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This paper studies the optimal control problem for planar underactuated robot manipulators with two revolute joints and brakes
at the unactuated joints in the presence of gravity. The presence of a brake at an unactuated joint gives rise to two operating modes
for that joint: free and braked. As a consequence, there exist two operating modes for a robot manipulator with one unactuated
joint and four operating modes for a manipulator with two unactuated joints. Since these systems can change dynamics, they can
be regarded as switched dynamical systems.The optimal control problem for these systems is solved using the so-called embedding
approach. The main advantages of this technique are that assumptions about the number of switches are not necessary, integer
or binary variables do not have to be introduced to model switching decisions between modes, and the optimal switching times
betweenmodes are not unknowns of the optimal control problem. As a consequence, the resulting problem is a classical continuous
optimal control problem. In this way, a general method for the solution of optimal control problems for switched dynamical systems
is obtained. It is shown in this paper that it can deal with nonintegrable differential constraints.

1. Introduction

In underactuated manipulators the number of available
control inputs is strictly less than the number of the degrees of
freedom of the robot. However, the control problem for dif-
ferent underactuated manipulators may have different levels
of difficulty.

This paper studies the optimal control problem for planar
underactuated robot manipulators with two revolute joints
that move in a vertical plane and, therefore, are subject to
the gravity force. The presence of two revolute joints in
the mechanical system will be denoted by 𝑅𝑅. Both possi-
ble models of planar underactuated 𝑅𝑅 robot manipulators
under gravity are considered, namely, the model in which
only the shoulder joint is actuated, denoted by 𝑅𝑅, which is
usually called Pendubot, and the model in which only the
elbow joint is actuated, denoted by 𝑅𝑅, which is usually called
Acrobot. The mechanical system obtained by removing both
motors from the 𝑅𝑅 robot manipulator under gravity is also

considered, which is actually a double pendulum and will be
denoted by 𝑅𝑅.

Underactuated robots are mechanical systems with sec-
ond order nonholonomic constraints, because the dynamic
equation of the unactuated part of the mechanical system
is a second order differential constraint which, in general,
is nonintegrable. In the absence of gravity it is not possible
to integrate even partially this second order differential con-
straint in the dynamic model of the 𝑅𝑅 robot manipulator.
However, in the presence of this second order nonholonomic
constraint the system is controllable. On the contrary, in the
dynamicmodel of the 𝑅𝑅 robot manipulator without gravity
this differential constraint is completely integrable. It can be
converted into a holonomic constraint that makes the system
not controllable. As a consequence, the trajectory planning
problem has a solution only for particular initial and final
states. In the presence of gravity, the dynamic equation of the
unactuated part of the mechanical system is a second order
nonintegrable differential constraint for both the Pendubot
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and the Acrobot models and, therefore, both systems are
controllable.

A comprehensive review of the control properties of
underactuated robot manipulators can be found in [1], [2,
Chapter 42].

In [3] the chaotic features of the double pendulum
are studied by means of numerical methods. It is shown
that, depending on the initial conditions, this system has a
periodic, quasiperiodic, and chaotic behaviour, in which the
motion of the system is unpredictable and small differences
in initial conditions induce very different trajectories.

For both the Pendubot and the Acrobot models, the
control objective is, in general, to drive the manipulator
away from the stable equilibrium state and steer it at an
unstable equilibrium state. Since both the 𝑅𝑅 and the 𝑅𝑅
underactuated robot manipulators are linearly controllable,
it is not difficult to control them around an equilibrium
point. However, due to the gravitational drift, the region of
the state space where the robot can be kept in equilibrium
is reduced and consists of two disjoint manifolds. Moving
between these two manifolds requires appropriate swing-
up maneuvers, whose synthesis has been tackled by several
control [4] and optimal control [5] techniques.

The underactuated robot manipulators studied in this
paper are supposed to be equipped with brakes at the
unactuated joints.The Pendubot and the Acrobot with brakes
at the unactuated joints will be denoted by 𝑅𝑅𝑏 and 𝑅𝑏𝑅,
respectively, whereas the 𝑅𝑅 mechanical system with brakes
at both unactuated joints will be denoted by 𝑅𝑏𝑅𝑏. This
mechanical system can be regarded as a brake-actuated
mechanical system and will be referred to as Brakebot. Thus,
since each passive joint has two operating modes, unbraked
and braked, there are two operating modes for the Acrobot
and the Pendubot and four operatingmodes for the Brakebot.

Since the Brakebot is a passive system it can only move
from higher to lower energy states and, therefore, the con-
trol objective is, in general, to drive the manipulator away
from an unstable equilibrium state and steer it at a stable
equilibrium state with appropriate swing-down maneuvers
eliminating periodic, quasiperiodic, or chaotic behaviour. For
the synthesis of these maneuvers, optimal control techniques
can be employed. The cost functional to be optimized could
be, for instance, the duration of the maneuver, the number
of switches of the dynamical system between unbraked and
braked modes, or the total duration of the evolution of the
system in braked mode.

The problem studied in this paper can be stated as follows:
given an initial state and a final state, find the sequences of
modes, the corresponding trajectory, and available control
inputs that satisfy the dynamic equation of the robot manip-
ulator and steer the system between the initial and the final
states optimizing a cost functional during the motion. Since
the optimal sequence of modes has to be determined, this
problem is actually an optimal control problem of a switched
dynamical system.

Switched systems are particular hybrid systems [6] whose
continuous state does not exhibit jumps at the switching
instants. Solving the optimal control problem for a switched

system implies finding the optimal sequence of switching
instants, the optimal sequence of discrete modes, and the
optimal value for the continuous control input.

The optimal control problem of switched dynamical
systems can be formulated using integer or binary variables
to model the choice of the optimal mode sequence. Optimal
control problems involving binary or integer variables are
called Mixed-Integer Optimal Control (Mioc) problems [7].
In [8], recent progress in theoretical bounds, reformulations,
and algorithms for this class of problems have been reviewed
and a comprehensive algorithm, based on the solution of a
sequence of purely continuous problems and simulations, has
been proposed. A hybrid optimal control technique based
on Mioc has been presented in [9] and applied to several
mechanical systems including a Pendubot with a brake at the
unactuated joint.

Hybrid control techniques have been applied to both
the Pendubot and the Acrobat models in [10] and [11],
respectively.

In [12], the optimal control problem of switched systems
has been solved via embedding into a continuous optimal
control problem. It has been shown that, for quite a general
class of optimal control problems for switched systems, the
computational complexity of the EmbeddedOptimal Control
(Eoc) method is no greater than that of smooth optimal
control problems. With this technique the switched system is
embedded into a larger set of systems and the optimal control
problem is formulated in the latter. The main advantages
of this method are that assumptions about the number of
switches are not necessary, integer or binary variables do not
have to be introduced to model switching decisions between
modes, and the optimal switching times between modes are
not unknowns of the optimal control problem. As a conse-
quence, the resulting problem is a classical continuous opti-
mal control problem. This greatly reduces the computation
time to find a solution with respect to theMioc technique. In
[13] the Eoc approach introduced in [12] has been extended
to incorporate hybrid behaviour due to autonomous switches
and to systemswith an arbitrary number ofmodes. In [14] the
Eoc method has been compared with other optimal control
methods for switched systems over several dynamic models
with autonomous and controlled switches. A comprehensive
treatment of all the theoretical results obtained with the
Eoc approach to the optimal control problem of switched
mechanical systems can be found in [15, Chapter 31].

In this paper, the optimal control of the Pendubot,
Acrobot, and Brakebot has been studied using the Eoc
approach. The obtained results have been compared with
those obtained using a Multiphase Mixed-Integer Optimal
Control (Mmioc) method. Due to the nature of the problem,
only controlled switches have been considered. The results
have shown that the Eoc approach is effective in solving opti-
mal control problems for these underactuated mechanical
systems, which are highly nonlinear and have nonholonomic
constraints.

This paper is organized as follows. In Section 2 the
dynamic models of the Pendubot, Acrobot, and Brakebot
are described and in Section 3 their control properties are
discussed. The optimal control problem for these dynamic
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systems is stated in Section 4 and in Section 5 the Eoc
approach is introduced. In Section 6 the results of the
application of this method to several instances of optimal
control problem are reported. Finally, Section 7 contains the
conclusions.

2. Dynamic Model of Underactuated
Manipulators

The general dynamic model of a robot manipulator is
described by the following second order differential equation:

𝐵 (𝜃) ̈𝜃 + 𝐶 (𝜃, ̇𝜃) ̇𝜃 + ℎ + 𝑒 (𝜃) = 𝑢 − 𝐺 (𝜃)𝑤, (1)

where the first term of this equation, 𝐵(𝜃) ̈𝜃, represents the
inertial forces due to acceleration at the joints and the
second term, 𝐶(𝜃, ̇𝜃) ̇𝜃, represents the Coriolis and centrifu-
gal forces. The third term represents both the effects of
friction at the joints and the effects of friction induced by
electromagnetic friction brakes at the unactuated joints. The
term 𝑒(𝜃) represents the potential forces such as elasticity
and gravity. The matrix 𝐺(𝜃) on the right-hand side maps
the external forces/torques 𝑤 to forces/torques at the joints.
Finally, 𝑢 represent the forces/torques at the joints, which are
the control variables of the system. Explicit time dependence
is omitted in this section to simplify the notation.

The links are supposed to be rigid, as well as the transmis-
sion elements. No external forces are supposed to be acting on
themechanical system. Under these hypotheses, the dynamic
model of the robotic system reduces to

𝐵 (𝜃) ̈𝜃 + 𝐶 (𝜃, ̇𝜃) ̇𝜃 + ℎ + 𝑒 (𝜃) = 𝑢. (2)

Only the effects of friction induced by the electromag-
netic friction brakes at the unactuated joints will be taken into
account. This means that ℎ represents the braking torques
induced by electromagnetic friction brakes at the unactuated
joints.

A planar vertical 𝑅𝑅 manipulator is composed of two
homogeneous links and two revolute jointsmoving in a verti-
cal plane {𝑥, 𝑦}, as shown in Figure 1, where 𝑙𝑖 is the length of
link 𝑖, 𝑟𝑖 is the distance between joint 𝑖 and the mass center
of link 𝑖, 𝑚𝑖 is the mass of link 𝑖, and 𝐼𝑧𝑖

is the barycentric
inertia with respect to a vertical axis, 𝑧, of link 𝑖, for 𝑖 =

1, 2. In this case the two matrices 𝐵(𝜃) and 𝐶(𝜃, ̇𝜃) and the
vector 𝑒(𝜃) have the form

𝐵 (𝜃) = [

𝛼 + 2𝛽 cos 𝜃2 𝛿 + 𝛽 cos 𝜃2
𝛿 + 𝛽 cos 𝜃2 𝛿

] , (3)

𝐶 (𝜃, ̇𝜃) = [

−𝛽 sin 𝜃2 ̇𝜃2 −𝛽 sin 𝜃2 ( ̇𝜃1 +
̇𝜃2)

𝛽 sin 𝜃2 ̇𝜃1 0

] , (4)

𝑒 (𝜃)

= [

(𝑚1𝑟1 + 𝑚2𝑙1) 𝑔 cos 𝜃1 + 𝑚2𝑟2𝑔 cos (𝜃1 + 𝜃2)
𝑚2𝑟2𝑔 cos (𝜃1 + 𝜃2)

] ,

(5)
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Figure 1: A planar 𝑅𝑅 robot manipulator that moves in a vertical
plane. In the Pendubot model Joint 2 is not actuated whereas in
the Acrobot model Joint 1 is not actuated. Both underactuated
planar 𝑅𝑅 robot manipulator models are supposed to be equipped
with brakes at the unactuated joints. In the Brakebot model both
joints are not actuated and equipped with brakes.

where 𝜃 = (𝜃1, 𝜃2)
𝑇 is the vector of configuration variables,

𝜃1 being the angular position of link 1 with respect to the 𝑥-
axis of the reference frame {𝑥, 𝑦} and 𝜃2 the angular position
of link 2 with respect to link 1 as illustrated in Figure 1.
The vector ̇𝜃 = ( ̇𝜃1,

̇𝜃2)
𝑇 is the vector of angular velocities

and ̈𝜃 = ( ̈𝜃1,
̈𝜃2)
𝑇 is the vector of angular accelerations.

The vector 𝑢 = (𝑢1, 𝑢2)
𝑇 is the vector of control inputs,

in which 𝑢1 is the torque applied by the actuator at Joint 1,
and 𝑢2 is the torque applied by the actuator at Joint 2.
Constant 𝑔 = 9.80665 [m/s2] is the gravity acceleration.
The parameters 𝛼, 𝛽, and 𝛿 in (3) and (4) have the following
expressions 𝛼 = 𝐼𝑧1

+ 𝐼𝑧2
+ 𝑚1𝑟

2

1
+ 𝑚2(𝑙

2

1
+ 𝑟
2

2
), 𝛽 = 𝑚2𝑙1𝑟2,

and 𝛿 = 𝐼𝑧2
+ 𝑚2𝑟

2

2
.

The dynamic model (2) can be rewritten in the following
more explicit form:

[

[

𝐵11 (𝜃) 𝐵12 (𝜃)

𝐵21 (𝜃) 𝐵22 (𝜃)

]

]

[

[

̈𝜃1

̈𝜃2

]

]

+ [

[

𝐶11 (𝜃,
̇𝜃) 𝐶12 (𝜃,

̇𝜃)

𝐶21 (𝜃,
̇𝜃) 𝐶22 (𝜃,

̇𝜃)

]

]

[

[

̇𝜃1

̇𝜃2

]

]

+ [

[

ℎ1

ℎ2

]

]

+ [

[

𝑒1 (𝜃)

𝑒2 (𝜃)

]

]

= [

[

𝑢1

𝑢2

]

]

.

(6)

A robot manipulator is said to be underactuated when the
number of actuators is less than the degree of freedom of
the mechanical system. Thus, the dynamic model (6) can
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be rewritten for 𝑅𝑅 robot manipulator with a brake at the
unactuated joint as follows:

[

𝐵11 (𝜃) 𝐵12 (𝜃)

𝐵21 (𝜃) 𝐵22 (𝜃)
] [

̈𝜃1

̈𝜃2

]

+ [

[

𝐶11 (𝜃,
̇𝜃) 𝐶12 (𝜃,

̇𝜃)

𝐶21 (𝜃,
̇𝜃) 𝐶22 (𝜃,

̇𝜃)

]

]

[

̇𝜃1

̇𝜃2

] + [

0

ℎ2

]

+ [

𝑒1 (𝜃)

𝑒2 (𝜃)
] = [

𝑢1

0
] ,

(7)

and for 𝑅𝑅 robot manipulator with a brake at the unactuated
joint as follows:

[

𝐵11 (𝜃) 𝐵12 (𝜃)

𝐵21 (𝜃) 𝐵22 (𝜃)
] [

̈𝜃1

̈𝜃2

]

+ [

[

𝐶11 (𝜃,
̇𝜃) 𝐶12 (𝜃,

̇𝜃)

𝐶21 (𝜃,
̇𝜃) 𝐶22 (𝜃,

̇𝜃)

]

]

[

̇𝜃1

̇𝜃2

] + [

ℎ1

0
]

+ [

𝑒1 (𝜃)

𝑒2 (𝜃)
] = [

0

𝑢2

] .

(8)

In passive joints equipped with brakes, the braking
torque ℎ𝑖, 𝑖 ∈ {1, 2}, can be described as a friction-velocity
map with load dependency and lockup behavior [16]:

ℎ𝑖

=

{{{{

{{{{

{

𝑑 ̇𝜃𝑖 + (𝑐 + 𝑞𝑓cl) ⋅ sgn ( ̇𝜃𝑖) if 󵄨󵄨󵄨󵄨󵄨
̇𝜃𝑖

󵄨󵄨󵄨󵄨󵄨
≥ 𝜀,

ℎ𝑒𝑖
if 󵄨󵄨󵄨󵄨󵄨

̇𝜃𝑖

󵄨󵄨󵄨󵄨󵄨
< 𝜀,

󵄨󵄨󵄨󵄨󵄨
ℎ𝑒𝑖

󵄨󵄨󵄨󵄨󵄨
< (ℎ𝑠 + 𝑞𝑓cl) ,

(ℎ𝑠 + 𝑞𝑓cl) ⋅ sgn (ℎ𝑒𝑖) otherwise.

(9)

Here 𝑑 is the viscous friction coefficient, 𝑐 is the load-
independent Coulomb friction torque, 𝑞 is the friction load
dependency, and ℎ𝑒𝑖

is the external torque at joint 𝑖. 𝑓cl is
the brake clamp force, and ℎ𝑠 is the load-independent static
friction torque, which are supposed to have the same values
at the two brakes. The parameter 𝜀 defines a small zero
velocity bound in accordance with Karnopp’s model for zero
velocity detection. A continuously differentiable version of
this friction model [17] has been used for the experiments.

Equations (7) and (8) with ℎ2 = 0 and with ℎ1 =

0 represent the unbraked operational modes of the Pendubot
and the Acrobot, respectively. In this case, the second equa-
tion in (7) and the first equation in (8) describe the dynamics
of the unactuated part of the mechanical system, which are
second order differential constraints without input variables.
Activating brakes at the passive joints of the Pendubot and the
Acrobot gives rise to the braked operational modes of these
two mechanical systems which thus have two operational
modes, namely, (1) unactuated joint free and (2) unactuated
joint braked.

The Brakebot has the following dynamic model:

[

𝐵11 (𝜃) 𝐵12 (𝜃)

𝐵21 (𝜃) 𝐵22 (𝜃)
] [

̈𝜃1

̈𝜃2

]

+ [

[

𝐶11 (𝜃,
̇𝜃) 𝐶12 (𝜃,

̇𝜃)

𝐶21 (𝜃,
̇𝜃) 𝐶22 (𝜃,

̇𝜃)

]

]

[

̇𝜃1

̇𝜃2

] + [

ℎ1

ℎ2

]

+ [

𝑒1 (𝜃)

𝑒2 (𝜃)
] = [

0

0
] .

(10)

Since all the joints of the Brakebot are unactuated, it has four
operationalmodes depending onwhich joints are braked and
which are free, namely, (1) both joints free, (2) the first joint
free and the second joint braked, (3) the first joint braked
and the second joint free, and (4) both joints braked. The
corresponding dynamic equations can be obtained from (10)
by setting one or both braking torques to zero.

3. Control Properties of Underactuated 𝑅𝑅

Robot Manipulators

In this section, the main control properties of planar
underactuated 𝑅𝑅 robot manipulators in the presence of
gravity will be described. For a more general description of
the control properties of underactuated robot manipulators
see [1].

Optimal control approaches to trajectory planning
assume that there exists a control input that steers the
system between two given states. Thus, controllability is
the most important aspect to be checked before studying
the optimal control problem of a dynamic system. If in the
trajectory planning problem the duration of the motion 𝑇 is
not assigned, the existence of a finite-time solution for any
state (𝜃𝐹, ̇𝜃𝐹) in a neighborhood of (𝜃𝐼, ̇𝜃𝐼) is equivalent for
the robotic system to the property of local controllability
at (𝜃𝐼, ̇𝜃𝐼). If local controllability holds at any state, then the
system is controllable and the trajectory planning problem is
solvable for any pair of initial and final states.

For underactuated 𝑅𝑅 robot manipulators, controllabil-
ity is related to integrability of the second order nonholo-
nomic constraints.The second order differential constraint in
(7) and (8) may either be partially integrable to a first order
differential equation or completely integrable to a holonomic
equation.Necessary and sufficient integrability conditions are
given in [18]. If the second order differential constraint in
(7) or (8) is not partially integrable, it is possible to steer
the corresponding system between equilibrium points. This
occurs for planar underactuated 𝑅𝑅 robot manipulators in
the absence of gravity and for both the 𝑅𝑅 and 𝑅𝑅 in the
presence of gravity. If the second order differential constraint
in (7) or (8) is completely integrable to a holonomic con-
straint, the motion of the corresponding mechanical system
is restricted to a 1-dimensional submanifold of the configu-
ration space which depends on the initial configuration. This
occurs for the planar underactuated 𝑅𝑅 robot manipulators
without the effects of gravity [18]. For this robot model, the
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trajectory planning problem has solution only for particular
initial and final states.

Thus, when the second order differential constraint in
(7) or (8) is not partially or completely integrable, the corre-
spondingmechanical system is controllable.However, several
aspects of controllability can be studied which characterize
planar underactuated 𝑅𝑅 robot manipulators.

The equilibrium conditions for the 𝑅𝑅 robot manipula-
tor are

𝑒1 (𝜃1, 𝜃2) = 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos 𝜃1

+ 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) = 𝑢1,

𝑒2 (𝜃1, 𝜃2) = 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) = 0,

(11)

for the 𝑅𝑅 robot manipulator are

𝑒1 (𝜃1, 𝜃2) = 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos 𝜃1

+ 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) = 0,

𝑒2 (𝜃1, 𝜃2) = 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) = 𝑢2,

(12)

and, finally, for the 𝑅𝑅 robot manipulator are

𝑒1 (𝜃1, 𝜃2) = 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos 𝜃1

+ 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) = 0,

𝑒2 (𝜃1, 𝜃2) = 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) = 0.

(13)

Not all the solutions of these equations correspond to
stable equilibrium configurations. For 𝑢1 = 0 and 𝑢2 =

0 these dynamical systems have three unstable configura-
tions; namely, (𝜃1, 𝜃2) = (𝜋/2, 0), which will be called Up
Configuration, (𝜃1, 𝜃2) = (−𝜋/2, 𝜋) and (𝜃1, 𝜃2) = (𝜋/2, −𝜋),
which will be called Mid Configurations, and one stable
equilibrium configuration, (𝜃1, 𝜃2) = (−𝜋/2, 0), which will be
called Down Configuration.

Both planar underactuated 𝑅𝑅 and 𝑅𝑅 robot manipula-
tors in the presence of gravity are linearly controllable [1].
Linear controllability means that the linear approximation
of the system around an equilibrium point is controllable.
Both planar underactuated 𝑅𝑅 and 𝑅𝑅 robot manipulators
in the presence of gravity are neither small-time locally con-
trollable nor small-time locally configuration controllable [19,
20]. Finally, both planar underactuated 𝑅𝑅 and 𝑅𝑅 robot
manipulators in the presence of gravity are not kinematically
controllable [19–21]. The lack of kinematic controllability
implies that in general a configuration is not reachable by
means of a sequence of kinematic motions, that is, feasible
paths in the configuration space which may be followed with
an arbitrary timing law.

4. The Optimal Control Problem

In this section, following [13], the optimal control problem
for switched dynamical systems will be described.

In switched dynamical systems, the vector fields that
describe the evolution of the system undergo discontinuous

jumps depending on the state and the input. These switches
are called autonomous. Discontinuous jumps in the evolution
of switched dynamical systems can also be induced by a
control input. For this reason these switches are called
controlled.

The evolution of a switched dynamical system subject to
autonomous and controlled switches can be described by the
following four quantities: (1) the discrete state or mode 𝜉(𝑡) ∈
𝐷𝜉 = {1, 2, . . . , 𝑑𝜉}, (2) the continuous state 𝑥(𝑡) ∈ R𝑛, (3) the
switching control input V(𝑡) ∈ 𝐷V = {1, 2, . . . , 𝑑V}, which can
be regarded as a discrete control input, and (4) the continuous
control input 𝑢(𝑡) ∈ R𝑚. In this work, we only consider
memoryless systems for which the autonomous switches
depend on the continuous state 𝑥(𝑡) and the input 𝑢(𝑡), and
not on the current discrete state 𝜉(𝑡). The evolution of the
discrete state of the memoryless system is described by a
piecewise continuous function 𝜂 : R𝑛 × R𝑚 → 𝐷𝜉,
which selects the discrete state 𝜉 of the system based on the
continuous state 𝑥(𝑡) and the continuous control input 𝑢(𝑡);
that is,

𝜉
+
(𝑡) = 𝜂 (𝑥, 𝑢) . (14)

Let 𝑓(𝑖,𝑗), 𝑖 ∈ 𝐷𝜉, 𝑗 ∈ 𝐷V, be a collection of 𝐶1 vector fields
𝑓(𝑖,𝑗) : 𝑀𝑖 → R𝑛, where 𝑀𝑖 ⊆ R𝑛 × R𝑚, 𝑖 ∈ 𝐷𝜉, is the set of
pairs (𝑥, 𝑢) corresponding to the discrete state 𝑖 ∈ 𝐷𝜉; that
is, 𝑀𝑖 = {(𝑥, 𝑢) ∈ R𝑛 ×R𝑚 | 𝜂(𝑥, 𝑢) = 𝑖}. The evolution of the
continuous state 𝑥(𝑡) is described by

𝑥̇ = 𝑓𝜂(𝑥(𝑡),𝑢(𝑡)),V(𝑡) (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑥 (𝑡0) = 𝑥0.

(15)

This means that, at each 𝑡 ≥ 𝑡0 and for each discrete state
𝜉(𝑡) ∈ 𝐷𝜉, the switching control input V(𝑡) ∈ 𝐷V selects the
vector field that governs the evolution of the continuous state.
Note that in (15) the switching control input V(𝑡) does not
affect the autonomous switches. Systems described by (15)
are called systems with decoupled switches. The continuous
control input 𝑢(𝑡) is assumed to belong to a convex and
compact set Ω ⊆ R𝑚, and 𝑢(𝑡) and V(𝑡) are supposed to be
measurable functions.

Since (14) completely determines the discrete state 𝜉(𝑡)
based on 𝑥(𝑡) and 𝑢(𝑡), a piecewise 𝐶1 vector field 𝑓𝑗(𝑥(𝑡),
𝑢(𝑡)) = 𝑓(𝜂(𝑥(𝑡),𝑢(𝑡)),𝑗)(𝑥(𝑡), 𝑢(𝑡)) can be defined for each 𝑗 ∈

𝐷V and (15) can be rewritten as follows:

𝑥̇ = 𝑓V(𝑡) (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑥 (𝑡0) = 𝑥0.

(16)

We are interested in computing optimal control laws for
systems described by (16). This entails finding (1) the optimal
sequence of switching control inputs, that is, the optimal
sequence of values of the function V(𝑡), (2) the optimal switch-
ing instants, 𝑡1, 𝑡2, . . . , 𝑡𝑛, including their number, 𝑛, and (3)
the optimal continuous control over each interval [𝑡𝑖, 𝑡𝑖+1),
𝑖 = 0, 1, 2, . . . , 𝑛.

Mmioc techniques can be employed to find the optimal
solution of this problem. However, the computational com-
plexity of the resulting problem limits the application of these
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techniques in practice. It has been shown in [12] that for
quite a general class of optimal control problems of switched
dynamical systems, a technique called embedding can be
applied, whose computational complexity is no greater than
that of continuous optimal control problems. This technique
will be described in Section 5.

Consider the systemdescribed by (16), where V(𝑡) and𝑢(𝑡)
are control variables of the optimal control problem.The cost
functional of the optimal control problem, defined over the
interval [𝑡0, 𝑡𝑓], can be expressed in the following form:

𝐽𝐶 (𝑡0, 𝑥0, 𝑢, V) = 𝑔 (𝑡0, 𝑥0, 𝑡𝑓, 𝑥𝑓)

+ ∫

𝑡𝑓

𝑡0

𝐹
0

𝜂(𝑥(𝑡),𝑢(𝑡),V(𝑡)) (𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡,
(17)

where (𝑡0, 𝑥(𝑡0)) ∈ T0 × B0, (𝑡𝑓, 𝑥(𝑡𝑓)) ∈ T𝑓 × B𝑓,
and T0, B0, T𝑓, and B𝑓 are the boundary sets for 𝑡0,
𝑥(𝑡0), 𝑡𝑓, 𝑥(𝑡𝑓). 𝑔 is a real-valued function defined in the
neighbourhoodB = T0 ×B0 ×T𝑓 ×B𝑓, which is assumed
to be a compact set, and 𝐹

0

(𝑖,𝑗)
: 𝑀𝑖 → R, 𝑖 ∈ 𝐷𝜉, 𝑗 ∈ 𝐷V,

are 𝐶1 functions.
By (14), which determines the discrete state 𝜉(𝑡) based

on 𝑥(𝑡) and 𝑢(𝑡), we can define a new piecewise 𝐶
1

function 𝐹
0

𝑗
(𝑥(𝑡), 𝑢(𝑡)) = 𝐹

0

(𝜂(𝑥(𝑡),𝑢(𝑡)),𝑗)
(𝑥(𝑡), 𝑢(𝑡)) and rewrite

the cost functional as follows:

𝐽𝐶 (𝑡0, 𝑥0, 𝑢, V) = 𝑔 (𝑡0, 𝑥0, 𝑡𝑓, 𝑥𝑓)

+ ∫

𝑡𝑓

𝑡0

𝐹
0

V(𝑡) (𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡.
(18)

Thus, the optimal control problem for the above defined
class of switched systems, called Switched Optimal Control
Problem (Socp), can be stated as follows:

min
𝑢,V

𝐽𝐶 (𝑡0, 𝑥0, 𝑢, V) (19)

subject to (1) (16), (2) boundary conditions (𝑡0, 𝑥(𝑡0), 𝑡𝑓,
𝑥(𝑡𝑓)) ∈ B, and (3) 𝑢(𝑡) ∈ Ω ⊆ R𝑚, and V(𝑡) ∈ 𝐷V for
𝑡 ∈ [𝑡0, 𝑡𝑓].

5. Embedding Approach

The approach described in [12] to solve optimal control prob-
lems of switched dynamical systems consists in embedding
system (16) into a larger set of systems. Since V(𝑡) ∈ 𝐷V =

{1, 2, . . . , 𝑑V} define 𝑑V new variables V𝑖 ∈ [0, 1], 𝑖 ∈ 𝐷V, such
that

𝑑V

∑

𝑖=1

V𝑖 (𝑡) = 1. (20)

Let 𝑢𝑖 be the control input for each vector field 𝑓𝑖, 𝑖 ∈

𝐷V in (15). Define a new system

𝑥̇ (𝑡) =

𝑑V

∑

𝑖=1

V𝑖 (𝑡) 𝑓𝑖 (𝑥 (𝑡) , 𝑢𝑖 (𝑡)) ,

𝑥 (𝑡0) = 𝑥0

(21)

and the associated cost functional

𝐽𝐸 (𝑡0, 𝑥0, 𝑢, V) = 𝑔 (𝑡0, 𝑥0, 𝑡𝑓, 𝑥𝑓)

+ ∫

𝑡𝑓

𝑡0

𝑑V

∑

𝑖=1

V𝑖 (𝑡) 𝐹
0

𝑖
(𝑥 (𝑡) , 𝑢𝑖 (𝑡)) 𝑑𝑡.

(22)

The Socp is converted into the following Embedded Optimal
Control Problem (Eocp): minimize the functional (22) over
all functions V𝑖 and 𝑢𝑖 subject to the following constraints:
(1) (21), (2) boundary conditions (𝑡0, 𝑥(𝑡0), 𝑡𝑓, 𝑥(𝑡𝑓)) ∈ B,
(3) for each 𝑡 ∈ [𝑡0, 𝑡𝑓] and each 𝑖 ∈ 𝐷V, V𝑖(𝑡) ∈

[0, 1] and 𝑢𝑖(𝑡) ∈ Ω, and (4) for each 𝑡 ∈ [𝑡0, 𝑡𝑓], ∑
𝑑V
𝑖=1

V𝑖(𝑡) =
1.

This is an optimal control problem without integer or
binary variables. Therefore, classical necessary and sufficient
conditions of optimal control theory can be applied to
solve it. However, to guarantee the existence of a solution
some additional hypotheses are needed. We assume that the
functions 𝑓𝑖(𝑥(𝑡), 𝑢𝑖(𝑡)) are affine in the continuous control
variable, that is, 𝑓𝑖(𝑥(𝑡), 𝑢𝑖(𝑡)) = 𝐴 𝑖(𝑥)+𝐵𝑖(𝑥)𝑢𝑖, and that the
functions 𝐹0

𝑖
(𝑥(𝑡), 𝑢𝑖(𝑡)) are convex in 𝑢𝑖 for each (𝑡, 𝑥).

It has been shown that, once a solution of the Eocp has
been obtained, either the solution is of the switched type, that
is, exactly one of the V𝑖’s being 1 and all the others being 0,
or suboptimal trajectories of the Socp can be constructed that
can approach the value of the cost for the Eocp arbitrarily
closely and satisfy the boundary conditions within 𝜖, with
arbitrary 𝜖 > 0. A thorough discussion about the relationship
between Socp’s and Eocp’s solutions can be found in [12].The
numerical method employed to transcribe the Eocp intoNlp
problem is described in [22].

6. Implementation and Results

Several numerical experiments have been carried out for
the 𝑅𝑅𝑏, 𝑅𝑏𝑅, and 𝑅𝑏𝑅𝑏 planar underactuated robot manip-
ulators in the presence of gravity. The corresponding dynam-
ical systems are described by vector fields that are affine in
the continuous control variables, thus fulfilling the sufficient
conditions for the existence of a solution stated in the
previous section.

The results obtained using the Eoc approach have been
compared to those obtained using a Mmioc technique [7].
In the Mmioc approach, to find the optimal sequence of
modes an iterative process has been used. First, themaximum
number of switches between modes has been estimated. This
number determines the maximum number of phases that
are considered. Then, an optimal control problem has been
formulated, in which the unknown switching times are part
of the state, and binary variables have been introduced to
represent the choice of the active mode in each phase. Finally,
a third-degree Gauss-Lobatto direct collocation method has
been used to tackle the dynamic equations. The resulting
Minlp problem has been solved using a nonlinear pro-
gramming based branch-and-bound algorithm specifically
tailored to the problem. Details about the implementation
of this method can be found in [23]. As pointed out in
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[8], special care has to be taken to treat the cases in which
phase lengths diminish during the optimization procedure.
Therefore, the phases of zero duration have been eliminated.

6.1. Pendubot with Brake. In this section, the optimal control
problem for a Pendubot with a brake at the unactuated joint is
studied. In this robot model, the second joint is not actuated;
thus 𝑢 = (𝑢1, 0)

𝑇. In this case, it is not possible to integrate
partially or completely the nonholonomic constraint because
the conditions for partial integrability [18] are not fulfilled.
Hence, the system is controllable. The numerical results of
the application of the Eoc method for optimal control to
two different boundary value problems for this system will
be described. In both cases the functional to be minimized is
the energy consumption during the motion.

The Pendubot has two operational modes, depending on
whether the unactuated joint is braked or not, namely,

(i) Mode 1: Joint 2 free,
(ii) Mode 2: Joint 2 braked.

From (7), the dynamic model of a Pendubot with a brake at
the unactuated joint is

(𝛼 + 2𝛽 cos 𝜃2) ̈𝜃1 + (𝛿 + 𝛽 cos 𝜃2) ̈𝜃2

− 𝛽 sin 𝜃2 (2 ̇𝜃1
̇𝜃2 +

̇𝜃
2

2
) + 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos 𝜃1

+ 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) = 𝑢1,

(𝛿 + 𝛽 cos 𝜃2) ̈𝜃1 + 𝛿
̈𝜃2 + 𝛽 sin 𝜃2 ̇𝜃

2

1

+ 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) + ℎ2 = 0.

(23)

In these equations 𝑢1 is the first component of the input
vector 𝑢 = (𝑢1, 𝑢2)

𝑇. When the Pendubot is operating in

Mode 1, that is, with Joint 2 free, ℎ2 = 0. Otherwise, it
takes the form (9). To convert this second order differential
model into the first order model (16) the following change of
variables is introduced:

𝑥1 = 𝜃1,

𝑥2 = 𝜃2,

𝑥3 =
̇𝜃1,

𝑥4 =
̇𝜃2,

(24)

with the following additional differential relations:

𝑥̇1 = 𝑥3,

𝑥̇2 = 𝑥4,

(25)

among the components of state variable 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇.

The result is

(𝛼 + 2𝛽 cos𝑥2) 𝑥̇3 + (𝛿 + 𝛽 cos𝑥2) 𝑥̇4

− 𝛽 sin𝑥2 (2𝑥3𝑥4 + 𝑥
2

4
) + 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos𝑥1

+ 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) = 𝑢1,

(𝛿 + 𝛽 cos𝑥2) 𝑥̇3 + 𝛿𝑥̇4 + 𝛽 sin𝑥2𝑥
2

3

+ 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + ℎ2 = 0.

(26)

Since the Pendubot has two dynamical modes, 𝐷V =

{1, 2}, 2 vector fields, 𝑓1 = (𝑓1,1, 𝑓1,2, 𝑓1,3, 𝑓1,4)
𝑇 and 𝑓2 =

(𝑓2,1, 𝑓2,2, 𝑓2,3, 𝑓2,4)
𝑇, must be considered.The dynamicmod-

els of the Pendubot operating in Mode 1 and Mode 2 are the
following:

𝑥̇1 = 𝑥3 = 𝑓1,1,

𝑥̇2 = 𝑥4 = 𝑓1,2,

𝑥̇3 =

(−𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽 cos (𝑥2) (𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥
2

3
sin (𝑥2)) + 𝛿 (𝑢1,1 + 𝛽 (𝑥3 + 𝑥4)

2 sin (𝑥2)))

((𝛼 − 𝛿) 𝛿 − 𝛽
2 cos (𝑥2)

2
)

= 𝑓1,3,

𝑥̇4 = (𝑢1,1 (𝛿 + 𝛽 cos (𝑥2)) − 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) (𝛿 + 𝛽 cos (𝑥2)) + 𝑔𝑚2𝑟2 (𝛼 − 𝛿 + 𝛽 cos (𝑥2)) cos (𝑥1 + 𝑥2)

+ 𝛽 ((𝛼𝑥
2

3
+ 𝛿𝑥4 (2𝑥3 + 𝑥4) + 𝛽𝑥

2

4
cos (𝑥2)) sin (𝑥2) + 𝛽𝑥3 (𝑥3 + 𝑥4) sin (2𝑥2))) ⋅ (𝛿 (−𝛼 + 𝛿) + 𝛽

2 cos (𝑥2)
2
)
−1

= 𝑓1,4,

𝑥̇1 = 𝑥3 = 𝑓2,1,

𝑥̇2 = 𝑥4 = 𝑓2,2,

𝑥̇3 =

(−𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽 cos (𝑥2) (ℎ2 + 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥
2

3
sin (𝑥2)) + 𝛿 (ℎ2 + 𝑢2,1 + 𝛽 (𝑥3 + 𝑥4)

2 sin (𝑥2)))

((𝛼 − 𝛿) 𝛿 − 𝛽
2 cos (𝑥2)

2
)

= 𝑓2,3,
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𝑥̇4 = −(
ℎ2 + 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥

2

3
sin (𝑥2)

𝛿
) + ((𝛿 + 𝛽 cos (𝑥2))

⋅ (−𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽 cos (𝑥2) (ℎ2 + 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥
2

3
sin (𝑥2)) + 𝛿 (ℎ2 + 𝑢2,1 + 𝛽 (𝑥3 + 𝑥4)

2 sin (𝑥2))))

⋅ (𝛿 (𝛿 (−𝛼 + 𝛿) + 𝛽
2 cos (𝑥2)

2
))
−1

= 𝑓2,4.

(27)

In these equations, 𝑢1,1 is the first component of vector 𝑢1 =
(𝑢1,1, 𝑢1,2)

𝑇, the input vector for vector field 𝑓1, and 𝑢2,1 is
the first component of vector 𝑢2 = (𝑢2,1, 𝑢2,2)

𝑇, the input
vector for vector field 𝑓2. Moreover, two new variables, V𝑖 ∈
[0, 1], 𝑖 ∈ {1, 2}, such that V1 + V2 = 1, must be introduced.
Thus, (21) takes the form

𝑥̇1 = V1𝑓1,1 + V2𝑓2,1,

𝑥̇2 = V1𝑓1,2 + V2𝑓2,2,

𝑥̇3 = V1𝑓1,3 + V2𝑓2,3,

𝑥̇4 = V1𝑓1,4 + V2𝑓2,4,

(28)

and the cost functional (22) becomes

𝐽𝐸 = ∫

𝑡𝑓

𝑡0

V1𝑢
2

1,1
+ V2𝑢
2

2,1
𝑑𝑡. (29)

This objective functional fulfills the sufficient conditions for
the existence of a solution stated in Section 5.

Inequality constraints on the state variables have been
also considered. In particular, variable 𝜃2 has been bounded
to take into account possible range limitations of themechan-
ical system. Thus, the inequality constraints −𝜋 [rad] ≤

𝜃2 ≤ 𝜋 [rad] have been introduced in the model. Inequality
constraints on the available control variable have also been
considered. In particular, the constraints −25 [Nm] ≤ 𝑢1 ≤

25 [Nm] have been introduced in the model to take into
account physical limitations of the actuators.

The following parameters of the dynamic model have
been used: 𝐼𝑧1 = 𝐼𝑧2

= 1 [kgm2], 𝑙1 = 𝑙2 = 1 [m], and 𝑚1 =

𝑚2 = 1 [kg].

6.1.1. Swing to the Up Configuration. In this numerical exper-
iment, a boundary value problem has been solved with the
following initial and final conditions:

𝜃1 (𝑡𝐼) = −
𝜋

2
[rad] ,

𝜃1 (𝑡𝐹) =
𝜋

2
[rad] ,

𝜃2 (𝑡𝐼) = 0 [rad] ,

𝜃2 (𝑡𝐹) = 0 [rad] ,

(30)

and ̇𝜃1(𝑡𝐼) = ̇𝜃1(𝑡𝐹) = ̇𝜃2(𝑡𝐼) = ̇𝜃2(𝑡𝐹) = 0 [rad/s]. The
initial and final times have been 𝑡𝐼 = 0 and 𝑡𝐹 = 3.6 [s],
respectively.

The energy consumption, the resolution time, the number
of phases, the sequence of modes, and the corresponding
switching times between them obtained with both the Eoc
and Mmioc methods are reported in Table 1. Figure 2 shows
the sequence of configurations of the robot at times 𝑡 =

𝑘(3.6/64), 𝑘 = 0, 1, . . . , 64, corresponding to the optimal
solution of the boundary value problem obtained with a
discretization of the interval [𝑡𝐼, 𝑡𝐹] into 128 subintervals.
Configurations that correspond to the braked mode of the
mechanical systems are represented in red. It is easy to
see that the braked mode is used in the solution just
before swinging and when the system is reaching its final
state. Figure 3 shows the corresponding control and state
variables obtained with the Eoc method (in red) and
the Mmioc approach (in black). In the Eoc solution, six
phases can be distinguished, although two of them have
a very short duration. The optimal sequence of modes
obtained has been (0, 1, 0, 1, 0, 1) which corresponds to brak-
ing the unactuated joint in phases 2, 4, and 6 and not brak-
ing in phases 1, 3, and 5. In the Mmioc solution, 4 phases
can be distinguished. The optimal sequence of modes
obtained has been (0, 1, 0, 1) which corresponds to braking
the unactuated joint in phases 2 and 4 and not braking in
phases 1 and 3. It is easy to see from Figure 3(f) that the opti-
mal sequence of modes obtained with the Eoc method coin-
cides with that obtained with the Mmioc approach except
for the fifth short phase that does not exist in the Mmioc
solution. As a consequence, the continuous solutions almost
coincide.The value of the objective functional for the optimal
solution obtained with the Eoc method has been 192.71 [J],
whereas the value obtained with the Mmioc approach has
been 195.532 [J], higher than the previous one. The compu-
tational time to find a solution with the Eoc method has
been 2.84221 [s] whereas it has been 26.984307 [s] with the
Mmioc approach, higher than the previous one.

6.1.2. Swing to the Down Configuration. In this numerical
experiment, a boundary value problem has been solved with
the following initial and final conditions:

𝜃1 (𝑡𝐼) =
𝜋

2
[rad] ,

𝜃1 (𝑡𝐹) = −
𝜋

2
[rad] ,

𝜃2 (𝑡𝐼) = 0 [rad] ,

𝜃2 (𝑡𝐹) = 0 [rad] ,

(31)
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Table 1: Results for the swing-up maneuver for the Pendubot with brake: 𝑡𝑓 = 3.6 [s].

Method Minimum energy [J] Resolution time [s] Sequence of modes Switching times [s]

Eoc 192.71 2.84221 (0, 1, 0, 1, 0, 1)

𝑡1 = 1.01250

𝑡2 = 2.08125

𝑡3 = 3.29062

𝑡4 = 3.54375

𝑡5 = 3.57187

Mmioc 195.532 26.984307 (0, 1, 0, 1)
𝑡1 = 0.98867

𝑡2 = 2.07424

𝑡3 = 3.29758

Figure 2: Sequence of configurations of the optimal solution
for the swing-up maneuver for the Pendubot with brake. The
configurations in which the Pendubot operates inMode 1 andMode
2 are represented in black and red, respectively. The corresponding
control and state variables are represented in Figure 3.

and ̇𝜃1(𝑡𝐼) = ̇𝜃1(𝑡𝐹) = ̇𝜃2(𝑡𝐼) = ̇𝜃2(𝑡𝐹) = 0 [rad/s]. The
initial and final times have been 𝑡𝐼 = 0 and 𝑡𝐹 = 3.6 [s],
respectively.

The results obtained with both the Eoc and Mmioc
methods are reported in Table 2, Figures 4 and 5 with the
same interpretation as in Section 6.1.1. It is easy to see from
Figure 5(f) that the optimal sequence of modes obtained
with the Eoc method coincides with that obtained with the
Mmioc approach but the time location of the corresponding
phases does not. As a consequence, the continuous solutions
do not coincide. Nevertheless, the value of the objective
functional for the optimal solution obtained with the Eoc
method has been 21.5397 [J] whereas the value obtained
with the Mmioc approach has been 21.5739 [J], very similar
to the previous one. The computational time to find a
solution with the Eoc method has been 1.57952 [s], shorter
than computational time to find a solution with the Mmioc
approach, which has been 28.65894 [s].

6.2. Acrobot with Brake. In this section, the optimal control
problem of an Acrobot with a brake at the unactuated joint
is studied. In this robot model the first joint is not actuated;
thus 𝑢 = (0, 𝑢2)

𝑇. In this case, it is not possible to integrate
partially or completely the nonholonomic constraint because
the conditions for partial integrability [18] are not fulfilled.
Hence, the system is controllable.The numerical results of the
application of ourmethod for optimal control to two different
boundary value problems for this system will be described.
In both cases the functional to be minimized is the energy
consumption during the motion.

The Acrobot has two operational modes, depending on
whether the unactuated joint is braked or not, namely,

(i) Mode 1: Joint 1 free,
(ii) Mode 2: Joint 1 braked.

From (8), the dynamic model of an Acrobot with a brake at
the unactuated joint is

(𝛼 + 2𝛽 cos 𝜃2) ̈𝜃1 + (𝛿 + 𝛽 cos 𝜃2) ̈𝜃2

− 𝛽 sin 𝜃2 (2 ̇𝜃1
̇𝜃2 +

̇𝜃
2

2
) + 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos 𝜃1

+ 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) + ℎ1 = 0,

(𝛿 + 𝛽 cos 𝜃2) ̈𝜃1 + 𝛿
̈𝜃2 + 𝛽 sin 𝜃2 ̇𝜃

2

1

+ 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) = 𝑢2.

(32)

In these equations 𝑢2 is the second component of the input
vector 𝑢 = (𝑢1, 𝑢2)

𝑇. When the Acrobot is operating inMode
1, that is, with Joint 1 free, ℎ1 = 0. Otherwise, it takes the
form (9). To convert this second order differential model into
the first order model (16) the change of variables (24) and
the additional differential relations (25) are introduced. The
result is

(𝛼 + 2𝛽 cos𝑥2) 𝑥̇3 + (𝛿 + 𝛽 cos𝑥2) 𝑥̇4

− 𝛽 sin𝑥2 (2𝑥3𝑥4 + 𝑥
2

4
) + 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos𝑥1

+ 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + ℎ1 = 0,

(𝛿 + 𝛽 cos𝑥2) 𝑥̇3 + 𝛿𝑥̇4 + 𝛽 sin𝑥2𝑥
2

3

+ 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) = 𝑢2.

(33)
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Since theAcrobot has two dynamicalmodes, 𝐷V = {1, 2}, two
vector fields, 𝑓1 and 𝑓2, must be considered. The dynamic

models of the Acrobot operating in Mode 1 and Mode 2 are
the following:

𝑥̇1 = 𝑥3 = 𝑓1,1,

𝑥̇2 = 𝑥4 = 𝑓1,2,

𝑥̇3 =

(−𝛿𝑢1,2 − 𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽𝛿 (𝑥3 + 𝑥4)
2 sin (𝑥2) + 𝛽 cos (𝑥2) (−𝑢1,2 + 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥

2

3
sin (𝑥2)))

((𝛼 − 𝛿) 𝛿 − 𝛽
2 cos (𝑥2)

2
)

= 𝑓1,3,

𝑥̇4 = (−𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) (𝛿 + 𝛽 cos (𝑥2)) − 𝑢1,2 (𝛼 + 2𝛽 cos (𝑥2)) + 𝑔𝑚2𝑟2 (𝛼 − 𝛿 + 𝛽 cos (𝑥2)) cos (𝑥1 + 𝑥2) + 𝛽 (𝛼𝑥
2

3

+ 𝛿𝑥4 (2𝑥3 + 𝑥4) + 𝛽 (2𝑥
2

3
+ 2𝑥3𝑥4 + 𝑥

2

4
) cos (𝑥2)) sin (𝑥2)) ⋅ (𝛿 (−𝛼 + 𝛿) + 𝛽

2 cos (𝑥2)
2
)
−1

= 𝑓1,4,

𝑥̇1 = 𝑥3 = 𝑓2,1,

𝑥̇2 = 𝑥4 = 𝑓2,2,

𝑥̇3 =

(−𝛿 (ℎ1 + 𝑢2,2) − 𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽𝛿 (𝑥3 + 𝑥4)
2 sin (𝑥2) + 𝛽 cos (𝑥2) (−𝑥6 + 𝑔𝑚2𝑟2cos (𝑥1 + 𝑥2) + 𝛽𝑥

2

3
sin (𝑥2)))

((𝛼 − 𝛿) 𝛿 − 𝛽
2 cos (𝑥2)

2
)

= 𝑓2,3,

𝑥̇4 = (
1

𝛿
) (𝑢2,2 − 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) − 𝛽𝑥

2

3
sin (𝑥2) + ((𝛿 + 𝛽 cos (𝑥2)) (−𝛿 (ℎ1 + 𝑢2,2) − 𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1)

+ 𝛽𝛿 (𝑥3 + 𝑥4)
2 sin (𝑥2) + 𝛽 cos (𝑥2) (−𝑢2,2 + 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥

2

3
sin (𝑥2)))) ⋅ (𝛿 (−𝛼 + 𝛿) + 𝛽

2 cos (𝑥2)
2
)
−1

) = 𝑓2,4.

(34)

In these equations, 𝑢1,2 is the second component of vector
𝑢1 = (𝑢1,1, 𝑢1,2)

𝑇, the input vector for vector field 𝑓1, and 𝑢2,2
is the second component of vector 𝑢2 = (𝑢2,1, 𝑢2,2)

𝑇, the input
vector for vector field 𝑓2. Moreover, two new variables, V𝑖 ∈
[0, 1], 𝑖 ∈ {1, 2}, such that V1 + V2 = 1, must be introduced.
Thus, (21) takes the form

𝑥̇1 = V1𝑓1,1 + V2𝑓2,1,

𝑥̇2 = V1𝑓1,2 + V2𝑓2,2,

𝑥̇3 = V1𝑓1,3 + V2𝑓2,3,

𝑥̇4 = V1𝑓1,4 + V2𝑓2,4,

(35)

and the cost functional (22) becomes

𝐽𝐸 = ∫

𝑡𝑓

𝑡0

V1𝑢
2

1,2
+ V2𝑢
2

2,2
𝑑𝑡. (36)

This objective functional fulfills the sufficient conditions for
the existence of a solution stated in Section 5.

Variable 𝜃2 has been bounded, to take into account
possible range limitations of the mechanical system. Thus,
the inequality constraints −𝜋 [rad] ≤ 𝜃2 ≤ 𝜋 [rad] have
been introduced in the model together with the constraints
−25 [Nm] ≤ 𝑢2 ≤ 25 [Nm] to take into account physical
limitations of the actuators. The same parameters of the
dynamic model of Section 6.1 have been used.

6.2.1. Swing to the Up Configuration. In this numerical
experiment, a boundary value problem has been solved with
the following initial and final conditions:

𝜃1 (𝑡𝐼) = −
𝜋

2
[rad] ,

𝜃1 (𝑡𝐹) =
𝜋

2
[rad] ,

𝜃2 (𝑡𝐼) = 0 [rad] ,

𝜃2 (𝑡𝐹) = 0 [rad] ,

(37)

and ̇𝜃1(𝑡𝐼) = ̇𝜃1(𝑡𝐹) = ̇𝜃2(𝑡𝐼) = ̇𝜃2(𝑡𝐹) = 0 [rad/s]. The
initial and final times have been 𝑡𝐼 = 0 and 𝑡𝐹 = 3.4 [s],
respectively.

The results obtained with both the Eoc and Mmioc
methods are reported in Table 3, Figures 6 and 7 with the
same interpretation as in the previous sections. It is easy to see
fromFigure 7(f) that the optimal sequence ofmodes obtained
with Eoc method does not coincide with that obtained
with the Mmioc approach, since the first unbraked phase
does not exist in the Mmioc solution. As a consequence,
the continuous solutions do not coincide. The value of the
objective functional for the optimal solution obtained with
the Eoc method has been 113.968 [J] whereas the value
obtained with the Mmioc approach has been 113.027 [J], a
bit lower than the previous one. The computational time to
find a solution with the Eoc method has been 20.2848 [s],
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Figure 3: This figure shows (in red) the control and state variables of the optimal solution obtained with the Eoc approach for the swing-up
maneuver of the Pendubot with brake. The corresponding sequence of configurations of the robot manipulator is represented in Figure 2.
The same figure shows (in black) the optimal solution of the same boundary value problem obtained with a Mmioc approach. The dashed
vertical lines represent switches between phases.

whereas it has been 32.137628 [s] with theMmioc approach,
higher than the previous one.

6.2.2. Swing to the Down Configuration. In this numerical
experiment, a boundary value problem has been solved with
the following initial and final conditions:

𝜃1 (𝑡𝐼) =
𝜋

2
[rad] ,

𝜃1 (𝑡𝐹) = −
𝜋

2
[rad] ,

𝜃2 (𝑡𝐼) = 0 [rad] ,

𝜃2 (𝑡𝐹) = 0 [rad] ,

(38)
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Table 2: Results for the swing-down maneuver for the Pendubot with brake: 𝑡𝑓 = 3.6 [s].

Method Minimum energy [J] Resolution time [s] Sequence of modes Switching times [s]

Eoc 21.5397 1.57952 (0, 1, 0, 1, 0, 1)

𝑡1 = 1.01250

𝑡2 = 1.37813

𝑡3 = 2.25000

𝑡4 = 2.67188

𝑡5 = 3.26250

Mmioc 21.5739 28.65894 (0, 1, 0, 1, 0, 1)

𝑡1 = 1.11980

𝑡2 = 1.53434

𝑡3 = 2.41782

𝑡4 = 2.81834

𝑡5 = 3.31516

Figure 4: Sequence of configurations of the optimal solution for
the swing-down maneuver for the Pendubot with brake. The cor-
responding control and state variables are represented in Figure 5.

and ̇𝜃1(𝑡𝐼) = ̇𝜃1(𝑡𝐹) = ̇𝜃2(𝑡𝐼) = ̇𝜃2(𝑡𝐹) = 0 [rad/s]. The
initial and final times have been 𝑡𝐼 = 0 and 𝑡𝐹 = 3.8 [s],
respectively.

The results obtained with both the Eoc and Mmioc
methods are reported in Table 4, Figures 8 and 9 with the
same interpretation as the previous sections. It is easy to
see from Figure 9(f) that the optimal sequence of modes
obtained with Eoc method coincides with that obtained
with the Mmioc approach except for the first short phase
that does not exist in the Mmioc solution. Nevertheless,
the continuous solutions almost coincide. The value of the
objective functional for the optimal solution obtained with
the Eoc method has been 5.71916 [J] whereas the value
obtained with the Mmioc approach has been 5.73743 [J],
slightly higher than the previous one.The computational time
to find a solution with the Eoc method has been 4.7636 [s],
whereas it has been 19.428886 [s] with theMmioc approach,
higher than the previous one.

6.3. Brakebot. In this section, the optimal control problem for
a Brakebot is studied. In this robot model both joints are not
actuated; thus 𝑢 = (0, 0)

𝑇. In this case the functional to be
minimized is the duration of the motion.

The Brakebot has four operational modes depending on
which joints are braked and which can rotate freely, namely,

(i) Mode 1: Joint 1 free, Joint 2 free,
(ii) Mode 2: Joint 1 free, Joint 2 braked,
(iii) Mode 3: Joint 1 braked, Joint 2 free,
(iv) Mode 4: Joint 1 braked, Joint 2 braked.

From (10), the model of the Brakebot is

(𝛼 + 2𝛽 cos 𝜃2) ̈𝜃1 + (𝛿 + 𝛽 cos 𝜃2) ̈𝜃2

− 𝛽 sin 𝜃2 (2 ̇𝜃1
̇𝜃2 +

̇𝜃
2

2
) + 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos 𝜃1

+ 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) + ℎ1 = 0,

(𝛿 + 𝛽 cos 𝜃2) ̈𝜃1 + 𝛿
̈𝜃2 + 𝛽 sin 𝜃2 ̇𝜃

2

1

+ 𝑔𝑚2𝑟2 cos (𝜃1 + 𝜃2) + ℎ2 = 0.

(39)

This general dynamic model can be easily particularized
to describe the four operating modes of the Brakebot. For
example, when the Brakebot is operating in Mode 1, that is,
with both Joint 1 and Joint 2 free, ℎ1 = ℎ2 = 0. When the
Brakebot is operating in Mode 2, that is, with Joint 1 free
and Joint 2 braked, ℎ1 = 0 and ℎ2 takes the form (9), and
so on. To convert this second order differential model into
the first order model (16) the change of variables (24) and
the additional differential relations (25) are introduced. The
result is

(𝛼 + 2𝛽 cos𝑥2) 𝑥̇3 + (𝛿 + 𝛽 cos𝑥2) 𝑥̇4

− 𝛽 sin𝑥2 (2𝑥3𝑥4 + 𝑥
2

4
) + 𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos𝑥1

+ 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + ℎ1 = 0,

(𝛿 + 𝛽 cos𝑥2) 𝑥̇3 + 𝛿𝑥̇4 + 𝛽 sin𝑥2𝑥
2

3

+ 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + ℎ2 = 0.

(40)
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Figure 5:This figure shows (in red) the control and state variables of the optimal solution obtainedwith the Eoc approach for the swing-down
maneuver for the Pendubot with brake. The corresponding sequence of configurations of the robot manipulator is represented in Figure 4.
The same figure shows (in black) the optimal solution of the same boundary value problem obtained with a Mmioc approach.

Table 3: Results for the swing-up maneuver for the Acrobot with brake: 𝑡𝑓 = 3.4 [s].

Method Minimum energy [J] Resolution time [s] Sequence of modes Switching times [s]

Eoc 113.027 20.2848 (0, 1, 0, 1, 0, 1)

𝑡1 = 0.42500

𝑡2 = 0.61094

𝑡3 = 1.48750

𝑡4 = 1.88594

𝑡5 = 2.94844

Mmioc 113.968 32.137628 (1, 0, 1, 0, 1)

𝑡1 = 0.48917

𝑡2 = 1.49831

𝑡3 = 1.72721

𝑡4 = 3.11023
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Figure 6: Sequence of configurations of the optimal solution for the swing-up maneuver for the Acrobot with brake. The corresponding
control and state variables are represented in Figure 7.

Table 4: Results for the swing-down maneuver for the Acrobot with brake: 𝑡𝑓 = 3.8 [s].

Method Minimum energy [J] Resolution time [s] Sequence of modes Switching times [s]

Eoc 5.71916 4.7636 (0, 1, 0, 1, 0, 1)

𝑡1 = 0.02969

𝑡2 = 0.62344

𝑡3 = 1.78125

𝑡4 = 2.79062

𝑡5 = 3.05781

Mmioc 5.73743 19.428886 (1, 0, 1, 0, 1)

𝑡1 = 0.72684

𝑡2 = 1.78373

𝑡3 = 2.82161

𝑡4 = 3.06599

Since the Brakebot has four dynamical modes, 𝐷V = {1, 2,
3, 4}, four vector fields, 𝑓𝑖 = (𝑓𝑖,1, 𝑓𝑖,2, 𝑓𝑖,3, 𝑓𝑖,4)

𝑇, 𝑖 = 1, . . . , 4,
must be considered. The dynamic models of the Brakebot

operating in Mode 1, Mode 2, Mode 3, and Mode 4 are the
following:

𝑥̇1 = 𝑥3 = 𝑓1,1,

𝑥̇2 = 𝑥4 = 𝑓1,2,

𝑥̇3 =

(−𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽𝛿 (𝑥3 + 𝑥4)
2 sin (𝑥2) + 𝛽 cos (𝑥2) (𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥

2

3
sin (𝑥2)))

((𝛼 − 𝛿) 𝛿 − 𝛽
2 cos (𝑥2)

2
)

= 𝑓1,3,

𝑥̇4 = (−𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) (𝛿 + 𝛽 cos (𝑥2)) + 𝑔𝑚2𝑟2 (𝛼 − 𝛿 + 𝛽 cos (𝑥2)) cos (𝑥1 + 𝑥2) + 𝛽 (𝛼𝑥
2

3
+ 𝛿𝑥4 (2𝑥3 + 𝑥4)

+ 𝛽 (2𝑥
2

3
+ 2𝑥3𝑥4 + 𝑥

2

4
) cos (𝑥2)) sin (𝑥2)) ⋅ (𝛿 (−𝛼 + 𝛿) + 𝛽

2 cos (𝑥2)
2
)
−1

= 𝑓1,4,

𝑥̇1 = 𝑥3 = 𝑓2,1,

𝑥̇2 = 𝑥4 = 𝑓2,2,

𝑥̇3 = (−𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽 cos (𝑥2) (ℎ2 + 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥
2

3
sin (𝑥2)) + 𝛿 (ℎ2 + 𝛽 (𝑥3 + 𝑥4)

2

⋅ sin (𝑥2))) ⋅ ((𝛼 − 𝛿) 𝛿 − 𝛽
2 cos (𝑥2)

2
)
−1

= 𝑓2,3,
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Figure 7: This figure shows (in red) the control and state variables of the optimal solution obtained with the Eoc approach for the swing-up
maneuver for the Acrobot with brake. The corresponding sequence of configurations of the robot manipulator is represented in Figure 6. The
same figure shows (in black) the optimal solution of the same boundary value problem obtained with a Mmioc approach.

𝑥̇4 = (−𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) (𝛿 + 𝛽 cos (𝑥2)) + ℎ2 (𝛼 + 2𝛽 cos (𝑥2)) + 𝑔𝑚2𝑟2 (𝛼 − 𝛿 + 𝛽 cos (𝑥2)) cos (𝑥1 + 𝑥2)

+ 𝛽 (𝛼𝑥
2

3
+ 𝛿𝑥4 (2𝑥3 + 𝑥4) + 𝛽 (2𝑥

2

3
+ 2𝑥3𝑥4 + 𝑥

2

4
) cos (𝑥2)) sin (𝑥2)) ⋅ (𝛿 (−𝛼 + 𝛿) + 𝛽

2 cos (𝑥2)
2
)
−1

= 𝑓2,4,

𝑥̇1 = 𝑥3 = 𝑓3,1,

𝑥̇2 = 𝑥4 = 𝑓3,2,

𝑥̇3 =

(−𝛿ℎ1 − 𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽𝛿 (𝑥3 + 𝑥4)
2 sin (𝑥2) + 𝛽 cos (𝑥2) (𝑔𝑚2𝑟2cos (𝑥1 + 𝑥2) + 𝛽𝑥

2

3
sin (𝑥2)))

((𝛼 − 𝛿) 𝛿 − 𝛽
2 cos (𝑥2)

2
)

= 𝑓3,3,
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Figure 8: Sequence of configurations of the optimal solution for the swing-down maneuver for the Acrobot with brake. The corresponding
control and state variables are represented in Figure 7.

𝑥̇4 = (
1

𝛿
) (−𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) − 𝛽𝑥

2

3
sin (𝑥2) + ((𝛿 + 𝛽 cos (𝑥2))

⋅ (−𝛿ℎ1 − 𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽𝛿 (𝑥3 + 𝑥4)
2 sin (𝑥2) + 𝛽 cos (𝑥2) (𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥

2

3
sin (𝑥2))))

⋅ (𝛿 (−𝛼 + 𝛿) + 𝛽
2 cos (𝑥2)

2
)
−1

) = 𝑓3,4,

𝑥̇1 = 𝑥3 = 𝑓4,1,

𝑥̇2 = 𝑥4 = 𝑓4,2,

𝑥̇3 = (−𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽 cos (𝑥2) (ℎ2 + 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥
2

3
sin (𝑥2)) + 𝛿 (−ℎ1 + ℎ2 + 𝛽 (𝑥3 + 𝑥4)

2

⋅ sin (𝑥2))) ⋅ ((𝛼 − 𝛿) 𝛿 − 𝛽
2 cos (𝑥2)

2
)
−1

= 𝑓4,3,

𝑥̇4 = −(

(ℎ2 + 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥
2

3
sin (𝑥2))

𝛿
) + ((𝛿 + 𝛽 cos (𝑥2)) (−𝛿𝑔 (𝑙1𝑚2 + 𝑚1𝑟1) cos (𝑥1) + 𝛽 cos (𝑥2)

⋅ (ℎ2 + 𝑔𝑚2𝑟2 cos (𝑥1 + 𝑥2) + 𝛽𝑥
2

3
sin (𝑥2)) + 𝛿 (−ℎ1 + ℎ2 + 𝛽 (𝑥3 + 𝑥4)

2 sin (𝑥2)))) ⋅ (𝛿 (𝛿 (−𝛼 + 𝛿) + 𝛽
2

⋅ cos (𝑥2)
2
))
−1

= 𝑓4,4.

(41)

Moreover, four new variables, V𝑖 ∈ [0, 1], 𝑖 ∈ {1, 4}, such that
V1 + V2 + V3 + V4 = 1, must be introduced. Thus, (21) takes the
form

𝑥̇1 = V1𝑓1,1 + V2𝑓2,1 + V3𝑓3,1 + V4𝑓4,1,

𝑥̇2 = V1𝑓1,2 + V2𝑓2,2 + V3𝑓3,2 + V4𝑓4,2,

𝑥̇3 = V1𝑓1,3 + V2𝑓2,3 + V3𝑓3,3 + V4𝑓4,3,

𝑥̇4 = V1𝑓1,4 + V2𝑓2,4 + V3𝑓3,4 + V4𝑓4,4,

(42)

and the cost functional (22) is

𝐽𝐸 = 𝑡𝐹 − 𝑡𝐼. (43)

This objective functional fulfills the sufficient conditions for
the existence of a solution stated in Section 5.

Inequality constraints on the state variables have been
also considered. In particular, variable 𝜃2 has been bounded
to take into account possible range limitations of themechan-
ical system. Thus, the inequality constraints −𝜋 [rad] ≤ 𝜃2 ≤

𝜋 [rad] have been introduced in the model.
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Figure 9: This figure shows (in red) the control and state variables of the optimal solution obtained with the Eoc approach for the swing-
down maneuver for the Acrobot with brake. The corresponding sequence of configurations of the robot is represented in Figure 8. The same
figure shows (in black) the optimal solution of the same boundary value problem obtained with a Mmioc approach.

6.3.1. Swing to the Down Configuration. In this numerical
experiment theminimum time problem has been solved with
the following initial and final conditions:

𝜃1 (𝑡𝐼) =
𝜋

2
[rad] ,

𝜃1 (𝑡𝐹) = −
𝜋

2
[rad] ,

𝜃2 (𝑡𝐼) = 0 [rad] ,

𝜃2 (𝑡𝐹) = 0 [rad] ,

(44)

and ̇𝜃1(𝑡𝐼) =
̇𝜃1(𝑡𝐹) =

̇𝜃2(𝑡𝐼) =
̇𝜃2(𝑡𝐹) = 0 [rad/s]. The initial

time has been 𝑡𝐼 = 0.

The results obtained with both the Eoc and Mmioc
methods are reported in Table 5, Figures 10 and 12. Mode
1 has been represented in green, Mode 2 in blue, Mode
3 in orange, and Mode 4 in red. It is easy to see from
Figure 11 that the optimal sequence of modes obtained with
the Eoc method does not coincide with that obtained with
the Mmioc approach. As a consequence, the continuous
solutions do not coincide, as well. The value of the objective
functional for the optimal solution obtained with the Eoc
method has been 4.25354 [s] whereas the value obtained
with the Mmioc approach has been 5.00115 [J], higher than
the previous one. The computational time to find a solution
with the Eoc method has been 9.29855 [s], whereas it has
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Figure 10: Sequence of configurations of the optimal solution for the swing-down maneuver for the Brakebot. The configurations in which
the Brakebot operates inMode 1,Mode 2,Mode 3, andMode 4 are represented in green, blue, orange, and red, respectively.The corresponding
control and state variables are represented in Figure 7.
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Figure 11: This figure shows in different colors, namely, Mode 1 in green, Mode 2 in blue, Mode 3 in orange, and Mode 4 in red, the operating
modes of the optimal solution obtained with the Eoc approach for the swing-down maneuver for the Brakebot. The corresponding sequence
of configurations of the robot manipulator is represented in Figure 10. The same figure shows (in black) the operating modes of the optimal
solution obtained with a Mmioc approach.
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Figure 12: This figure shows (in red) the control and state variables of the optimal solution obtained with the Eoc approach for the swing-
down maneuver for the Brakebot. The corresponding sequence of configurations of the robot manipulator is represented in Figure 10. The
same figure shows (in black) the optimal solution of the same problem obtained with a Mmioc approach.

Table 5: Results for the swing-down maneuver for the Brakebot.

Method Minimum time [s] Resolution time [s] Sequence of modes Switching times [s]

Eoc 4.25354 9.29855 (1, 4, 2, 4, 2, 1, 3, 2, 3, 1, 3, 1, 2, 4, 2, 3, 4, 3, 1)

𝑡1 = 0.03323, 𝑡2 = 0.06646

𝑡3 = 0.09969, 𝑡4 = 0.23262

𝑡5 = 0.26585, 𝑡6 = 0.84738

𝑡7 = 0.89723, 𝑡8 = 1.03016

𝑡9 = 1.06339, 𝑡10 = 1.54523

𝑡11 = 1.92739, 𝑡12 = 2.40923

𝑡13 = 2.49231, 𝑡14 = 2.69170

𝑡15 = 2.72493, 𝑡16 = 3.88801

𝑡
17
= 4.18708, 𝑡

18
= 4.25354

Mmioc 5.00115 1270.4665 (1, 4, 1, 3, 4)

𝑡1 = 2.26549

𝑡2 = 3.14850

𝑡3 = 3.44436

𝑡
4
= 3.80418

been 1270.4665 [s] with the Mmioc approach, much higher
than the previous one.

6.4. Computational Issues. In the Eoc approach the Nlp
solver Ipopt [24] has been used (https://projects.coin-or.org/
Ipopt), whereas in the Mmioc approach the Minlp solver
Bonmin [25] has been used (https://projects.coin-or.org/
Bonmin).

With both approaches an initial guess of the optimal
solution had to be generated. However, with the Mmioc
method this generation is much more difficult since, besides
the optimal continuous part of the solution, the optimal
number of phases, the optimal switching times between them,
and the optimal sequence of modes have to be estimated.The
initial guess of the optimal switching times has been calcu-
lated assuming phases of equal duration.TheMmiocmethod
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has shown high sensitivity to the initial guess of the optimal
sequence of modes. Additionally, phases of zero length had
to be eliminated. Therefore an iterative procedure has been
implemented to select the best initial guess and to reduce
the number of phases whenever a phase of zero duration
appeared in the solution. The numerical experiments have
been carried out on a 2.8GHz Intel Core i7 computer with
the Mac OS X Version 10.10.1 operating system and 16Gb
RAM. The Eoc approach has always found solutions with
lower or similar performance index than theMmiocmethod,
and in shorter computational time, especially in the case with
four operating modes. Indeed, when the number of modes
increases, theMmiocmethod becomes slower since it suffers
from drawbacks due to the inherent combinatorial nature of
the problem, whereas the Eoc approach does not.

7. Conclusions

In this paper, the embedding approach has been used to
efficiently solve optimal control problems for planar under-
actuated robot manipulators with two revolute joints and
brakes at the unactuated joints, and in the presence of gravity.
The control problem of these switched dynamical systems is
particularly difficult to solve due to the combinatorial nature
of the problem and to the presence of nonholonomic differ-
ential constraints. It has been shown that this method does
not require using integer variables or computing the optimal
switching times. It requires neither guessing the number of
modes nor the initial sequence of modes. The results of the
numerical experiments have shown the effectiveness of the
embedding approach in solving optimal control problems of
underactuated mechanical systems.
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