
𝑆
𝑗 (𝑡) − 𝑆𝑗 (𝑡 − 1)

󵄨󵄨󵄨󵄨󵄨

𝑆
𝑗 (𝑡) + 𝑆𝑗 (𝑡 − 1)

, (11)

where 𝑆
𝑗
(𝑡) indicates the total number of packets sent by the

evaluated node 𝑗 during the 𝑡th period and the denominator
is used to normalize the output value.

4.1.4. Packet Forwarding Ratio (PFR). If a node has received
some packets while it is not the destination node, it is needed
to forward the packets according to the routing table stored
in memory. However, after the node has been compromised,
it may intercept these packets and may not forward them
sequentially:

PFR (𝑡) =
𝑆
𝑖,𝑗 (𝑡)

𝑆
(𝑖,𝑗) (𝑡)

, (12)

where 𝑆
𝑖,𝑗
(𝑡) indicates the number of packets node 𝑗 has

received from node 𝑖 and forwarded to next-hop node
according to the routing table and 𝑆

(𝑖,𝑗)
(𝑡) is the total number

of packets node 𝑖 wants to send to their destinations with the
help of node 𝑗.

4.1.5. Data Consistency (DC). The current research has
shown that the sensed data from adjacent nodes is closely
correlative in space domain. It is said that, comparing the
data generated by the evaluation node and evaluated node
or by the evaluated node and its neighbors can determine
whether the evaluated node hasmodified data packets. SoDC
is defined as

DC (𝑡) =
𝑇𝑆
𝑖,𝑗 (𝑡)

𝑇𝑆
𝑖,𝑗 (𝑡) + 𝑁𝑇𝑆𝑖,𝑗 (𝑡)

, (13)

where 𝑇𝑆
𝑖,𝑗
(𝑡) and 𝑁𝑇𝑆

𝑖,𝑗
(𝑡) are, respectively, the total num-

ber of accordant packets and discordant packets during the
𝑡th period. Here the update rule is rather simple: if the
difference is in the range of 10%∼20%, the value of 𝑇𝑆

𝑖,𝑗
(𝑡)

is increased by 1; otherwise the value of𝑁𝑇𝑆
𝑖,𝑗
(𝑡) is increased

by 1.

4.2. The Fuzzy Phase. As a matter of fact, most behavior
characteristics of nodes even cannot be simply imagined as

definitive, which implies that the trust values may be sub-
jective and uncertain. Fuzzy theory is a good choice for this
type of problem. In this paper, without loss of generality, the
trust status can be divided into three grades: trust, distrust,
and uncertain, respectively, labeled as 𝑇

1
, 𝑇
2
, and 𝑇

3
. Note

that after collecting the values of behavior characteristics, the
evaluation node normalizes each characteristic into a value
∈ [0, 1] to simplify the subsequent processing. Their fuzzy
membership functions 𝜇

𝑇1
(𝑥), 𝜇
𝑇2
(𝑥), and 𝜇

𝑇3
(𝑥) are defined

as in the following formula:

𝜇
𝑇1
(𝑥) = sigmf (𝑘𝑥, [𝑎 𝑏]) ,

𝜇
𝑇2
(𝑥) = 1 − sigmf (𝑘𝑥, [𝑐 𝑑]) ,

𝜇
𝑇3
(𝑥) = 1 − 𝜇𝑇1

(𝑥) − 𝜇𝑇2
(𝑥) ,

(14)

where s-shaped membership function sigmf(𝑘𝑥, [𝑎 𝑏]) =

1/(1 + 𝑒
−𝑎(𝑘𝑥−𝑏)

) and 𝑘, 𝑎, 𝑏, 𝑐, 𝑑 are five predefined system
parameters.

The larger the membership degree is, the more normal
the evaluated node is. An example of the fuzzy membership
functions is shown in Figure 3, where 𝑘 = 13 and 𝑎, 𝑏, 𝑐, 𝑑 are
set as 13, 0.65, 9, 0.55, and 5, respectively.

4.3. The Trust Fusion Phase. The evidence theory is suitable
for processing uncertain information to obtain a reasonable
output. In this paper, the synthesis rules of the revised
evidence theory are used to determine whether the system
is threatened by invasion. Note that, to apply the revised
evidence theory to fusion evidences, it is needed to define the
mass functions for every focal elements.

The outputs of the fuzzy phase are membership values
of the three status. In this phase, each membership value is
assigned to the corresponding focal element’s BPA function
so as to produce five group evidences, and then the revised
evidence theory is utilized to fuse these group evidences and
obtain a direct trust value (DTV). The formula is shown as

𝑚
𝑛
(𝑇
𝑗
) = 𝜇
𝑛,𝑇𝑗

(𝑡) ,

DTV
𝑖,𝑗
(𝑇
𝑖
) = ∑

∩𝑇𝑗=𝑇𝑖

5

∏

𝑛=1

𝑚
𝑛
(𝑇
𝑗
) + 𝑘 ⋅ 𝑓 (𝑇

𝑖
) ,

∀𝑇
𝑖
̸= Φ,

(15)

where parameter 𝑘 = ∑
∩𝑇𝑗=Φ

∏
5

𝑛=1
𝑚
𝑛
(𝑇
𝑗
) and function𝑓(𝑇

𝑖
)

= (1/5)∑5
𝑛=1

𝑚
𝑛
(𝑇
𝑖
) refers to geometric mean.

4.4. The Recommended Information Collection Phase. In this
phase, the evaluation node further gathers recommended
information from the evaluated node’s neighbors to calculate
an indirect trust value, so the key problem is how to integrate
these pieces of information. For instance, to combat bad-
mouthing attack, the scheme has to weight the recommended
information from different neighbors.

It is well known that there may be some relatives between
these pieces of recommended information, so we can calcu-
late and compare the distance between every recommended
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Figure 3: The fuzzy membership functions.

information and their mean value to determine the weights.
Obviously, the fundamental principle behind this idea is the
information with smaller distance implies better reliability
and should be assigned a larger weight. Assume that the
evaluated node 𝑗 has 𝑛 neighboring nodes to provide recom-
mended information and their distance are denoted as 𝑑

𝑅𝑘 ,𝐸

(index 𝑘 refers to the 𝑘th neighboring node), then the largest
distance 𝑑max = max(𝑑

𝑅1 ,𝐸
, 𝑑
𝑅2 ,𝐸

, . . . , 𝑑
𝑅𝑛 ,𝐸

) and its relative
distance is denoted as 𝑑max/𝑑𝑅𝑖 ,𝐸 (𝑖 = 1, 2, . . . , 𝑛). Thus node
𝑘’s weight 𝜔

𝑅𝑘
can be determined

𝜔
𝑅𝑘
=
𝑑max
𝑑
𝑅𝑘 ,𝐸

1

∑
𝑛

𝑖=1
(𝑑max/𝑑𝑅𝑖 ,𝐸)

=
1

∑
𝑛

𝑖=1
(𝑑
𝑅𝑘 ,𝐸

/𝑑
𝑅𝑖 ,𝐸
)

, (16)

where

𝑑
𝑅𝑘 ,𝐸

= √

5

∑

𝑖=1

[𝑋
𝑘,𝑖
− 𝐸 (𝑋

𝑖
)]
2
, (17)

where𝑋
𝑘,𝑖
indicates the 𝑖th behavior characteristic of node 𝑘,

𝐸(𝑋
𝑖
) represents the expected value of the characteristic of all

neighbors.
After obtaining the weight values of all recommended

information, the indirect trust value can be calculated as

ITV
𝑖,𝑗
(𝑇
𝑖
) =

𝑛

∑

𝑘=1

𝑤
𝑅𝑘
⋅ DTV

𝑘,𝑗
(𝑇
𝑖
) , (18)

whereDTV
𝑘,𝑗
(𝑇
𝑖
) is the direct trust value of node 𝑘 to 𝑗, while

ITV
𝑖,𝑗
(𝑇
𝑖
) is the indirect trust value of node 𝑖 to 𝑗.

4.5.TheDecision Phase. After obtaining the direct trust value
and indirect trust value, the evaluation node is needed to
integrate them and outputs the final trust value TV

𝑖,𝑗
(𝑇
𝑖
)

TV
𝑖,𝑗
(𝑇
𝑖
) = 𝑤
1
⋅ DTV

𝑖,𝑗
(𝑇
𝑖
) + 𝑤
2
⋅ ITV
𝑖,𝑗
(𝑇
𝑖
) , (19)

where 𝑤
1
and 𝑤

2
are two empirical coefficients and subject

to 𝑤
1
+ 𝑤
2
= 1, depending on the environment and expert

experience.
Finally, the evaluation node will make a decision accord-

ing to the rules

Bel
𝑖,𝑗
(𝑇
2
) > Bel

𝑖,𝑗
(𝑇
1
) + Bel

𝑖,𝑗
(𝑇
3
) ,

Bel
𝑖,𝑗
(𝑇
1
) < 𝛼,

Pls
𝑖,𝑗
(𝑇
2
) − Bel

𝑖,𝑗
(𝑇
2
) < 𝛽,

(20)

where Bel
𝑖,𝑗
(⋅) is belief function and Pls

𝑖,𝑗
(⋅) is plausibility

function and parameters 𝛼 and 𝛽 are dynamically adjusted
according to the predefined security acquirements.

If an evaluated node satisfies the above conditions, it
will be judged as malicious and its ID information will be
broadcasted to all neighbors, till it finally reaches the base
station. Thus the base station can isolate this malicious node
and ignore all packets relayed by it. Otherwise, if Formula
(21) is satisfied, the evaluated node will be regarded as a trust
member and continue its normal operations with the whole
network:

Bel (𝑇
1
) + (Pls (𝑇

1
) − Bel (𝑇

1
))

⋅ (1 − (Pls (𝑇
1
) − Bel (𝑇

1
))) > 𝛾,

(21)

where 𝛾 is a threshold and is adjusted according to the
predefined security acquirements, which will be shown in
Figure 10. Its value must guarantee that Formulas (20) and
(21) are mutually exclusive, which is proved in the Appendix.

When the evaluated node does not meet one of both
judgment mechanisms mentioned above, its state is regarded
as uncertain.Most of existing trustmodels do not provide any
solution to deal with this critical state but to wait till the next
round of collection. What is worse, the balance between the
frequency of behavior characteristic collection and effective
judgment is a big problem. Due to information exchange
among nodes, too frequent collection of behavior character-
istic will accelerate energy consumption rate of nodes, while
too long interval will give enough opportunities to malicious
node to disrupt the normal operation of network. In order to
solve this problem effectively, a dynamic weighting algorithm
is introduced in this paper. More details are described in the
next section.

5. Fusion of Weighted Evidences

In general, the trust status of an evaluated node is just
denoted as either trustful or distrustful (or represented as 1
or 0). However, in practice the fused result appears uncertain
so frequently. One important reason is that some normal
evidences weaken the appearance of an abnormal behavior
and confuse the fusion process. It is said, the final judgment
result cannot be simply determined as trust or distrust.
On the other hand, it is noted that taking the measure of
equal treatment to all evidences during evidence confusion is
obviously inadequate because various attacks have different
impacts on different behavior characteristics. When a node is
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Table 1: Decision table.

Fuzzed
evidences 𝑇

1
𝑇
2

𝑇
3

Judgment
result

𝑚
1

0.65 0.3 0.05 𝑇
1

𝑚
2

0.2 0.7 0.1 𝑇
2

𝑚
3

0.8 0.1 0.1 𝑇
1

𝑚
4

0.6 0.25 0.15 𝑇
1

𝑚
5

0.20 0.25 0.55 𝑇
3

captured, some of its characteristics will change rapidly, while
some may still maintain in normal levels.

In evidence theory, if the importance of each evidence can
be known accurately, the fusion precision can be guaranteed
and the convergence speed can be accelerated at the same
time. When an evaluated node is in an uncertain state, we
first select a behavior characteristic as main parameter which
should make the greatest contribution to recent judgment,
and all the others are auxiliary parameters. This treatment
has two advantages: on one hand, selecting main parameter
can avoid covering the part of exception involved by other
normal values; on the other hand, auxiliary parameters can
play correction roles in the judging process comparing to the
main parameter. Table 1 shows an example of decision table
on how to select the main parameter.

As shown in Table 1, because the third behavior charac-
teristic is the most apparent support of such a judgment, the
contribution value of the third characteristic is added to 1.
Similarly, using sliding window, the behavior characteristic
with the most largest contribution in the latest rounds can
be found and set as main parameter, which is illustrated in
Figure 4.

The number of behavior characteristics with the largest
contribution in each round is recorded and the window
slides one unit from left to right, which means the first unit
in right side is dropped. As shown in Figure 4, the sliding
window consists of six units, which means every round,
the window records the newest knowledge but discards the
oldest knowledge. Due to three times of appearance in recent
judgment, the behavior characteristic 1 will be selected as the
main parameter.

After having selected main parameter and auxiliary pa-
rameters, their weights are, respectively, set as 𝜔his

1
, 𝜔

his
2
, . . .,

𝜔
his
5
, where identification his implies that these values are

related to their historic values. This weight is determined
based on historical judgment; it reflects the relative contribu-
tion of historical decisions of each behavioral characteristic;
the higher the contribution of the behavioral characteristics
the greater the weight value obtained. However, in the actual
work environment, there are still a lot of uncertainty factors
on sensor node; in order to avoid state misjudgment by an
abnormal value, we need to calculate the real-time reliability
of each behavior characteristic. Then, the final weight of
behavior characteristic is achieved by comprehensive histor-
ical contribution and real-time reliability. The value of real-
time behavioral characteristics reliability is calculated by the
distance between evidences [31].

· · · 1 1 12 234

Figure 4: An example of sliding window.

For evidence of𝑚
𝑖
and𝑚

𝑗
, the distance between them is

𝑑BPA (𝑚𝑖, 𝑚𝑗) = √
1

2
(𝑀
𝑖
−𝑀
𝑗
)𝐷 (𝑀

𝑖
−𝑀
𝑗
)
𝑇

, (22)

where𝑀
𝑖
= [𝑚
𝑖
(𝑇
1
), 𝑚
𝑖
(𝑇
2
), 𝑚
𝑖
(𝑇
3
)] and 𝐷 is a 3 × 3 matrix

whose elements are

𝐷(𝑇
𝑖
, 𝑇
𝑗
) =

󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
∩ 𝑇
𝑗

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨
𝑇
𝑖
∪ 𝑇
𝑗

󵄨󵄨󵄨󵄨󵄨

, 𝑖, 𝑗 = 1, 2, 3, (23)

where 𝑇
𝑖
∩ 𝑇
𝑗
is used to measure conflict and similarity

between focal elements 𝑇
𝑖
and 𝑇

𝑗
. When 𝑇

𝑖
∩ 𝑇
𝑗
= 0, the

similarity between 𝑇
𝑖
and 𝑇

𝑗
is zero, which means the largest

conflict appears here. Therefore, the above equation can be
used to measure the degree of similarity between the focal
elements.

Combining Formulas (22) and (23), we can obtain anoth-
er way to calculate 𝑑BPA:

𝑑BPA (𝑚𝑖, 𝑚𝑗)

= √
1

2
(
󵄩󵄩󵄩󵄩𝑀𝑖

󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑗

󵄩󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑀
𝑖
,𝑀
𝑗
⟩),

(24)

where ⟨𝑀
𝑖
,𝑀
𝑗
⟩ is the scalar product defined by

⟨𝑀
𝑖
,𝑀
𝑗
⟩ =

3

∑

𝑚=1

3

∑

𝑛=1

𝑚
𝑖
(𝑇
𝑚
)𝑚
𝑗
(𝑇
𝑛
)

󵄨󵄨󵄨󵄨𝑇𝑚 ∩ 𝑇𝑛
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑇𝑚 ∪ 𝑇𝑛
󵄨󵄨󵄨󵄨

,

󵄩󵄩󵄩󵄩𝑀𝑖
󵄩󵄩󵄩󵄩

2
= ⟨𝑀

𝑖
,𝑀
𝑖
⟩ .

(25)

According to Formula (24), we obtain the distance be-
tween𝑚

𝑖
and𝑚

𝑗
:

𝐷 =

[
[
[
[
[
[

[

0 𝑑
12
⋅ ⋅ ⋅ 𝑑
15

𝑑
21

0 ⋅ ⋅ ⋅ 𝑑
25

.

.

.
.
.
.

.

.

.
.
.
.

𝑑
51
𝑑
52
⋅ ⋅ ⋅ 0

]
]
]
]
]
]

]

. (26)

A similarity coefficient between𝑚
𝑖
and𝑚

𝑗
can be defined

as

𝑠
𝑖𝑗
= 1 − 𝑑

𝑖𝑗
. (27)

It can be expressed by the form of similarity matrix

𝑆 =

[
[
[
[
[
[

[

1 𝑠
12
⋅ ⋅ ⋅ 𝑠
15

𝑠
21

1 ⋅ ⋅ ⋅ 𝑠
25

.

.

.
.
.
.

.

.

.
.
.
.

𝑠
51
𝑠
52
⋅ ⋅ ⋅ 1

]
]
]
]
]
]

]

. (28)
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Through adding each row of the similarity matrix, the
support degree to𝑚

𝑖
of all evidences is

Sup (𝑚
𝑖
) =

5

∑

𝑗=1

𝑠
𝑖𝑗
. (29)

Then by normalizing, we can obtain the real-time relia-
bility of each behavior property:

𝜔
cur
𝑖
=

Sup (𝑚
𝑖
)

∑
5

𝑗=1
Sup (𝑚

𝑗
)

, 𝑖 = 1, 2, 3, 4, 5. (30)

The above formula reflects the real-time reliability of
the behavioral characteristics, and it satisfies the condition
∑
5

𝑖=1
𝜔
cur
𝑖

= 1. If the value of a behavior characteristic is
similar to others, we think it has higher degree of mutual
support, so its real-time reliability is greater. Conversely, the
behavior characteristic will be regarded as being less reliable.

Integrating historical contribution and real-time reliabil-
ity of each behavioral characteristic, the composite weight
value of behavioral characteristic can be obtained:

𝜔
com
𝑖

= √𝜔
cur
𝑖
⋅ 𝜔

his
𝑖
. (31)

So the final weight value of each behavior characteristic
can be obtained:

𝜔
𝑖
=

𝜔
com
𝑖

∑
5

𝑗=1
𝜔
com
𝑗

, 𝑖 = 1, 2, 3, 4, 5. (32)

Having obtained the weight value of each behavior, now
we will focus on the fusion process again. First, use the
weight value as discount factor to revise the basic probability
assignment

𝑚
∗

𝑖
(𝑇
𝑘
) = 𝜔
𝑖
𝑚
𝑖
(𝑇
𝑘
) , (𝑘 = 1, 2) ,

𝑚
∗

𝑖
(𝑇
3
) = 1 −

2

∑

𝑘=1

𝑚
∗

𝑖
(𝑇
𝑘
) .

(33)

Then according to Formula (15), fuse all evidences and
judge again. Here the physical significance of Formula (33)
can be understood like this. The evidence’s information is
discounted according to discount factor, and then the dis-
count part is added to focal element of uncertain. Increasing
the value of uncertain information can reduce the conflict
between the evidences. For some evidences which have big
relative weights and high reliabilities, the discounts are small,
so these evidences can maintain the confidence allocation as
before. For the evidences which have small relative weights
and low reliabilities, the discounts parts are large. Then, the
value of the uncertain states will increase and the impact
on the fusion results will decrease. When 𝜔

𝑖
= 0, the BPA

of evidence 𝑖 is 𝑚∗
𝑖
(𝑇
3
) = 1, and the other BPA of focal

elements is 0. Evidence like this is called identify element, and
no matter which evidence is selected to combine with it, BPA
will be maintained unchanged.

As mentioned above, the fusion result which combines
multidimensional behavioral characteristics is determined by

Table 2: Parameters in simulations.

𝑤
1
, 𝑤
2

0.6, 0.4
𝛼, 𝛽 0.5, 0.2
𝛾 0.6
District 1000m × 1000m
Node number 600
Transmission radius 100m
Initial trust value 1
Initial energy 1000 J
Node location Random
MAC protocol IEEE 802.11
Routing protocol DSDV
Packet size 512 bytes
Transmission power 0.5 w
Receiving power 0.2 w
Idle power 0.15 w

high relative weights of behavior attributes. What is more,
considering false detection and other reasons which will lead
to high conflict information assigned low weight, and its
influence on the fusion results will also reduce. This will
be conductive to quickly arrive at a correct judgment and
decision-making based on the fusion results.Theflow chart of
the proposed anomaly detection scheme is shown in Figure 5.

6. Simulation Results

Assume that there are 600 nodes randomly deployed over
a square area of 1000 × 1000 meters, and each node’s
transmission range is fixed and equal to 100m. All of these
nodes are fixed and cannot move. 10% of nodes are malicious
and randomly distributed within the network. The malicious
behavior patterns include flooding attack, select forwarding
attack, and bad-mouthing attack, which is unknown to
normal nodes. Assume that all nodes are healthy (uncompro-
mised) and cooperative at the beginning, so all nodes’ initial
trust values are set as 1. During the simulation, eachmalicious
node can randomly select a malicious behavior and activate
attack. More initial parameters of the simulation are listed in
Table 2. In this section, we use C++ language to simulate the
trust model.

The trust model works as follows. The evaluation node
monitors an evaluated node’s behaviors and state, including
ACK packets, sending packets, receiving packets, forwarding
packets, and energy consumption rate. In order to make
balance between energy consumption and security level, here
we set the monitor interval Δ = 50 seconds, which means
a node reads its remaining energy value at the end of each
interval and broadcasts to its neighbors. Assume that, in this
paper, each node generates one sensing packet per second.
It is well known that direct trust value is more accurate and
reliable than indirect trust value, so the weight of direct trust
value is larger than the weight of indirect trust value. As soon
as a distrustful node has been determined, the evaluation
node broadcasts its node ID to all one-hop neighbors and
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characteristics

Determine BPA functions

D-S evidence fusion

Direct trust value (DTV)

Weight each
characteristic and

modify BPAs

Find the main parameter
according to decision table
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Weight fusion according
to the distance among

recommended information

No

Indirect trust value (ITV)

Satisfy the judgment rules

Yes

Output the state of
evaluated node

End

Figure 5: Flow chart of the proposed model.

tries to find a trust node to replace its place to forward
packets.

Considering the accuracy and reliability of recommended
information, assume that the evaluation node only accepts
the packets from one-hop neighbors in this paper. For
instance, as shown in Figure 6, node 𝑖 can evaluate node 𝑗
because node 𝑗 lies in its communication range and there
are interoperations between them. On the other hand, node 𝑖
only accepts recommended information on node 𝑗 fromnode
𝑅
1
, 𝑅
2
, or 𝑅
3
, as common neighboring nodes.

In order to effectively illustrate the performance indexes,
a comparison is made between our scheme and GTMS
(group-based trust management model) [19], where the trust
values are obtained by counting the number of successful
and unsuccessful interactions on node level. Besides average
trust value, four performance indexes are further defined
here: detection ratio, false alarm ratio, true positive ratio,
and false negative ratio. The detection ratio is defined as the
percentage of nodes that are successfully detected out of all
malicious nodes, while the false alarm ratio is claimed as the
percentage of normal nodes that are incorrectly determined
as anomalous. The true positive ratio is the percentage of
malicious nodes that are successfully determined out of all

i

j

R1

R2

R3

Figure 6: Simulation scenario.

normal nodes while the false negative ratio is the percentage
of negative nodes that were incorrectly reported as normal
nodes. Obviously, the average trust value of malicious nodes
indicates the capability or possibility thatmalicious nodes can
be detected by the algorithm.
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Figure 7: Average trust value versus time.

As shown in Figure 7, the average trust value of our
scheme descends faster than GTMS in the beginning. Recall
that various types of attacks are introduced simultaneously
in this paper, while GTMS mainly counts the number of
successful transmission packets. It is said that GTMS does
not take into account multiple attack types and can detect
only one type of attack like selective forwarding. As a result of
this, when a network meets multiple types of attacks besides
packet loss, GTMS cannot decrease the average trust value
of malicious node as quickly as possible, which is wholly
different from the proposed scheme where more aspects of
various attacks are considered.

On the other hand, it is also shown in Figure 7 that both
average trust values gradually become stable, and our model
invariably maintains better performance than GTMS during
the whole running period. The stable average trust value in
our model finally lies between 0.3 and 0.4 while the one in
GTMS is between 0.5 and 0.6.

As shown in Figure 8, both detection ratios arise as
the whole node number increases from 100 to 600. The
reasonable explanation is that, with the increasing of node
number, the recommended information that can be utilized
by the model also increases, so there are more malicious
nodes detected correctly. It is also noted that the detection
ratio of the proposed model is higher because, by using fuzzy
theory, trust value can reflect the practical situation more
accurately.

To show how the parameters influence system perfor-
mance, a few additional experiments are carried out in this
paper. Recall that, in the decision phase, parameters 𝛼, 𝛽,
and 𝛾 play vital roles to the performance of trust model
and are determined on the basis of experience and practical
environment. The detection ratio, false alarm ratio, true
positive ratio, and false negative ratio of our trust model
are shown in Figures 9 and 10, respectively. Note that each
time only one parameter is changed while the other two
parameters are maintained unchangeable.
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Figure 8: Detection ratio versus node number.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

et
ec

tio
n 

ra
tio

/fa
lse

 al
ar

m
 ra

tio

Parameter 𝛼/𝛽

False alarm ratio (𝛽)
Detection ratio (𝛽)

False alarm ratio (𝛼)
Detection ratio (𝛼)

Figure 9: Detection and false detection ratio versus parameter 𝛼 or
𝛽.

As shown in Figure 9, both detection ratio and false alarm
ratio arise with the increasing of parameters 𝛼 and 𝛽. It is
worth noting that when 𝛼 = 0 or 𝛽 = 0, all nodes in the
network cannot satisfy Formula (20); that is, Bel

𝑖,𝑗
(𝑇
1
) < 𝛼

and Pls
𝑖,𝑗
(𝑇
2
) − Bel

𝑖,𝑗
(𝑇
2
) < 𝛽 cannot be satisfied, so both

ratios are equal to 0. On the contrary, when 𝛼 = 1 or 𝛽 = 1,
all nodes satisfy the conditions Bel

𝑖,𝑗
(𝑇
1
) < 𝛼 and Pls

𝑖,𝑗
(𝑇
2
) −

Bel
𝑖,𝑗
(𝑇
2
) < 𝛽, so the detection ratio and false alarm ratio

are 1. Obviously, the values of parameters 𝛼 and 𝛽 ought to
be set up to make the final detection ratio as high as possible
and false alarm ratio as low as possible. However, as shown in
Figure 9, high detection ratio requires large 𝛼 while low false
alarm ratio needs small 𝛼, which is a paradox. The situation
is similar for parameter 𝛽. In order to improve the system
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Figure 10: True positive ratio and false negative ratio versus param-
eter 𝛾.

performance in this paper, the feasible values for parameters
𝛼 and 𝛽 are, respectively, set as 0.5 and 0.2 where the gaps
between detection ratio and false alarm ratio are the largest.

It is shown in Figure 10 that both true positive ratio and
false negative ratio decrease with the increasing of parameter
𝛾. It is also worth noting that when 𝛾 = 0, all nodes satisfy
Formula (21), so all of them are judged as normal nodes
disregarding whether they are normal nodes or malicious
nodes. Under this situation, both true positive rate and false
negative rate are equal to 1. On the contrary, when 𝛾 = 1, both
true positive ratio and false negative ratio are 0. Similarly,
parameter 𝛾 can be determined according to the performance
gap between true positive ratio and false negative ratio, which
is shown in Figure 10. In this paper, 𝛾 is set as 0.6.

One other point worth mentioning is weight. In our
trust model, we take a weighting method to indicate the
importance of each evidence of an uncertain status node and
adapt theweights according to the new trust value. Compared
to the previous trust models, here for a node with uncertain
state, we win a new opportunity to deduce its state, so the
detection process is accelerated.

As shown in Figure 11, both detection ratios increase with
the continuing of simulation, and our scheme is better than
GTMS. It is noted that the scheme is able to detect more
than 50%malicious nodes after 250 seconds (= 5Δ) while the
detection ratio of GTMS is about 5%.

7. Conclusions

As an emerging technology, wireless sensor networks have
beenwidely studied and applied. At the same time, its security
problem has received widespread attention. Anomaly detec-
tion has become one of current research hotspots on wireless
sensor network security because of its characteristic of active
defense. In this paper, a trust-based anomaly detection
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Figure 11: Ratio of detected malicious node versus collection times.

model is proposed, where the evaluation node monitors the
behaviors of evaluated nodes from five aspects and uses the
trustmodel which employs fuzzy theory and revised evidence
theory to calculate the nodes’ state. What is more, when the
state of an evaluated node is uncertain, weighting algorithm
is used to make decision feasible before next round of detec-
tion. The simulation results show that when an evaluated
node activates various attacks, the average trust value will
decrease more rapidly in our trust model so that it will
outperform GTMS in detection ratio index. Furthermore,
because weighting algorithm is taken, convergence rate is
accelerated. In our future work, we will extend the idea to
different fields like secure routing, data aggregation, and so
forth and improve their efficiency.

Appendix

According to fuzzy theory, we know that Bel(𝑇
1
) + Bel(𝑇

2
) +

Bel(𝑇
3
) = 1. If 𝑇

3
represents an uncertain status and 𝑇

3
= 𝑈−

{𝑇
1
, 𝑇
2
}, then from Definition 3, we have Pls(𝑇

2
) = Bel(𝑇

2
) +

Bel(𝑇
3
) and Pls(𝑇

1
) = Bel(𝑇

1
) + Bel(𝑇

3
). Thus Formula (20)

can be rewritten as
Bel (𝑇

1
) + Bel (𝑇

3
) < 0.5,

Bel (𝑇
1
) < 𝛼,

Pls (𝑇
2
) − Bel (𝑇

2
) < 𝛽

(A.1)

and Formula (21) can be rewritten as

Bel (𝑇
1
) + Bel (𝑇

3
) ∗ (1 − Bel (𝑇

3
)) > 𝛾. (A.2)

According to Formula (A.1), the max value of Bel(𝑇
1
) +

Bel(𝑇
3
) is not larger than 0.5. If we denote Bel(𝑇

1
) = 𝑥,

Bel(𝑇
3
) = 0.5 − 𝑥 and substitute them into the left part

of Formula (A.2), we will obtain a quadratic function with
parameter 𝑥:

𝑓 (𝑥) = 𝑥 + (0.5 − 𝑥) ∗ (0.5 + 𝑥) = −𝑥
2
+ 𝑥 + 0.25. (A.3)
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Obviously, the maximum value of 𝑓(𝑥) is 0.5. Because
Bel(𝑇
1
) + Bel(𝑇

3
) < 0.5, the maximum value of 𝑓(𝑥) is less

than 0.5. So, if we set 𝛾 > 0.5, the values of Bel(𝑇
1
) and Bel(𝑇

3
)

will not satisfy Formula (21) at the same time. It is said, if
the value of 𝛾 lies in the range of (0.5∼1), Formula (20) and
Formula (21) are mutually exclusive.
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