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The development of a control strategy appropriate for the suppression of aeroelastic vibration of a two-dimensional nonlinear wing
section based on iterative learning control (ILC) theory is described. Structural stiffness in pitch degree of freedom is represented
by nonlinear polynomials. The uncontrolled aeroelastic model exhibits limit cycle oscillations beyond a critical value of the free-
stream velocity. Using a single trailing-edge control surface as the control input, a ILC law under alignment condition is developed
to ensure convergence of state tracking error. A novel Barrier Lyapunov Function (BLF) is incorporated in the proposed Barrier
Composite Energy Function (BCEF) approach. Numerical simulation results clearly demonstrate the effectiveness of the control
strategy toward suppressing aeroelastic vibration in the presence of parameter uncertainties and triangular, sinusoidal, and graded
gust loads.

1. Introduction

Aeroelasticity is the field of study that deals with the inter-
action of structural, inertial, and aerodynamic loads. When
combined, these loads may encounter adverse instabilities,
such as flutter. Within classic aeroelastic theories, linear
assumptions are made for the aerodynamics and the struc-
tures, and the aeroelastic problem is usually reduced to
the straightforward solution of linear coupled equations [1].
However, the assumption of a linear and known structure, as
well as the often oversimplified aerodynamic model, usually
leads to inaccurate results.

In many cases, transonic dip, flow separation, and
dynamic stall can introduce aerodynamic phenomena that
classical aeroelasticity is unable to handle. One example is
the transonic dip that linear aerodynamics cannot detect. In
addition, flow separation and shock oscillations are beyond
the capability of classic aeroelasticity [2]. Nonlinear aerody-
namic effects are more difficult to analyze in a theoretical
fashion, because the dynamics of flow is governed by the full
potential, Euler, and Navier-Stokes formulations where ana-
lytical solutions are practically nonexistent [2, 3]. By contrast,
structural nonlinearities arising from worn hinges of control

surfaces, loose control linkages, and material behavior, as
well as various other sources, can significantly complicate the
wing dynamics. With structural nonlinearities, the aeroelas-
tic system may exhibit various phenomena, including insta-
bility, limit cycle oscillations (LCOs), and chaotic vibration
[4, 5]. This topic has been extensively analyzed and reviewed
[2]. Wind tunnel experiments, primarily for a typical airfoil
section and beam-like wings, can validate the results from
numerical or theoretical schemes. In particular, Dowell and
colleagues at Duke University [6, 7] and Ko and colleagues at
Texas A&MUniversity [8] have made several significant con-
tributions.These researchers designed and installed an aeroe-
lasticmodelingwith control surface freeplay and even created
a periodic or a linear frequency sweep gust excitation in some
experiments. Through these experimental facilities, a series
of theoretical and experimental studies involving flutter and
LCOs, as well as gust responses and alleviation, have been
completed.

Several studies have focused on developing strategies
to suppress flutter by active control. Control strategies to
suppress flutter rely on the use of control surfaces, particularly
for the two-dimensional wing sectionwith structural stiffness
nonlinearity. For example, a classical linear full-state feedback

Hindawi Publishing Corporation
International Journal of Aerospace Engineering
Volume 2015, Article ID 237804, 13 pages
http://dx.doi.org/10.1155/2015/237804



2 International Journal of Aerospace Engineering

controller was developed, which guaranteed the wing section
system with nonlinear stiffness to stabilize in some circum-
stances [9]. Bhoir and Singh designed a backstepping-based
output feedback nonlinear control strategy for flutter sup-
pression in [10]. Lee and Singh [11] proposed nonlinear con-
troller for the aeroelastic system using 𝐿

1
adaptive feedback

technique.The state-dependent Riccati equationmethod was
developed for nonlinear control problems, which was used
to design suboptimal control laws of nonlinear aeroelastic
systems considering a quasi-steady and unsteady aeroelastic
model [12, 13].

A considerable number of studies have dealt with the
influence of uncertainty on aeroelastic response prediction.
Pettit [14] briefly described general sources of uncertainty
that complicate airframe design and testing. In particular,
parametric uncertainty in nonlinear pitch stiffness has been
modeled in the third- and fifth-order coefficients. Generally,
uncertainties are specified in the cubic coefficient of the
torsional spring and in the initial pitch angle of the airfoil.
Beran et al. [15] applied standard probability concepts and
Monte Carlo simulation to the study of the LCO of an airfoil
with a nonlinear pitch spring.When the uncertainty was con-
sidered, adaptive controllers based on partial or full feedback
linearization were derived, which were effective for flutter
suppression [16]. Experimental results obtained using the
adaptive control systemwere presented in [17], which verified
the validity of the proposed method in [16]. Also, for a class
of uncertain nonlinear multivariable systems, a higher-order
sliding-mode control law for the finite-time control has been
developed [18]. Motivated by the limited effectiveness of
using a single control surface, improvements in the perfor-
mance of the adaptive controller were investigated through
multiple control surfaces [19]. An output feedback control
law has been implemented to suppress flutter and adaptively
compensate for uncertainties in all the aeroelastic model
parameters [20]. Inmost of the available literature, only para-
metric uncertainty in pitch stiffness has been considered.The
damping uncertainty in the airframe structure and control
system is inevitable [21]. Li et al. [22] designed an adaptive
control law for flutter suppression of a nonlinear aeroelastic
system with damping uncertainty.

Recently, a new iterative learning control (ILC) theory
has been developed for the control of uncertain nonlinear
systems [23]. This design uses a Barrier Composite Energy
Function (BCEF) method with a novel Barrier Lyapunov
Function (BLF).The prerequisite for the ILC presented in the
design is based on the alignment condition. This is different
fromRepetitive Control (RC) andmerely requires the time to
be reset. Nonetheless, in conventional ILC, a constant initial
condition must be met in conventional ILC, that is, the time
and statemust be reset at the beginning of each iteration.This
design approach has been applied for robotic manipulators
and the other industrial control [24–28]. Several control
systems for the prototypical wing section of Block and Str-
ganac [9] have been designed in the past, but the application
of ILC theory for this model has not been attempted. As
such, it is of interest to develop an ILC flutter controller for
the prototypical plunge-pitch 2D aeroelastic system in the
presence of gust loads.
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Figure 1: Aeroelastic model.

In this paper, the design of a control system for the stabi-
lization of an aeroelastic system in the presence of parameter
uncertainties and gust loads is considered.Thedesign is based
on ILC control theory. The model has pitch polynomial-type
structural nonlinearities and describes the plunge and pitch
motion of a wing section with a single control surface. The
aeroelastic model has quasi-steady linear aerodynamics. A
new ILC scheme is derived for a nonlinear system with both
parametric and nonparametric uncertainties under align-
ment condition. A BLF is incorporated in the proposed BCEF
approach. Under the proposed control scheme, uniform state
tracking error convergence is guaranteed. Simulation results
show that the controller suppresses the oscillatory motion of
the system, despite uncertainties and triangular, exponential,
and sinusoidal gust loads. The main contributions of this
work are the following: (1) the authors present rigorousmath-
ematical proof and simulation results utilizing the recently
developed iterative learning control (ILC) theory as intro-
duced in [23], (2) BLF is incorporated with BCEF to handle
ILC problems under alignment condition, (3) both paramet-
ric and nonparametric nonlinear uncertainties can be han-
dled by the proposed control scheme, and (4) compared to
the conventional sliding mode control design, the proposed
method has good performance in tracking the pitch angle and
plunge displacement trajectories.

2. Aeroelastic Model and Control Problem

Figure 1 shows the aeroelastic model. A prototype of this
model has been developed in [17]. The second-order differ-
ential equations governing the evolution of the pitch angle
𝛼 (take the clockwise direction as positive) and the plunge
displacement ℎ (take the downward direction as positive)
including the gust load are given by
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(1)

where 𝑚
𝑤
is the mass of the wing section, 𝑚

𝑡
is the total

mass, and 𝑏 is the semichord of the wing.The parameter 𝐼
𝛼
is
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themoment of inertia, 𝑥
𝑎
is the nondimensionalized distance

of the center ofmass from the elastic axis, and 𝑐
𝛼
and 𝑐
ℎ
are the

pitch and plunge damping coefficients, respectively.𝑀 and 𝐿

are the aerodynamicmoment and lift, respectively. Assuming
a quasi-steady aerodynamic model, the aerodynamic lift and
moment coefficients are expressed by
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where 𝑎 is the nondimensionalized distance from the mid-
chord to the elastic axis; 𝑠

𝑝
is the span; 𝑐

𝑙
𝛼

and 𝑐
𝑚
𝛽

are the
lift and moment coefficients per angle of attack, respectively;
𝑐
𝑙
𝛽

and 𝑐
𝑚
𝛽

are the lift and moment coefficients per control
surface deflection 𝛽 (take the clockwise direction as positive),
respectively; and 𝑐

𝑚
𝛼-eff

and 𝑐
𝑚
𝛽-eff

are the effective dynamic and
control moment derivatives, respectively.

The aerodynamic force andmoment due to the wind gust
is modelled as [29]
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where 𝑤
𝐺
(𝜏) denotes the disturbance velocity and 𝜏 is a

dimensionless time variable defined as 𝜏 = 𝑈𝑡/𝑏.
The nonlinear function 𝑘
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in 𝛼 given by
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where 𝑘
𝑎
𝑗

is constant, 𝑛󸀠 = 5.
Equations (1) and (2) are combined to form the following

compact state-space form:
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In this study, with allowance for the uncertainty of

stiffness parameters, formula (5) can be expressed as follows:

ẋ = g + B [𝑢 + 𝜃𝜉 + d] , (7)

where g denotes the part containing known parameters;
𝜃 = (B𝑇B)

−1B𝑇𝜃󸀠 indicates the matrix related to nonlinear
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and the system variables are as follows:
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Based on the knowledge of the structure of the aeroelastic
model, the control objective is to design a control strategy
that drives the pitch angle 𝛼 and plunge displacement ℎ to
zero while adaptively compensating for uncertainties and
external disturbances in the system model. In the next
section, we show through the theoretical analysis that, under
the perturbation of system uncertainties, convergence of state
tracking error can be guaranteed. An aeroelastic state space
representation, as expressed in (7) above, requires angle 𝛽

against the trailing edge, as control input for suppressingwing
section flutter. Let x = [ℎ, 𝛼, ℎ̇, 𝛼̇]

𝑇 be the controlled state vec-
tor.The tracking error e(𝑡) ∈ 𝑅

2 for the aeroelastic system can
be defined as e ≜ x − x

𝑑
. In this study, x

𝑑
∈ 𝑅
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state vector. Given that the control objective is to suppress the
aeroelastic vibrations, x

𝑑
will be zero for all time periods.

3. Control Design and Convergence Analysis

The equation of motion can be expressed as
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where 𝑖 denotes the number of iterations; x ≜ x(𝑡) ∈ 𝑅
𝑛×1 is

a vector of system states; g
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signal; and 𝑡 ∈ [0, 𝑇], where 𝑇 > 0 is the operation time
in each iteration.

Remark 1. For the two-dimensional wing section with struc-
tural stiffness nonlinearity, parametric uncertainty was mod-
eled in the third- and fifth-order stiffness coefficients of the
pitch spring. Hence, in this work 𝜉 is parametric uncertainty.
In contrast, in [24], 𝜃 is parametric uncertainty.
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is locally Lipschitz continuous in x; that is,
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functions and ‖x‖ is a Euclidean norm for vector x ∈ 𝑅
𝑛.
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Assumption 3. There exists a Barrier Lyapunov Function
(BLF) 𝑉 and a nonnegative class-𝐾 function 𝛾, such that,
for a vector 𝜎 ∈ 𝑅
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𝑏
,
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The state tracking error at the 𝑖th iteration is defined as
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(𝑡). Notice that, under alignment condition,

x
𝑖
(0) = x

𝑖−1
(𝑇), we have

e
𝑖
(0) ≜ x

𝑖
(0) − x

𝑑
(0) = x

𝑖−1
(𝑇) − x

𝑑
(𝑇) = e

𝑖−1
(𝑇) . (13)

In order to achieve state tracking error convergence, the
control law with ILC scheme in each iteration is proposed as

𝑢
𝑖
=

{{

{{

{

−𝜃
𝑖
𝜉̂
𝑖
− d̂
𝑖
−

a𝑇
𝑖

(1 − 𝜀)
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩

(𝜑
𝑖

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩 + 𝜆
𝑖

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑖
𝜉̂
𝑖

󵄩󵄩󵄩󵄩󵄩
+ 𝜆
𝑖

󵄩󵄩󵄩󵄩󵄩
d̂
𝑖

󵄩󵄩󵄩󵄩󵄩
) , a

𝑖
̸= 0,

−𝜃
𝑖
𝜉̂
𝑖
− d̂
𝑖
, a

𝑖
= 0,

(14)

𝜉̂
𝑖
= Ρ
𝜉
[𝜉̂
𝑖−1

] + 𝑝𝜃
𝑇

𝑖
a𝑇
𝑖
, 𝜉̂
0
= 0, (15)

d̂
𝑖
= Ρ
𝑑
[d̂
𝑖−1

] + 𝑞a𝑇
𝑖
, d̂
0
= 0, (16)

where 𝑝, 𝑞 are positive ILC gains, 𝜑
𝑖

≜ 𝜑(x
𝑖
, x
𝑑
, 𝑡), a
𝑖

≜

𝜕𝑉
𝑇
/𝜕e
𝑖
B
𝑖
∈ 𝑅
1×𝑚, and Ρ

𝜉
, Ρ
𝑑
represent projection operation

such that

Ρ
𝜉
[𝜉̂] = [Ρ

𝜉
[𝜉
1
] , . . . , Ρ

𝜉
[𝜉
𝑙
]]
𝑇

,

Ρ
𝜉
[𝜉
𝑥
] =

{

{

{

𝜉
𝑥
,

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑥

󵄨󵄨󵄨󵄨󵄨
≤ 𝜉
𝑥
,

sgn (𝜉
𝑥
) 𝜉
𝑥
,

󵄨󵄨󵄨󵄨󵄨
𝜉
𝑥

󵄨󵄨󵄨󵄨󵄨
> 𝜉
𝑥
,

𝑥 = 1, . . . , 𝑙,

Ρ
𝑑
[d̂] = [Ρ

𝑑
[𝑑
1
] , . . . , Ρ

𝑑
[𝑑
𝑚
]]
𝑇

,

Ρ
𝑑
[𝑑
𝑗
] =

{

{

{

𝑑
𝑗
,

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑑
𝑗
,

sgn (𝑑
𝑗
) 𝑑
𝑗
,

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑗

󵄨󵄨󵄨󵄨󵄨
> 𝑑
𝑗
,

𝑗 = 1, . . . , 𝑚,

(17)

where sgn is the sign function defined as

sgn (⋅) =

{

{

{

1, if ⋅ > 0,

−1, if ⋅ ≤ 0.

(18)

Assumption 4. The projection bound satisfies the following
condition: |𝜉

𝑥
|sup ≤ 𝜉

𝑥
, and |𝑑

𝑗
|sup ≤ 𝑑

𝑗
, 𝑥 = 1, . . . , 𝑙; 𝑗 =

1, . . . , 𝑚.
We introduce a nonnegative Barrier Composite Energy

Function (BCEF) to facilitate the analysis

𝐸
𝑖
(𝑡) = 𝑉

1

𝑖
(𝑡) + 𝑉

2

𝑖
(𝑡) + 𝑉

3

𝑖
(𝑡) , (19)

𝑉
2

𝑖
(𝑡) =

1

2𝑝
∫

𝑡

0

(𝜉 − 𝜉̂
𝑖
)
𝑇

(𝜉 − 𝜉̂
𝑖
) 𝑑𝜏, (20)

𝑉
3

𝑖
(𝑡) =

1

2𝑞
∫

𝑡

0

(d − d̂
𝑖
)
𝑇

(d − d̂
𝑖
) 𝑑𝜏, (21)

and 𝑉
1

𝑖
(𝑡) ≜ 𝑉(e

𝑖
(𝑡)) is any BLF satisfying Assumption 2.

Remark 5. In this work, we adapt a BLF in [24] as

𝑉 =
𝑘
2

𝑏

𝜋
tan(

𝜋e𝑇e
2𝑘
2

𝑏

) , ‖e (0)‖ < 𝑘
𝑏
, (22)

which is also positive and will approach to infinity as ‖e‖ →

𝑘
𝑏
, where 𝑘

𝑏
is the predefined bound. From analysis that will

be presented later, by BCEF, and keeping it bounded in close
loop, we will guarantee convergence of state tracking error.

Theorem 6. For system (10) under alignment condition and
control law proposed as (14) and two ILC laws as (15) and
(16), the uniform convergence of the state tracking error e

𝑖
is

guaranteed over [0, 𝑇], as iteration index 𝑖 → ∞.

Proof. Consider the difference of BCEF (19) between two
consecutive iterations at time 𝑡 = 𝑇:

Δ𝐸
𝑖
(𝑇) ≜ 𝐸

𝑖
(𝑇) − 𝐸

𝑖−1
(𝑇)

= Δ𝑉
1

𝑖
(𝑇) + Δ𝑉

2

𝑖
(𝑇) + Δ𝑉

3

𝑖
(𝑇) ;

(23)

we have

Δ𝑉
1

𝑖
(𝑇) ≜ 𝑉 (e

𝑖
(𝑇)) − 𝑉 (e

𝑖−1
(𝑇))

= 𝑉 (e
𝑖
(0)) + ∫

𝑇

0

(
𝜕𝑉
𝑇

𝜕e
𝑖

ė
𝑖
)𝑑𝜏

− 𝑉 (e
𝑖−1

(𝑇))

= ∫

𝑇

0

𝜕𝑉
𝑇

𝜕e
𝑖

{g
𝑖
+ B
𝑖
[𝑢
𝑖
+ 𝜃
𝑖
𝜉 + d
𝑖
]} 𝑑𝜏

≤ ∫

𝑇

0

−𝛾 (
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩) + a
𝑖
[𝑢
𝑖
+ 𝜃
𝑖
𝜉 + d
𝑖
] 𝑑𝜏.

(24)

Notice that, in the case of a
𝑖
= 0, we have

Δ𝑉
1

𝑖
(𝑇) ≤ ∫

𝑇

0

−𝛾 (
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩) 𝑑𝜏.
(25)
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When a
𝑖

̸= 0, owing to the relationships I = (1 − 𝜀)I + 𝜀I and
a
𝑖
𝜀Ia𝑇
𝑖

≥ 0, the following can be obtained:

−
a
𝑖
a𝑇
𝑖

(1 − 𝜀)
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩

= −
a
𝑖
(1 − 𝜀) Ia𝑇

𝑖

(1 − 𝜀)
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩

−
a
𝑖
𝜀Ia𝑇
𝑖

(1 − 𝜀)
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩

≤ −
a
𝑖
(1 − 𝜀) Ia𝑇

𝑖

(1 − 𝜀)
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩

= −
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩 .

(26)

Therefore, for the second termof (24), substituting the control
law (14) into the integrand

a
𝑖
[𝑢
𝑖
+ 𝜃
𝑖
𝜉 + d
𝑖
] ≤ −a

𝑖
𝜃
𝑖
𝜉̂
𝑖
− a
𝑖
d̂
𝑖
+ a
𝑖
𝜃
𝑖
𝜉 + a
𝑖
d
𝑖

−
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩 𝜑
𝑖

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩a𝑖
󵄩󵄩󵄩󵄩 𝜆
𝑖

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑖
𝜉̂
𝑖

󵄩󵄩󵄩󵄩󵄩

−
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩 𝜆
𝑖

󵄩󵄩󵄩󵄩󵄩
d̂
𝑖

󵄩󵄩󵄩󵄩󵄩

≤ a
𝑖
𝜃
𝑖
(𝜉 − 𝜉̂

𝑖
) + a
𝑖
(d
𝑖
− d̂
𝑖
)

−
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩 𝜑
𝑖

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩 ,

(27)

we obtain

Δ𝑉
1

𝑖
(𝑇) ≤ ∫

𝑇

0

−𝛾 (
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩) 𝑑𝜏 + ∫

𝑇

0

a
𝑖
𝜃
𝑖
(𝜉 − 𝜉̂

𝑖
) 𝑑𝜏

+ ∫

𝑇

0

a
𝑖
(d
𝑖
− d̂
𝑖
) 𝑑𝜏 − ∫

𝑇

0

󵄩󵄩󵄩󵄩a𝑖
󵄩󵄩󵄩󵄩 𝜑
𝑖

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩 𝑑𝜏.

(28)

For Δ𝑉
2

𝑖
(𝑇) and Δ𝑉

3

𝑖
(𝑇), applying the property (c − a)𝑇(c −

a) − (c − b)𝑇(c − b) = (a − b)𝑇(a + b − 2c) for vectors a,
b, c with the same dimension, and (𝜉 − 𝜉̂

𝑖−1
)
𝑇
(𝜉 − 𝜉̂

𝑖−1
) ≥

(𝜉 − Ρ
𝜉
[𝜉̂
𝑖−1

])
𝑇
(𝜉 − Ρ

𝜉
[𝜉̂
𝑖−1

]), as well as (d − d̂
𝑖−1

)
𝑇
(d − d̂

𝑖−1
) ≥

(d − Ρ
𝑑
[d̂
𝑖−1

])
𝑇
(d − Ρ

𝑑
[d̂
𝑖−1

]), we have

Δ𝑉
2

𝑖
(𝑇)

≤
1

2𝑝
∫

𝑇

0

(𝜉 − 𝜉̂
𝑖
)
𝑇

(𝜉 − 𝜉̂
𝑖
) 𝑑𝜏

−
1

2𝑝
∫

𝑇

0

(𝜉 − Ρ
𝜉
[𝜉̂
𝑖−1

])
𝑇

(𝜉 − Ρ
𝜉
[𝜉̂
𝑖−1

]) 𝑑𝜏

=
1

2𝑝
∫

𝑇

0

(𝜉̂
𝑖
− Ρ
𝜉
[𝜉̂
𝑖−1

])
𝑇

(2 (𝜉̂
𝑖
− 𝜉) − 𝑝𝜃

𝑇

𝑖
a𝑇
𝑖
) 𝑑𝜏

≤ ∫

𝑇

0

a
𝑖
𝜃
𝑖
(𝜉̂
𝑖
− 𝜉) 𝑑𝜏,

(29)

Δ𝑉
3

𝑖
(𝑇)

≤
1

2𝑞
∫

𝑇

0

(d
𝑟
− d̂
𝑖
) (d
𝑟
− d̂
𝑖
) 𝑑𝜏

−
1

2𝑞
∫

𝑇

0

(d
𝑟
− Ρ
𝑑
[d̂
𝑖−1

])
𝑇

(d
𝑟
− Ρ
𝑑
[d̂
𝑖−1

]) 𝑑𝜏

=
1

2𝑞
∫

𝑇

0

(d̂
𝑖
− Ρ
𝑑
[d̂
𝑖−1

])
𝑇

2 ((d̂
𝑖
− d
𝑟
) − 𝑞a𝑇

𝑖
) 𝑑𝜏

≤ ∫

𝑇

0

a
𝑖
(d̂
𝑖
− d
𝑟
) 𝑑𝜏,

(30)

where a
𝑖
d̂
𝑖
cancels in (30) and (27).

Hence, combining all terms from (27)–(30) yields

Δ𝐸
𝑖
(𝑇) ≤ ∫

𝑇

0

−𝛾 (
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩) 𝑑𝜏 − ∫

𝑇

0

󵄩󵄩󵄩󵄩a𝑖
󵄩󵄩󵄩󵄩 𝜑
𝑖

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩 𝑑𝜏

+ ∫

𝑇

0

a
𝑖
(d
𝑖
− d
𝑟
) 𝑑𝜏.

(31)

Since a
𝑖
(d
𝑖
− d
𝑟
) ≤ ‖a

𝑖
‖‖d
𝑖
− d
𝑟
‖ ≤ ‖a

𝑖
‖𝜑
𝑖
‖e
𝑖
‖, therefore,

Δ𝐸
𝑖
(𝑇) ≤ −∫

𝑇

0

𝛾 (
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩) 𝑑𝜏,
(32)

which indicates that the BCEF defined at 𝑡 = 𝑇 is monotoni-
cally decreasing over iteration domain.

To prove the finiteness of the time derivative of BCEF for
any iteration, for any iteration index 𝑖, we have

𝐸̇
1
(𝑡) = 𝑉̇

1

1
(𝑡) + 𝑉̇

2

1
(𝑡) + 𝑉̇

3

1
(𝑡) . (33)

Similar to (28), for 𝑉̇
1

1
(𝑡) we have

𝑉̇
1

1
(𝑡) ≤ −𝛾 (

󵄩󵄩󵄩󵄩e1
󵄩󵄩󵄩󵄩) + a

1
𝜃
1
(𝜉 − 𝑝𝜃

𝑇

1
a𝑇
1
)

+ a
1
(d
1
− 𝑞a𝑇
1
) −

󵄩󵄩󵄩󵄩a1
󵄩󵄩󵄩󵄩 𝜑
1

󵄩󵄩󵄩󵄩e1
󵄩󵄩󵄩󵄩 ,

(34)

where we substitute updating law (15) and (16) with 𝑖 = 1.
For 𝑉̇

2

1
(𝑡) and 𝑉̇

3

1
(𝑡), we have

𝑉̇
2

1
(𝑡) =

1

2𝑝
(𝜉 − 𝜉

1
)
𝑇

(𝜉 − 𝜉
1
)

=
1

2𝑝
𝜉
𝑇
𝜉 − a
1
𝜃
1
𝜉 +

𝑝

2
a
1
𝜃
1
𝜃
𝑇

1
a𝑇
1
,

𝑉̇
3

1
(𝑡) =

1

2𝑞
(d
𝑟
− d̂
1
)
𝑇

(d
𝑟
− d̂
1
)

=
1

2𝑞
d𝑇
𝑟
d
𝑟
− a
1
d
𝑟
+

𝑞

2
a
1
a𝑇
1
;

(35)

hence

𝐸̇
1
(𝑡) ≤ −𝛾 (

󵄩󵄩󵄩󵄩e1
󵄩󵄩󵄩󵄩) −

𝑝

2
a
1
𝜃
1
𝜃
𝑇

1
a𝑇
1
−

𝑞

2
a
1
a𝑇
1
+

1

2𝑝
𝜉
𝑇
𝜉

+
1

2𝑞
d𝑇
𝑟
d
𝑟
< ∞,

(36)
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and since 𝜉 and d
𝑟
are finite with respect to finite 𝑡 and x

𝑑
,

(36) indicates that 𝐸
1
(𝑡) is finite.

For any iterations 𝑖 > 2, we have

𝐸̇
𝑖
(𝑡) = 𝑉̇

1

𝑖
(𝑡) + 𝑉̇

2

𝑖
(𝑡) + 𝑉̇

3

𝑖
(𝑡) . (37)

Notice that, similar to (28), we can derive

𝑉̇
1

𝑖
(𝑡) ≤ −𝛾 (

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩) + a

𝑖
𝜃
𝑖
(𝜉 − 𝜉̂

𝑖
) + a
𝑖
(d
𝑖
− d̂
𝑖
)

−
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩 𝜑
𝑖

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩 .

(38)

For 𝑉̇
2

𝑖
(𝑡) and 𝑉̇

3

𝑖
(𝑡), we have

𝑉̇
2

𝑖
(𝑡) =

1

2𝑝
(𝜉 − 𝜉̂

𝑖
)
𝑇

(𝜉 − 𝜉̂
𝑖
) =

1

2𝑝
{𝜉
𝑇
𝜉

− 2𝜉
𝑇
Ρ
𝜉
[𝜉̂
𝑖−1

] + Ρ
𝜉
[𝜉̂
𝑖−1

]
𝑇

Ρ
𝜉
[𝜉̂
𝑖−1

]

+ 2𝑝a
𝑖
𝜃
𝑖
(𝜉̂
𝑖
− 𝜉) − 𝑝

2
(𝜃
𝑇

𝑖
a𝑇
𝑖
)
𝑇

(𝜃
𝑇

𝑖
a𝑇
𝑖
)} ,

𝑉̇
3

𝑖
(𝑡) =

1

2𝑞
(d
𝑟
− d̂
𝑖
)
𝑇

(d
𝑟
− d̂
𝑖
) =

1

2𝑞
{d𝑇
𝑟
d
𝑟

− 2d𝑇
𝑟
Ρ
𝑑
[d̂
𝑖−1

] + Ρ
𝑑
[d̂
𝑖−1

]
𝑇

Ρ
𝑑
[d̂
𝑖−1

]

+ 2𝑞a
𝑖
𝜃
𝑖
(d̂
𝑖
− d
𝑟
) − 𝑞
2a𝑇
𝑖
a
𝑖
} .

(39)

Notice 𝜉𝑇𝜉 − 2𝜉
𝑇
Ρ
𝜉
[𝜉̂
𝑖−1

] + Ρ
𝜉
[𝜉̂
𝑖−1

]
𝑇
Ρ
𝜉
[𝜉̂
𝑖−1

] is a finite term
and denote its trace by 𝐷

1
, and 𝐷

2
= d𝑇
𝑟
d
𝑟
− 2d𝑇
𝑟
Ρ
𝑑
[d̂
𝑖−1

] +

Ρ
𝑑
[d̂
𝑖−1

]
𝑇
Ρ
𝑑
[d̂
𝑖−1

] is also a finite term. Hence we get

𝑉̇
2

𝑖
(𝑡) =

𝐷
1

2𝑝
+ a
𝑖
𝜃
𝑖
(𝜉̂
𝑖
− 𝜉) −

𝑝

2
(𝜃
𝑇

𝑖
a𝑇
𝑖
)
𝑇

(𝜃
𝑇

𝑖
a𝑇
𝑖
) ,

𝑉̇
3

𝑖
(𝑡) =

𝐷
2

2𝑞
+ a
𝑖
𝜃
𝑖
(d̂
𝑖
− d
𝑟
) −

𝑞

2
a𝑇
𝑖
a
𝑖
𝑎
𝑖
.

(40)

Since in (38)

−
󵄩󵄩󵄩󵄩a𝑖

󵄩󵄩󵄩󵄩 𝜑
𝑖

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩 ≤ 0, (41)

therefore, we can obtain

𝐸̇
𝑖
(𝑡) = 𝑉̇

1

𝑖
(𝑡) + 𝑉̇

2

𝑖
(𝑡) + 𝑉̇

3

𝑖
(𝑡) ≤

𝐷
1

2𝑝
+

𝐷
2

2𝑞
< ∞. (42)

The initial value of BCEF at 𝑖th iteration 𝐸
𝑖
(0) = 𝑉

1

𝑖
(e
𝑖
(0)).

Since e
𝑖
(0) = e

𝑖−1
(𝑇), and e

𝑖−1
(𝑇) can be proved to be

bounded by showing that BCEF is bounded in the (𝑖 − 1)th
iteration. The boundedness of 𝐸̇

𝑖
(𝑡) and 𝐸

𝑖
(0) implies the

boundedness of𝐸
𝑖
(𝑡), which guarantees that the boundedness

of 𝑉
1

𝑖
(𝑡) will be guaranteed; therefore, ‖e

𝑖
(𝑡)‖ < 𝑘

𝑏
will be

ensured for any time in all iterations.
From (42), we have

lim
𝑖→∞

𝐸
𝑖
(𝑇) = 𝐸

1
(𝑇) +

𝑖

∑

𝑘=2

Δ𝐸
𝑘
(𝑇)

≤ 𝐸
1
(𝑇) − lim

𝑖→∞

𝑖

∑

𝑘=2

∫

𝑇

0

𝛾 (
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩) 𝑑𝜏.

(43)
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Figure 2: External disturbances: (a) sinusoidal gust; (b) triangular
gust; (c) graded gust.

Since 𝐸
𝑖
(𝑇) is positive and 𝐸

1
(𝑇) is bounded,

lim
𝑖→∞

∑
𝑖

𝑘=2
∫
𝑇

0
𝛾(‖e
𝑖
‖)𝑑𝜏 converges, as 𝑖 → ∞; namely,

lim
𝑖→∞

∫

𝑇

0

𝛾 (
󵄩󵄩󵄩󵄩e𝑖

󵄩󵄩󵄩󵄩) 𝑑𝜏 = 0. (44)

Therefore, we can conclude that state tracking error e
𝑖

converges to zero uniformly; that is,

lim
𝑖→∞

󵄩󵄩󵄩󵄩e𝑖
󵄩󵄩󵄩󵄩 = 0, ∀𝑡 ∈ [0, 𝑇] . (45)

4. Simulation Results

This section describes the numerical simulations performed
to validate the above control law design. The model parame-
ters taken from [17] are collected in Table 1.

The velocity distributions of 𝑤
𝐺
(𝜏) for simulation are

assumed to be (1) a triangular gust, (2) a sinusoidal gust, and
(3) a graded gust. For the triangular disturbance input, one
has

𝑤
𝐺
(𝜏)

= 2𝑤
0

𝜏

𝜏
𝐺

(𝐻 (𝜏) − 𝐻(𝜏 −
𝜏
𝐺

2
))

+ 2𝑤
0
(

𝜏

𝜏
𝐺

− 1)(𝐻 (𝜏 − 𝜏
𝐺
) − 𝐻(𝜏 −

𝜏
𝐺

2
)) ,

(46)

where 𝐻(⋅) denotes the unit step function, 𝜏
𝐺

= 𝑈𝑡
𝐺
/𝑏,

𝑡
𝐺

= 0.5 s, and 𝑤
0
= 0.7. The sinusoidal and graded velocity

distributions are

𝑤
𝐺
(𝜏) = 𝑤

0
sin(

6𝜋𝜏

𝜏
𝐺

) (𝐻 (𝜏) − 𝐻 (𝜏 − 𝜏
𝐺
)) ,

𝑤
𝐺
(𝜏) = 𝐻 (𝜏)𝑤

0
(1 − 𝑒

−0.75𝜏/3
) ,

(47)

where 𝜏
𝐺

= 𝑈𝑡
𝐺
/𝑏, 𝑡
𝐺

= 1, and 𝑤
0
= 0.07.
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Figure 3: Open-loop LCO in the open-loop system: (a), (b) ℎ (m) and 𝛼 (rad) under triangular gust for 𝑤
0
= 0.7, 𝑈 = 10m/s; (c), (d) ℎ (m)

and 𝛼 (rad) under graded gust for 𝑤
0
= 0.07, 𝑈 = 16m/s; (e), (f) ℎ (m) and 𝛼 (rad) under sinusoidal gust for 𝑤

0
= 0.07, 𝑈 = 16m/s.
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Figure 4: ILC control for triangular gust, 𝑤
0
= 0.7, 𝑈 = 10m/s: (a)

plunge displacement ℎ (m); (b) pitch angle 𝛼 (rad); (c) control input
𝛽 (rad).

In this example, the desired trajectory variable 𝑥
𝑑

is simply selected as zero. The initial conditions for
pitch angle 𝛼(𝑡) and plunge displacement ℎ(𝑡) are set
to be 𝛼(0) = 0.1 rad and ℎ(0) = 0.02m, respectively.
All other state variables are also selected as zero. Here
the nominal values of the unknown 𝑘

𝑎
𝑗

are given as
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Figure 5: ILC control for triangular gust, 𝑤
0

= 2, 𝑈 = 16m/s: (a)
plunge displacement ℎ (m); (b) pitch angle 𝛼 (rad); (c) control input
𝛽 (rad).

{𝑘
𝑎
𝑗

} = [6.8614 7.8480 663.2887 65.2752 −4992.7944]
𝑇.

The upper bounds for the uncertain
parameter 𝜉 are arbitrarily selected as {𝜉

𝑥
} =

[6.9614 8.8480 667.3887 68.2752 5087.7944]
𝑇. The

design parameters are given as follows: 𝑘
𝑏

= 0.35, 𝑝 = 10,
𝑞 = 5, 𝜑 = 0.2, and 𝜆 = 0.012. The poles of the linearized
uncontrolled system without external disturbance for
𝑈 = 10m/s and 𝑎 = −0.6719 are (−1.47 ± 14.5961𝑖,



International Journal of Aerospace Engineering 9

−0.02

0

0.02

h
 (m

)

1 2 3 4 5 60
t (s)

(a)

0 1 2 3 4 5 6

𝛼
(r

ad
)

t (s)

−0.1

0

0.1

(b)

−0.2

0

0.2

𝛽
(r

ad
)

0 1 2 3 4 5 6
t (s)

(c)

Figure 6: ILC control for sinusoidal gust, 𝑤
0

= 0.07, 𝑈 = 16m/s:
(a) plunge displacement ℎ (m); (b) pitch angle 𝛼 (rad); (c) control
input 𝛽 (rad).
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Figure 7: ILC control for graded gust, 𝑤
0

= 0.07, 𝑈 = 16m/s: (a)
plunge displacement ℎ (m); (b) pitch angle 𝛼 (rad); (c) control input
𝛽 (rad).

−0.6486 ± 7.0503𝑖). For 𝑈 = 16m/s and 𝑎 = −0.6719,
the poles of the linearized system are (−3.4134 ± 13.1488𝑖,

0.8922 ± 12.2005𝑖). Therefore, the open-loop system is stable
for 𝑈 = 10m/s and unstable for 𝑈 = 16m/s. The selected
velocity distributions (𝑤

𝐺
(𝜏)) for (a) sinusoidal gust, (b)

triangular gust, and (c) graded gust are shown in Figure 2.
The sinusoidal and triangular gusts have finite duration.
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Figure 8: ILC control for graded gust, 𝑤
0

= 1, 𝑈 = 16m/s: (a)
plunge displacement ℎ (m); (b) pitch angle 𝛼 (rad); (c) control input
𝛽 (rad).

Table 1: System parameters.

Parameter Value
𝑎 −0.6719

𝑐
ℎ

27.43 kg/s
𝑚
𝑡

15.57 kg
𝑐
𝑙
𝛼

6.757
𝑏 1.905m
𝑐
𝛼

0.0360N⋅s
𝐼
𝑐𝑔𝑤

0.04342 kg⋅m2

𝑐
𝑚
𝛽

−0.6719

𝑥
𝛼

𝑟
𝑐𝑔
/𝑏

𝐼
𝑐𝑎𝑚

0.04697 kg⋅m2

𝜌 1.225 kg/m3

𝑘
ℎ

2844.4N/m
𝑐
𝑚
𝛼

0
𝑟
𝑐𝑔

−𝑏(0.998 + 𝑎)m
𝑚wing 4.340 kg
𝑐
𝑙
𝛽

3.774
𝑠
𝑝

0.5945m
𝑚
𝑤

5.23 kg
𝐼
𝛼

𝐼
𝑐𝑎𝑚

+ 𝐼
𝑐𝑔𝑤

+ 𝑚wing + 𝑟
2

𝑐𝑔
kg⋅m2

The open-loop responses for the velocity distributions
of Figure 2 are shown in Figure 3. For triangular 𝑤

𝐺
(𝜏),

Figures 3(a) and 3(b) indicate that the pitch angle and plunge
displacement converge to zero for 𝑈 = 10m/s. However, for
𝑈 = 16m/s, the system exhibits LCOs after initial transience
in all cases (Figures 3(c)–3(f)). Apparently, these undesirable
oscillations in the plunge and pitch motion must be
suppressed.

First, the responses of the closed-loop system, in the
presence of a triangular gust load with intensity𝑤

0
= 0.7 and
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Figure 10: Comparison of the tracking error when 𝑥
ℎ,𝑑

= 0.02 sin(2𝜋𝑡), 𝑥
𝛼,𝑑

= 0.1 sin(2𝜋𝑡).

2.0 are obtained. For a realistic simulation, control surface
deflections are limited to ±0.26 rad. Figure 4 demonstrates
the response of the closed-loop system to triangular gust
disturbance when 𝑤

0
= 0.7 and 𝑈 = 10m/s. With the

addition of control, the pitch angle and plunge displacement
converge to zero. The response time for the closed-loop is of
an order less than 3 s. Comparedwith the open-loop response
in Figures 3(a) and 3(b), the closed-loop system has a shorter
convergent time. Thus, the closed-loop system responds
quickly after control is implemented. Figure 5 shows the
response time histories of the closed-loop system with tri-
angular gust of larger intensity 𝑤

0
= 2 and 𝑈 = 16m/s.

Evidently, in spite of the stronger gust, the pitch angle and

plunge displacement converge to zero in 2 s. This result indi-
cates that the gain [𝑏33 𝑏

44]
𝑇 of the control input increases

with the velocity of the free-stream velocity; that is, the
efficiency of the control surface increases at this time.

The closed-loop system perturbed by a sinusoidal distur-
bance input (shown in Figure 6) is simulated.The oscillations
in the pitch and plunge directions are suppressedwithin 2 and
3 s, respectively. Figure 7 shows the response time histories
of the closed-loop system under graded gust of the intensity
𝑤
0

= 0.07 and 𝑈 = 16m/s. Again the oscillations in the
system are suppressed. The convergence time for the pitch
angle and plunge trajectories is within 3 s. When the value of
𝑤
0
increases to 1 while the other parameters of graded gust
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disturbance remain unchanged, system response remains
convergent to a stable state instead of to zero, as shown
in Figure 8. The equilibrium values of the stable response
convergences in the pitch and plunge directions are approxi-
mately 0.065 rad and −0.008m, respectively.

Extensive simulation has been performed for various
kinds of wind gust. These results reveal that the control
strategy proposed effectively suppresses the oscillation of the
plunging displacement and the pitch angle, in spite of the
uncertainties in the parameters and wind gusts of different
shapes.

Next, for a reference tracking signal, the plunge displace-
ment and pitch angle trajectories are 𝑥

ℎ,𝑑
= 0.02 sin(2𝜋𝑡) and

𝑥
𝛼,𝑑

= 0.1 sin(2𝜋𝑡), respectively. Figures 9 and 10 depicted the

corresponding tracking responses. From the results shown
in Figure 9, it can be observed that the conventional SMC is
much faster than the proposed ILC in tracking the desired
pitch trajectory, whereas it is incapable of tracking the plunge
displacement trajectory. By contrast, it can be observed
from Figures 9 and 10 that the desired tracking objective
can be achieved when using the proposed ILC. To further
evaluate the tracking performance of the proposed method,
the desired tracking signals are set to be 𝑥

ℎ,𝑑
= sin(2𝜋𝑡)

and 𝑥
𝛼,𝑑

= 1 + sin(2𝜋𝑡) + 0.25 sin(4𝜋𝑡), respectively. In
Figures 10 and 11, it is observed that the response curves using
conventional SMC have been unable to track the reference
signals. However, for more complex reference signals shown
in Figure 12, the proposed approach is still effective. From
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the analysis results, it was also found that the proposed
method possesses a remarkably better tracking performance
than that using conventional SMC.

5. Conclusions

In this paper, a ILC controller was proposed to suppress
aeroelastic vibrations for a nonlinear wing section in the
presence of parametric uncertainties and gust load. The
control strategy was implemented via a single trailing-edge
𝛽 control surface.The proposed scheme was developed based
on alignment condition. Both parametric and nonparametric
uncertainties can be effectively handled. A Barrier Compos-
ite Energy Function (BCEF) method with a novel Barrier
Lyapunov Function has been used to guarantee the uni-
form convergence result for state tracking error. Simulation
results for various gust loads were obtained. The controller
accomplished suppression of the plunge displacement and
pitch angle trajectory oscillations, despite uncertainties in the
model parameters and triangular, sinusoidal, and graded gust
loads. Unlike the traditional SMC, the proposed method has
good tracking performance.
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