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The paper intends to contribute to a better understanding of the phenomenon of scientific capital. Scientific capital is a well-
known concept for measuring and assessing the accumulated recognition and the specific scientific power.The concept of scientific
capital developed by Bourdieu is used in international social science research to explain a set of scholarly properties and practices.
Mathematicalmodeling is applied as a lens throughwhich the scientific capital is addressed.The principal contribution of this paper
is an axiomatic characterization of scientific capital in terms of natural axioms.The application of the axiomaticmethod to scientific
capital reveals novel insights into problem still not covered bymathematical modeling. Proposedmodel embraces the interrelations
between separate sociological variables, providing a unified sociological view of science. Suggested microvariational principle is
based upon postulate, which affirms that (under suitable conditions) the observed state of the agent in scientific field maximizes
scientific capital. Its value can be roughly imagined as a volume of social differences. According to the considered macrovariational
principle, the actual state of scientific field makes so-called energy functional (which is associated with the distribution of scientific
capital) minimal.

1. Introduction

It is often very difficult to in-depth describe scientific events
in sociology, using mathematical language; some data are
usually unavailable or regularities are too complex. Luckily
exhaustive modeling is often unnecessary, especially when
a mathematical model aims to explain social structures of
science rather than statistical databases on scholars and their
activities. The concept of a scientific capital, SC for short,
expresses a crucial social structure of present-day science. SC
is an invariable property that is connected to the allocation
of specific scientific power and recognition. This concept
has been introduced by Bourdieu [1, 2]. Notwithstanding
achievements of the Bourdieu’s approach to SC, there is no
a mathematical model of SC (see, e.g., [3]).

We can only truly understand a sociological concept if we
can create a mathematical model in which all of the concept’s
meanings and propositions are interpreted sociologically.The
original formulation by Bourdieu was not mathematical. The
paper aims at improving the quantitative interpretation and

the logical depth of the notion of SC.The particular attention
is paid to the development of a model that unambiguously
expresses in mathematical language the phenomenon of SC.
The proposed quantitative approach to SC makes it possible
to represent meaningful amounts of SC in an additive and
divisible numeric form. The suggested mathematical model
of SC might be used as a conceptual framework to aid in the
economic evaluation and the management tasks.

2. Modeling of Complexity in
Axiomatic Framework

We distinguish in problems of a scientific field (SF) and SC
the three basic elements listed below.These elements are what
determines the real meaning of each problem.

These elements are as follows.

(1) We begin by describing the SF by introducing 𝑑 types
of sociological quantities 𝑋 = (𝑋

1
, . . . , 𝑋

𝑑
) that

satisfy the defining conditions for abstract vectors.
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A scholar, or in terms of Bourdieu an agent in the SF
is described only by these quantities.

(2) Quite generally, the state 𝑠(⋅) : Ω → R
+
of an agent

is defined by his or her position in the SF in terms of
sociological quantities𝑋. For simplicity’s sake, wewill
only consider stationary state 𝑠(⋅).

(3) The term state functional 𝜑 : 𝑆 → R
+
refers to the

sociological characteristic that is uniquely defined by
the state 𝑠 ∈ 𝑆.

We introduce the following notation:

(i) we will use capitals 𝑋 = (𝑋
1
, . . . , 𝑋

𝑑
) to denote

variables and small letters 𝑥 = (𝑥
1
, . . . , 𝑥

𝑑
) to denote

their values;
(ii) the configuration space Ω with values 𝜔 = 𝑥 is

a bounded open set in the 𝑑-dimensional Euclidian
space:

(𝑖 = 1, . . . , 𝑑) (∀𝑖 : 𝛼
𝑖
, 𝛽
𝑖
∈ R
+
) (∀𝑖 : 𝛼

𝑖
< 𝛽
𝑖
) :

Ω = {𝛼
𝑖
< 𝑥
𝑖
< 𝛽
𝑖
: 𝑥 ∈ R

𝑑

+
} .

(1)

Let 𝑍 and 𝐺 be open sets in R
+
and R𝑑

+
× R
+
, respectively.

Some family of state functions

{𝑠 (⋅, 𝜁) : [𝑥
0
(𝜁) , 𝑥

1
(𝜁)] 󳨀→ R

+
: 𝜁 ∈ 𝑍} (2)

is said to form a SF if the mapping (𝑥, 𝜁) 󳨃→ (𝑥, 𝑠(𝑥, 𝜁)) is one-
to-one and its image contains 𝐺:

{(𝑥, 𝑠) : 𝑠 = 𝑠 (𝑥, 𝜁) , 𝑥
0
(𝜁) ≤ 𝑥 ≤ 𝑥

1
(𝜁) , 𝜁 ∈ 𝑍} ⊃ 𝐺. (3)

SC is a state functional 𝜑 ∈ 𝑆∗ which associates a state 𝑠 ∈ 𝑆
with its value (𝑠, 𝜑)

𝑆
∈ R
+
, where (⋅, ⋅)

𝑆
is scalar product in 𝑆.

From a sociological viewpoint, the reasoning of complex-
ity can be presented in the following manner. Suppose the
function 𝑠 󳨃→ Φ(𝑠) is defined on the state space 𝑆. Let {Φ

𝛿
}
𝛿∈Δ

be a family of state functions and certain state function Φ
0

exists. It is believed that {Φ
𝛿
}
𝛿∈Δ

and Φ
0
adequately describe

some states of the agent {𝑠
𝛿
}
𝛿∈Δ

∈ 𝑆, 𝑠
0
∈ 𝑆. The following

problem must be solved: how to interpret convergence of
the family of states {𝑠

𝛿
}
𝛿∈Δ

to the state 𝑠
0
. In general, it is

clear that every state function of the family of states {𝑠
𝛿
}
𝛿∈Δ

must converge to the proper state function 𝑠
0
on any fixed

assumption:

{𝑠
𝛿
(⋅)}
𝛿∈Δ

󳨀→ 𝑠
0
(⋅) 󳨐⇒ {Φ

𝛿
(⋅)}
𝛿∈Δ

󳨀→ Φ
0
(⋅) . (4)

This principle, however, must be specified. The construc-
tion of the characteristic function of a state 𝑠 should be
accomplished so that its convergence will condition the other
state functions’ convergences. Complexity, comprehended in
a certain way, can serve as this function.

Under suitable assumptions, we will accept the homoge-
neous boundary condition 𝑠(𝑥)|

𝑥∈𝜕Ω
= 0. The choice of this

boundary condition results in the state space of the model of
the agent becoming the Sobolev space𝐻1

0
(Ω) = 𝑊

1,2

0
(Ω,R𝑑

+
).

Strictly speaking, the element of the Sobolev space 𝐻1
0
(Ω)

is equivalence class [𝑠] but not a concrete function 𝑠(⋅). We
accept this assumption while allowing for deviation from the
established rules because the elements of the Sobolev space
𝐻
1

0
(Ω) are defined as concrete functions.
Furthermore, assume that in the model M for each

allowed state 𝑠(⋅) ∈ 𝐻
1

0
(Ω), the method of description

DM(𝑠(𝑥)) = 𝑥 is determined. We will begin to define the
complexityCDM

(⋅) : R𝑑 → R of the state 𝑠(⋅) by introducing
in the space𝐻1

0
(Ω) a real-valued, monotone function ℓ(𝑠(⋅)) :

𝐻
1

0
(Ω) → R

+
, satisfying the following reasonable axioms

(cf. [4]):

(A
1
) ℓ(𝑠) = 0 ⇔ 𝑠 = 0;

(A
2
) (∀𝑐 ∈ R) : ℓ(𝑐𝑠) = |𝑐|ℓ(𝑠);

(A
3
) ℓ(𝑠
1
+ 𝑠
2
) ≤ ℓ(𝑠

1
) + ℓ(𝑠

2
);

(A
4
) ℓ(𝑠
1
+ 𝑠
2
)
2
+ ℓ(𝑠
1
− 𝑠
2
)
2
= 2(ℓ(𝑠

1
)
2
+ ℓ(𝑠
2
)
2
);

(A
5
) ({𝑠
𝑗
}
∞

𝑗=1
⊂ 𝐻
1

0
(Ω)) : {𝑠

𝑗
}
∞

𝑗=1
↓ 0 ⇒ ℓ({𝑠

𝑗
}
∞

𝑗=1
) ↓ 0.

Indeed, the axioms (A
1
)–(A
5
) de facto define a norm in

the Sobolev space𝐻1
𝑜
(Ω):

(𝑠 (⋅) ∈ 𝐻
1

0
(Ω)) : ℓ (𝑠) = ‖𝑠‖𝐻1

0
(Ω)
. (5)

The function ℓ(𝑠) will be defined as a state length 𝑠(𝑥).
Evidently, the state length ℓ(𝑠) depends on DM. That is to say,
essentially, that we can informally define the (DM, ‖ ⋅ ‖𝐻1

0
(Ω)
)-

complexityC(𝑥) of the state 𝑠(𝑥) as a minimum of its length
(cf. [5–8]):

(DM = 𝑐1) (‖⋅‖𝐻1
0
(Ω)
= 𝑐
2
) (𝑥 ∈ Ω) :

C (𝑥) = min
𝑠∈𝐻
1

0
(Ω)

{ℓ (𝑠) : DM (𝑠 (𝑥)) = 𝑥} .
(6)

The informal basis for this definition is as follows. Let us
assume that there is algorithmA that allows for the creation
of a family of approximations {𝐴

𝑘
(⋅)}

A
𝑘∈K of the state 𝑠(⋅).

Therefore, the error of approximation of the state 𝑠(⋅) is given
by:

(𝑘 ∈K) (𝐴
𝑘
(⋅) ∈ 𝐻

1

0
(Ω)) (𝑠 (⋅) ∈ 𝐻

1

0
(Ω)) :

𝑒 (𝑠 (⋅) ,A) = sup
𝑘∈K

{
󵄩󵄩󵄩󵄩𝑠(⋅) − 𝐴𝑘(⋅)

󵄩󵄩󵄩󵄩𝐻1
0
(Ω)
} .

(7)

The quantity 𝑒(𝑠(⋅),A) depends on both the quality of
algorithmA and the quality of the state 𝑠(⋅). A “simple” state is
easier to approximate than a “complex” state. For statements
about complexity to make sense, it is necessary to examine
the sequence of the states {𝑠

𝑗
(⋅)}, with the algorithm A being

fixed. If we attempt to find a form of expression (7) that is
invariant to both {𝑠

𝑗
(⋅)} andA

𝑒 = inf
𝑠∈𝐻
1

0
(Ω)

inf
A
{(𝑠 (⋅) ,A)} , (8)

then we come to (6). The introduced axiomatic approach
above is used to justify the definition (6).
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Further, assume that the state 𝑠(𝑥) satisfies the following
condition:

(𝛾 ∈ R
+
) (𝑦 (⋅) ∈ 𝐿

2
(Ω)) (𝑠 (⋅) ∈ 𝐻

1

0
(Ω)) :

∫
Ω

𝑦 (𝑥) 𝑠 (𝑥) 𝑑𝑥 = 𝛾.

(9)

The function 𝑦(𝑥) : R𝑑 → R describes the external impact
on an agent in the SF.

For the sake of being definite, we assume, as is usually
done (see [9, pages 12, 30]), that “energy” associated to the
state 𝑠(𝑥) is given by the following formula:

(𝑥 ∈ Ω) ,

(𝑠 (⋅) ∈ 𝐻
1

0
(Ω)) ,

(0 < 𝑔 ≤ 𝑔 (⋅) ∈ 𝐶
1
(Ω)) ,

(0 ≤ 𝑔
0
(⋅) ∈ 𝐶 (Ω)) :

𝐸 (𝑠 (⋅)) = ∫
Ω

(𝑔 (𝑥) |∇𝑠 (𝑥)|
2
+ 𝑔
0
(𝑥) |𝑠 (𝑥)|

2
) 𝑑𝑥.

(10)

Note that the energy functional 𝐸(𝑠(⋅)) depends on 𝑥 only
through the state 𝑠 and not explicitly. This invariance moti-
vates the name for the functional𝐸(𝑠(⋅)) [10, pages 30, 32, 34].

In the Sobolev space 𝐻1
𝑜
(Ω) equipped with the standard

norm [11, page 59]

‖𝑠(⋅)‖𝐻1
0
(Ω)
= (∫
Ω

(|∇𝑠 (𝑥)|
2
+ |𝑠 (𝑥)|

2
) 𝑑𝑥)

1/2

, (11)

we can pass to the equivalent conventional energy norm
‖𝑠(⋅)‖
𝐸
(cf. [12, page 26]):

‖𝑠(⋅)‖
𝐸
= (∫
Ω

(𝑔 (𝑥) |∇𝑠 (𝑥)|
2
+ 𝑔
0
(𝑥) |𝑠 (𝑥)|

2
) 𝑑𝑥)

1/2

. (12)

Taking account of (12), the definition of the complexityC(𝑥)
of the state 𝑠(𝑥) can be written in the form of the following
axiom:

(A
6
)

(𝑥 ∈ Ω) (𝛾 ∈ R
+
) (𝑦 (⋅) ∈ 𝐿

2
(Ω)) :

C (𝑥) = min
𝑠∈𝐻
1

0
(Ω)

{‖𝑠‖𝐸 : ∫
Ω

𝑦 (𝑥) 𝑠 (𝑥) 𝑑𝑥 = 𝛾} .

(13)

The state 𝑠(𝑥) problem may be formulated as a minimization
of the conventional energy functional 𝐸(𝑠(⋅)) with respect to
the homogeneous boundary conditions.

The following axiomatic definition of the energy func-
tional 𝐸(𝑠(⋅)) associated to the state 𝑠(⋅) is a consequence of

the using Euler’smultiplier rule for the isoperimetric problem
[13, pages 56-57]:

(𝑥 ∈ Ω) ,

(𝑠 (⋅) ∈ 𝐻
1

0
(Ω)) ,

(𝐸 (𝑠 (⋅)) : 𝐻
1

0
(Ω) 󳨀→ R) ,

(0 < 𝑔 ≤ 𝑔 (⋅) ∈ 𝐶
1
(Ω)) ,

(0 ≤ 𝑔
0
(⋅) ∈ 𝐶 (Ω)) ,

(𝑦 (⋅) ∈ 𝐿
2
(Ω)) :

𝐸 (𝑠 (⋅)) = ∫
Ω

(𝑔 (𝑥) |∇𝑠 (𝑥)|
2
+ 𝑔
0
(𝑥) |𝑠 (𝑥)|

2
) 𝑑𝑥

+ 𝜆∫
Ω

𝑦 (𝑥) 𝑠 (𝑥) 𝑑𝑥 󳨀→ min,

(14)

where 𝜆 is the Lagrange multiplier.
The energy functional 𝐸(𝑠(⋅)) (14) associated to the state

𝑠(⋅) can be sociologically interpreted as follows:

(1) the gradient term

∫
Ω

𝑔 (𝑥) |∇𝑠 (𝑥)|
2
𝑑𝑥 (15)

considers the heterogeneity of the state 𝑠(𝑥);
(2) the quadratic term

∫
Ω

𝑔
0
(𝑥) |𝑠 (𝑥)|

2
𝑑𝑥 (16)

demonstrates the internal symmetry of the state 𝑠(𝑥)
with respect to the norm ‖ ⋅ ‖

𝐸
, as the terms with the

odd powers of 𝑠(𝑥) are absent;
(3) the term

𝜆∫
Ω

𝑦 (𝑥) 𝑠 (𝑥) 𝑑𝑥, (17)

with the odd power of 𝑠(𝑥), describes the continuous
external impact on the agent in the SF; this term
indicates the deviation of the state 𝑠(𝑥) from its
“critical-point” value 𝑠∗.

It is well-known (see, e.g., [14–16]) that the functional 𝐸(𝑠(⋅))
(14) attains a minimum at a unique point 𝑠

∗
(𝑥) ∈ 𝐻

1

0
(Ω),

which is the unique nontrivial weak solution of the Sturm-
Liouville problem:

div (𝑔 (𝑥) ∇𝑠
∗
(𝑥)) − 𝑔

0
(𝑥) 𝑠
∗
(𝑥) = 𝜆𝑦 (𝑥) ,

𝑠
∗
(𝑥)
󵄨󵄨󵄨󵄨𝜕Ω = 0.

(18)

When suitable conditions are met, the weak solutionmatches
the classical solution of (18) 𝑠

∗
(𝑥) ∈ 𝐶

2
(Ω) (cf. [17, page

294]). Therefore, extremal 𝑠
∗
(𝑥) admissible for (14) might be

an ordinary (nongeneralized) function.
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3. Complexity and Scientific Capital

Let 𝑇 be a set of the scientific agents 𝑡, with or without
indices, and consider a mapping Ψ : 𝑇 → Ω

𝑡
of 𝑇 onto

the configuration space Ω
𝑡
. The function Ψ(⋅) is the set of

all pairs 𝜓 = (Ψ(𝑡), 𝑡). This function also can be repre-
sented by the net {𝜔

𝑡
}. Continuing this line of reasoning

and taking into account [18], we see that the net {𝜔
𝑡
} is a

social network of scholars. Obviously, the representation of
the agents in SF as points in somemetric space equipped with
the uniform metric (𝑡, 𝑡󸀠 ∈ 𝑇) : 𝜌(𝜔

𝑡
, 𝜔
𝑡
󸀠) is well-defined. It is

convenient to use the normalized uniform metric distances
󰜚(⋅, ⋅), such that ∀󰜚(⋅, ⋅) ∈ [0, 1]. We will say that the metric
󰜚(⋅, ⋅) is the social difference (SD). The SF can be viewed as a
social network of the SDs between scholars. This is natural
representation of the SF since the SD can be interpreted as a
relation between two scientific agents.

Further, the 𝑡th agent’s description involves a set

(𝑡 ∈ 𝑇) (𝑡
󸀠
= 1, . . . , 𝑡) : 󰜚

(𝑡)
= {󰜚 (𝜔

𝑡
, 𝜔
𝑡
󸀠)} (19)

of SDs between all corresponding pairs of agents. As a
mathematical object, the set 󰜚

(𝑡)
is merely a random vector

(󰜚
𝑡
, . . . , 󰜚

𝜅
), 𝜅 = 𝑡(𝑡 − 1)/2. Moreover, we use the symbol 󰜚 to

denote a general element of the domain of the SDs and say
that 󰜚 is the independent variable.

Then we can introduce the random variable 𝜉(󰜚) = 󰜚

which is the identity function of SD.The random variable 𝜉 is
defined on the following probability space:

([0, 1] ,B ([0, 1]) , P󰜚) . (20)

The probability density function (PDF) 𝑓(󰜚) is the following
set of the points. For the purpose of our study, we assume
that 𝑓(󰜚) is a “normal physical quantity” [19], as used in
experimental science (e.g., [20, pages 543–549]). Therefore,
for 𝑓(󰜚), we can use methods from the classical calculus
of variations without resorting to the stochastic calculus of
variations [21, 22].

The PDF𝑓(󰜚) is an excellent candidate for a state 𝑠(𝑥): the
state of an agent may be completely specified at a given time
by a certain PDF of the SD. The axiomatic definition

(A
8
)

𝑠 (𝑥) := 𝑓 (󰜚) (21)

is the statement that we are identifying the state of the agent
with the PDF of the SD.

Let us now explore the implication of our choice of 𝑠(𝑥).
We can write (13) as follows:

C (󰜚) = min
𝑓∈𝐶
2
([0,1],R

+
)

{
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐸 : ∫

1

0

𝑓 (󰜚) 𝑑󰜚 = 1}

= min
𝑓∈𝐶
2
([0,1],R

+
)

{√𝐸 (𝑓 (⋅)) : ∫

1

0

𝑓 (󰜚) 𝑑󰜚 = 1} .

(22)

According to probability theory [23, pages 33-34], the sta-
tionary PDF 𝑓(󰜚) of the family of Markov diffusion processes

(𝜉
𝑡
, P
󰜚
) in the phase space (R

+
,B) satisfies the stationary

forward Kolmogorov equation [24] (SFKE) (which in physics
is also termed the Fokker-Planck-Kolmogorov equation)with
time-independent drift 𝑎(󰜚) and diffusion 𝑏(󰜚) coefficients.
The substitution

𝑔 (󰜚) = exp(∫
󰜚

0

2 (𝑏
󸀠
(𝜏) − 𝑎 (𝜏))

𝑏 (𝜏)
𝑑𝜏) ,

𝑔
0
(󰜚) =

(2𝑎
󸀠
(󰜚) − 𝑏

󸀠󸀠
(󰜚)) 𝑔 (󰜚)

𝑏 (󰜚)

(23)

into (18) leads to the Cauchy problem for the following SFKE:

(𝑓 (󰜚) ∈ 𝐶
2
([0, 1] ,R+)) ,

(𝑎 (󰜚) ∈ 𝐶 ([0, 1] ,R+)) ,

(𝑏 (󰜚) ∈ 𝐶
1
([0, 1] ,R+)) :

−
1

2

𝑑
2
(𝑏 (󰜚) 𝑓 (󰜚))

𝑑󰜚2
+
𝑑 (𝑎 (󰜚) 𝑓 (󰜚))

𝑑󰜚
+ 𝜆 = 0,

𝑓 (0) = 𝑓
0
, 𝑓 (1) = 𝑓

1
.

(24)

SFKE (24) cannot be satisfied for arbitrary 𝑎(󰜚) and 𝑏(󰜚). On
the other part, if the coefficients 𝑎(󰜚) and 𝑏(󰜚) are constructed
from the experimental data, then immediately one obtains
from the SFKE (24) the following result [25, page 98]:

𝑓 (󰜚) =
𝑛
0

𝑏 (󰜚)
exp(2∫

󰜚

0

𝑎 (𝑟)

𝑏 (𝑟)
𝑑𝑟) , (25)

where 𝑛
0
is a normalization constant.

According to the Lax-Milgram theorem [26, pages 41–
48], if (24) has a weak solution 𝑢(󰜚) ∈ 𝐻1

0
([0, 1],R

+
), then

this solution is unique and corresponds to the minimum of
the functional ‖𝑓‖

𝐸
, and every weak solution is a classical

solution 𝑓(󰜚) ∈ 𝐶2([0, 1],R
+
) [17, pages 292–298].

It is understood that in empirical research, the drift coef-
ficient 𝑎(󰜚) and the diffusion coefficient 𝑏(󰜚) are estimated
based on experimental data and correspond each time to
the fixed empirical cumulative distribution function (ECDF)
𝐹
𝑖

𝑛
(󰜚). The sample 𝑆

𝑁
from among𝑁 individuals is described

by a ensemble of the ECDFs {𝐹(𝑖)
𝑛
}
𝑁

𝑖=1
extracted from the mea-

sured data. Based on the functions {𝐹(𝑖)
𝑛
}
𝑁

𝑖=1
, we construct a

set of empirical probability density functions (EPDFs) {𝑓
𝑖
}
𝑁

𝑖=1
,

each of which we can insert the corresponding coefficients
𝑎
𝑖
and 𝑏
𝑖
and the complexity C

𝑖
(𝑖 = 1, . . . , 𝑁) into. Thus,

the empirically estimated complexity C
𝑖
is the minimum

of the square root from the energy functional √𝐸
𝑖
, that is,

the minimum of the functional ‖𝑓
𝑖
‖
𝐸
; this statement can be

reformulated in the form of the corresponding variational
principle:

Among all admissible PDFs corresponding to the
boundary conditions 𝑓

𝑖
(0) = 𝑓

0

𝑖
, 𝑓
𝑖
(1) = 𝑓

1

𝑖
of

the 𝑖th agent, the PDF, which actually describes
the SD of a given agent in the SF, is assigned in



International Journal of Mathematics and Mathematical Sciences 5

such a way that the square root from the energy
functional √𝐸

𝑖
reaches its weak local minimum

(see (22)).

Thereby, we have some reason to believe that the agent in
the SF volens nolenswill strive to minimize energy functional
√𝐸
𝑖
associated with his or her state:

(𝑖 = 1, . . . , 𝑁) : √𝐸
𝑖
󳨀→ inf . (26)

A problem that is meaningfully related to the concept of the
energy functional—the problem of optimizing the distribu-
tion of the agent’s the SD in the SF—can be formulated as
follows. The agent will strive for the minimal value of the
square root from the energy functional√𝐸

𝑖
such that

(𝑖 = 1, . . . , 𝑁) : P (C
𝑖
) = inf
𝑓
𝑖

{P(√𝐸
𝑖
)} , (27)

where

(𝑖 = 1, . . . , 𝑁) (0 < 𝛽 = const) :

P(√𝐸
𝑖
) = ∫

1

0

exp (𝜎𝐸
𝑖
) P (𝑑󰜚)

(28)

is the probability that extremum problem (26) will not be
solved for a given value of the square root from the energy
functional√𝐸

𝑖
and that, instead, a constant 𝜎will be a scaling

multiplier. That is, P(√𝐸
𝑖
) plays the role of risk function; that

is, it measures expected failure in the quest for recognition
and scientific power. This measure indicates the probability
that an agent will not earn a particular scientific income in
the case of the nonoptimal distribution of his or her SD.
The function exp(𝛽√𝐸

𝑖
) in (26) serves as a loss function

that represents the measure of disagreement between the
observed value of the square root from the energy functional
and the minimal.

We turn to the minimization of P(√𝐸
𝑖
) and note that

−P (C
𝑖
) = sup
𝑓
𝑖

{−P(√𝐸
𝑖
)} . (29)

Regarding maximization, we should note that the functional
−P(√𝐸

𝑖
) can be replaced with the appropriate functional.The

statements in this subsection about the energy functional√𝐸
𝑖

constitute the axiom of SC:

(A
9
)

SC
𝑖
= ∫

1

0

exp (−𝜎C
𝑖
) P (𝑑󰜚) . (30)

There can be no conclusive reasons leading from the socio-
logical observations to axioms (A

1
)–(A
9
).The present axioms

define SC but do not explain it. Axioms (A
1
)–(A
9
) give

a set of formal statements underlying the whole structure
of the mathematical model of SC. These axioms separate
the mathematical aspect from the sociological: no needs to
motivate why and to explain how the concept of SC was
constructed.

The functional SC
𝑖
(30) symbolizes the gain 𝑖th of the

agent from his or her square root from the energy functional
√𝐸
𝑖
, that is, the operationalization of SC. We see from

definition (30) that the larger the complexityC
𝑖
is, the smaller

SC
𝑖
is, although the connection between these quantities is

nonlinear.
From (22), it follows that that the higher the SC, the

closer the EDF of the SD is to the uniform distribution.
To implement this SD distribution, the agent should be
equidistant from other agents. In practice, it is possible that
almost all the SDs are so large that they can be counted as
approximately equal to one another.

We see that the definition of SC explicitly conforms to
the definition of the square root from the energy functional.
Definition (30) can be stated directly in the form of the
microvariational principle, namely,

The microvariational principle affirms that the
PDF of the SD actually taken by given agent in the
SF is one for which SC is at its maximum.

The actual PDFs of the SD are those that SC have a
maximum. At the same time, the actual PDF of the SD is the
solution to the Cauchy problem for the SFKE (24). It is very
important to emphasize that there is a complete equivalence
of the abovementioned microvariational principle and cor-
responding SFKE. Since almost all the PDFs of the SDs can
be interpreted as solutions of certain SFKEs, it is possible to
claim cum grano salis that the proposed conceptualmodel has
made, by and large, one successful prediction: it predicted the
existence of SC.

4. The Variational Principle as a Means to
Define the Distribution of Scientific Capital

We suggested that the equation for the PDF of SC can
be introduced by an axiomatic approach. More specifically,
we require the equation for 𝑓(SC) to be derivable from a
variational principle 𝑑𝑊(𝑓, ℎ) = 0. Here

𝑊(𝑓 (⋅)) : 𝐶
2
([SC
0
, SC
1
] ,R
+
) 󳨀→ R

+
(31)

is an unknown integral functional, and 𝑑𝑊(𝑓, ℎ) is its
Gâteaux derivative. According to this variational principle,
𝑑𝑊(𝑓, ℎ) must vanish for the PDF 𝑓

∗
(SC) which describes

the actual distribution of SC.
Let 𝐺 be an open set in the space of triples (SC, 𝑓(SC),

𝑓
󸀠
(SC)), and let

(SC, 𝑓 (SC) , 𝑓
󸀠
(SC))

󳨃󳨀→L (SC, 𝑓 (SC) , 𝑓
󸀠
(SC)) ∈ 𝐶

2
(𝐺,R
+
) .

(32)

There exist a compact set 𝑀 ⊂ 𝐺 such that inclusion
(SC, 𝑓(SC), 𝑓󸀠(SC)) ∈ 𝐺 holds almost everywhere if SC ∈

[SC
0
, SC
1
]. We consider the problem which can be reduced

to the following form:

𝑊(𝑓 (⋅)) = ∫

SC
1

SC
0

L (SC, 𝑓 (SC) , 𝑓
󸀠
(SC)) 𝑑SC 󳨀→ inf ,

𝑓 (SC
0
) = 𝑓
0
, 𝑓 (SC

1
) = 𝑓
1
.

(33)
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If we let 𝑓
∗
(⋅) ∈ 𝐶

2
([SC
0
, SC
1
],R
+
) provide the weak local

minimum in problem (33) relative to the space
𝐶
2
([SC
0
, SC
1
],R
+
), an integrant L(SC, 𝑓(SC), 𝑓󸀠(SC)) will

belong to the space𝐶2([SC
0
, SC
1
]×R
+
×R,R) in the region of

the extended graph:

Γ
𝑓
∗
𝑓
󸀠

∗

= {SC ∈ [SC
0
, SC
1
] ,

𝑓 = 𝑓
∗
(SC) , 𝑓

󸀠
= 𝑓
󸀠

∗
(SC) : (SC, 𝑓, 𝑓

󸀠
)} .

(34)

Thereby, the firstGâteaux derivative of the functional𝑊(𝑓(⋅))
in the neighborhood (34) on extremal𝑓

∗
(⋅) becomes zero and

yields a Euler equation, whereas the second derivative defines
the quadratic functional [27]:

(ℎ ∈ 𝐶
2

0
([SC
0
, SC
1
] ,R
+
)) :

𝐾 (𝑓 (⋅)) = ∫

SC
1

SC
0

(𝑃
∗
(SC) ℎ

'2
+ 𝑄
∗
(SC) ℎ

2
) 𝑑SC ≥ 0,

𝑃
∗
(SC) :=

1

2
L
∗𝑓
󸀠
𝑓
󸀠 (SC) ,

𝑄
∗
(SC) := (

1

2
L
∗𝑓𝑓
(SC) −

𝑑

𝑑SC
L
∗𝑓𝑓
󸀠 (SC)) .

(35)

The Euler equation for the quadratic functional𝐾(𝑓(⋅))

(𝑃
∗
(SC) ∈ 𝐶

1
([SC
0
, SC
1
] ,R
+
)) ,

(𝑃
∗
(SC) ≥ 𝑃

0
> 0 : ∀SC ∈ (SC

0
, SC
1
)) ,

(𝑄
∗
(SC) ∈ 𝐶 ([SC

0
, SC
1
] ,R
+
)) :

−
𝑑

𝑑SC
(𝑃
∗
(SC) ℎ

󸀠
) + 𝑄
∗
(SC) ℎ = 0

(36)

is equal to the Jacobi equation [28] for the functional𝑊(𝑓(⋅)).
The Jacobi condition in combination with the strong Legen-
dre condition (𝑃

∗
(SC) > 0) results in enough conditions that

the extremal 𝑓
∗
(⋅) will provide the weak local minimum for

the functional𝑊(𝑓(⋅)), which signifies the existence of aweak
neighborhood:

O (𝑓
∗
(⋅) , 𝜀)

= {
󵄩󵄩󵄩󵄩𝑓 (⋅) − 𝑓∗ (⋅)

󵄩󵄩󵄩󵄩𝐶2 < 𝜀 : 𝑓 (⋅) ∈ 𝐶
2
([SC
0
, SC
1
] ,R
+
)} ,

(37)

where the extremal 𝑓
∗
(⋅) is such that

(∀𝑓 (⋅) ∈ O (𝑓
∗
(⋅) , 𝜀)) : 𝑊 (𝑓

∗
(⋅)) ≤ 𝑊 (𝑓 (⋅)) . (38)

In the weak neighborhood O(𝑓
∗
(⋅), 𝜀), we examine an arbi-

trarily varied state of the SF𝑓
∗
(SC)+𝜃V(SC), where 𝜃 ∈ (−𝜀, 𝜀),

𝜀 > 0, V(SC) ∈ 𝐶2
0
([SC
0
, SC
1
],R), and, using (14), we calcu-

late the state-to-state difference:

Δ𝐸 =
󵄩󵄩󵄩󵄩𝑓∗ (SC) + 𝜃V (SC)

󵄩󵄩󵄩󵄩
2

𝐸
−
󵄩󵄩󵄩󵄩𝑓∗ (SC)

󵄩󵄩󵄩󵄩
2

𝐸

= 𝐸 (𝑓
∗
(SC) + 𝜃V (SC)) − 𝐸 (𝑓

∗
(SC))

= 𝜃 (∫

SC
1

SC
0

(2𝑎 (SC) 𝑓
∗
(SC) V (SC)

− 𝑏 (SC) 𝑓
󸀠

∗
(SC) V󸀠 (SC)) 𝑑SC)

+
𝜃
2

2
(∫

SC
1

SC
0

(2𝑎 (SC) (V (SC))2

− 𝑏 (SC) (V󸀠 (SC))
2

) 𝑑SC) .

(39)

This expression can be regarded as a second-order polyno-
mial of 𝜃, which we denote by 𝜋(𝜃). Because 𝑓

∗
(SC) is a weak

local minimizer for𝑊(𝑓(⋅)), at 𝜃 = 0 the polynomial𝜋(𝜃) has
the stationary point:

∫

SC
1

SC
0

(2𝑎 (SC) 𝑓
∗
(SC) V (SC)

− 𝑏 (SC) 𝑓
󸀠

∗
(SC) V󸀠 (SC)) 𝑑SC = 0.

(40)

We examine the Sobolev space 𝐻1((SC
0
, SC
1
),R
+
), which is

equipped with inner product:

(𝑓, V)
𝐻
1 = (𝑎 (SC) 𝑓, V)

𝐿
2 + (𝑏 (SC) 𝑓

󸀠
, V󸀠)
𝐿
2
. (41)

The function 𝑓(SC), which satisfies the integral identity (40)
at functions

∀V (SC) ∈ 𝐻1
0
((SC
0
, SC
1
) ,R) , (42)

and is, in the interval (SC
0
, SC
1
), a solution for the following

equation:

(SC ∈ [SC
0
, SC
1
]) :

−
𝑑

𝑑SC
(𝑏 (SC) 𝑓

󸀠
(SC)) + 2𝑎 (SC) 𝑓 (SC) = 0.

(43)

On a “physical” level of rigor, we can identify (43) with the
SFKE. Consequently,𝑊(𝑓(⋅)) ≡ 𝐸(𝑓(⋅)) and the variational
principle

𝐸 (𝑓 (⋅))

= ∫

SC
1

SC
0

(𝐵 (SC) (𝑓
󸀠
(SC))
2

+ 𝐴 (SC) (𝑓 (SC))
2

) 𝑑SC

󳨀→ inf ,

𝑓 (SC
0
) = 𝑓
0
, 𝑓 (SC

1
) = 𝑓
1
,

(44)
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where

𝐴 (SC) =
(2𝑎
󸀠
(SC) − 𝑏󸀠󸀠 (SC)) 𝐵 (SC)

𝑏 (SC)
,

𝐵 (SC) = exp(∫
SC

0

2 (𝑏
󸀠
(𝜏) − 𝑎 (𝜏))

𝑏 (𝜏)
𝑑𝜏) ,

(45)

is a fundamental method of ascertaining the solutions to the
SFKE (43).

Thereby, general formulation of the law of distribution of
SC is themacrovariational principle.

Assuming the quasi-stationary state approxima-
tion, is characterized by a definite functional
𝐸(𝑓(⋅)) (44), the actual PDF of SC is such that
takes 𝐸(𝑓(⋅)) the minimum value.

According to the principle of invariability of the phe-
nomenological theory of SC, a function that attains the min-
imum energy functional (44) will be an SFKE solution (43)
independent of any special integrand L(SC, 𝑓(SC), 𝑓󸀠(SC))
properties from (33).

The actual PDF of SC is an extremal of the func-
tional 𝐸(𝑓(⋅)) (see (44)). The variational principle (44) that
describes the state of the SF is located on the macrolevel of
the phenomenological theory of SC, whereas the variational
principle (26) that provides the PDFs of the SDs of different
agents is located on the microlevel.

5. Scientific Capital versus PageRank:
An Empirical Test

In this section, we provide a comparison between the two
rankings of scholars. We compare the ranking based on
the computation of SC with the ranking based on famous
PageRank algorithm [29].We limit ourselves here to a schem-
atic case study.

We view SF as a graph, where the nodes represent
scholars, and the edges between node pairs represent the SDs
betweennodes.Thegraph interpretation of the SF can be used
for ranking the scientific agents. We claim that each scholar
carries a scalar of “scientific success.” In addition, suppose
that success moves around in the graph along its edges. Rank
of a scientific agent according to PageRank is given by the
recursion formula:

(∀𝑡, 𝑡
󸀠
∈ 𝑇) : Pr (𝑡) = 1 − 𝜐

𝑡
+ 𝜐∑

𝑡
󸀠
̸=𝑡

Pr (𝑡󸀠)
𝑊 (𝑡󸀠)

, (46)

where 𝜐 is a reset parameter,𝑊(𝑡󸀠) is the sum of weights of
links on node 𝑡󸀠, and Pr(𝑡) is the probability that the random
walk is on the node 𝑡 and the same for Pr(𝑡󸀠). It is readily seen
that in our case we can set the following:

(∀𝑡, 𝑡
󸀠
∈ 𝑇) : 𝑊(𝑡

󸀠
) = ∑

𝑡
󸀠

󰜚 (𝑡, 𝑡
󸀠
) . (47)

In order to illustrate the possibility of application of the
considered phenomenological theory of SC, we used the
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Figure 1: Dependence of SC on Pr.

data from the statistical survey “The Monitoring of the
Labor Market for Highly Qualified R&D Personnel,” which
was conducted in 2013 by the National Research University
Higher School of Economics, Moscow.The target population
included doctorate holders aged from 25 to 69 years who live
and work in Russia. The sample of 3,450 respondents covers
approximately 1% of the general population of all doctorate
holders.

Using the indicators that Bourdieu employed in his
investigation of the French SF [30], we utilize 35 variables to
estimate SC of the respondents. On the other hand, we apply
(46) of PageRank algorithm to the same sociological data.

The scatterplots for SC and the Pr (see Figure 1) indicate
a relatively close relationship between these two sociological
quantities that is nonlinear after a certain threshold. The
value of Spearman’s rank correlation coefficient 0.910 (the
significance level 𝑃 is 0.000) corresponds to an increasing
monotonic trend between SC and Pr. It is easy to see that
Pr depends on the “volume” of SDs. Therefore, from the
sociological point of view, this trend seems to be obvious:
large Pr must show up as the bigger SC.

The above result of empirical testing can be interpreted
from the practical (rather than formal statistical) standpoint,
that is, admissibility of considering the variational principle
to the phenomenological theory of SC.

6. Applications

The empirical distribution of SC might be approximated as
the lognormal Λ(0.753, 0.132). The assumption that SC is
distributed according to the lognormal lawwas checked using
the Kolmogorov-Smirnov goodness-of-fit test. The value of
criterion 𝑧 was 0.608 with a goodness of fit P value of 0.850.
This result can be considered appropriate for a sociological
study.

In applied problems of mathematical statistics, with the
help of lognormal distribution, a distribution of income
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under specific conditions is described (see, e.g., [31–34]), so
an appearance of this distribution in the case of SC is an
indirect confirmation of the fact that the operationalization
of this term was done correctly. Thus, the distribution of SC
can with some degree of reliability be qualified as lognormal
that indicates the possible relevance of the microvariational
principle of maximizing SC.

Since SC can be modeled as a logarithmically normal
distributed random variable, then SC can be obtained as a
multiplicative product of a large number of small, unrelated
efficient causes; at that, the effect of each efficient cause is
directly proportional to the actual value of SC [35, page
22]. Thus, we might assume SC is influenced by many
random positive valued actions, which their results are
independent and diminutive; these results determine the
value of SC multiplicatively rather than additively. In this
context, multiplicative property means that each efficient
cause has some effect on SC and the result of this effect
depends on the value of SC that was already reached by the
time when the efficient cause had been introduced. In this
scheme, the main factor is the assumption that the influence
of efficient cause on the intensity of the active properties will
be directly proportional to the previously achieved intensity.
Despite the divisiveness of this assumption, it has long had
a place in the social sciences as “the Matthew effect” [36,
37]. It follows that the sociological explanation for SC must
inevitably be historical; that is, the multiplicativity of efficient
causes occurs according to the historical development of
SC.

A characteristic feature of the lognormal distribution
of SC is the presence of large outliers, which indicates the
structure-forming role of agents with small SC and agents
with large SC in the Russian scientific field. In the lognormal
distribution, small values for SC are inseparable from high
values. Thus, the presence of the first is an inevitable price to
pay for the existence of the second. In this way, the function-
alization of a significant number of scholars, including those
with high and low SC, is not only a sufficient reason but also a
mandatory condition for the current structure of the Russian
SF.

There is a correlation between SC and the age of respon-
dents (the value of the Kendall rank-correlation coefficient
𝜏 is 0.671, P = 0.000). This result is not surprising. The
first in-depth sociological study of “age, recognition, and the
structure of authority in science” was performed in 1972 by
Merton and Zuckerman [38]. In subsequent years, a more
socially critical analysis of the age factor in the SFwas realized
by Bourdieu [1, 30]. Since its theoretical introduction in 1972,
a large amount of literature on the age factor in science has
appeared. Thus it is quite natural that scientific recognition
and administrative power increase, on a significant number
of occasions, with an increase in the tenure of an agent in
SF.

One might point to the gender effect on SC with a certain
confidence. Spearman’s rank correlation coefficient is 𝜌 =

0.723 at a statistically significant level P = 0.000. SC values
for men are on average higher than for women. This kind of
statistic dependence is now a commonplace of sociology of
science (see, e.g., [39–46]).

7. Conclusions

(i) In this paper, we postulate that the PDF of the SD
characterizes the state of an agent in the SF; almost
all the descriptions that can be made concerning the
state of an agent (under given, stationary conditions)
can be deduced from a knowledge of the PDF of the
SD.

(ii) The proposed approach is based on the point of
view that the “complex” state of an agent in the SF
requires a PDF (that defines the SD of the agent)
with a long length for its description and that a
“simple” state requires only a PDFwith a short length.
This point of view is axiomatized in the language
of functional analysis. The theoretical study proved
that if several assumptions that yield a collection of
“natural axioms” are provided, then the complexity of
the state of the agent will be computed as an estimate
of the minimum value of the conventional norm of
the PDF in the Hilbert-Sobolev space. The described
norm corresponds to the so-called energy functional.

(iii) We identified the SC of a given agent as the quantity
that is maximized by the actual PDF of the SD.

(iv) The concepts of complexity, energy, SC, andmicro- or
macrovariational principles provide a natural vocab-
ulary with which we can describe significant features
of the agent and the SF.

(a) Following the microvariational principle, the
state of the agent in the SF is realized along
admissible extremals of the square root from the
energy functional, which is associated with the
distribution of the SD.

(b) The microvariational principle admits a rep-
resentation in the equivalent form: an actual
PDF of the SD of an agent in the SF may be
determined by imagining all possible PDFs that
the agent could conceivably have, computing the
SC for each of these PDFs and selecting the PDF
that maximizes SC.

(c) The law of the distribution of SC may be treated
more generally in the form of the macrovaria-
tional principle, whose significance is as follows:
of all the conceivable laws of distribution of SC,
the actually realized law is the one that yields the
minimum of the energy functional.

(v) The proposed phenomenological theory of SC is
organized hierarchically.

(a) On the first or microlevel are regularities, which
connect disparate configurations of the SD.
These regularities express the microvariational
principle, according to which each agent in the
SF may have his or her own microvariational
principle.

(b) On the second or macrolevel are the logical
relations between empirical regularities. These
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deductive relations enable us to interpret the
empirical orderliness of the SD as a logical
necessity.This “theoretical necessity” is reflected
in the form of the macrovariational principle
that determines the distribution of SC in the SF.

(vi) As a complete theory of SC, the considered theory of
SC has conspicuous shortcomings.There are drift and
diffusion coefficients that cannot be derived directly
from the theory. The theory proposed in this paper
is, nevertheless, of a phenomenological nature and
does not claim to be the final theory of SC. The
considered theory’s general approach is that SD and
SC are methods of describing social phenomena, not
primary facts. The phenomenological theory of SC
makes the consideration of the observed regularities
and acquisition of their outcomes possible with the
help of variational principles. The advantage of the
phenomenological theory is its self-consistency and
its lack of ad hoc assumptions regarding the structure
of the SF, along with the absence of groundless,
empirical, and special hypotheses of the scientific
practices of agents.
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