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We introduce and investigate a new subclass M(𝛽, 𝜂) of meromorphic functions. Some interesting properties such as inclusion
relationship, coefficient estimates, neighborhoods, and partial sums are proved. Connections of the results with known results are
also considered.

1. Introduction

Let Σ denote the class of functions 𝑓 of the form

𝑓 (𝑧) =
1

𝑧
+

∞

∑
𝑘=1

𝑎
𝑘
𝑧
𝑘

, (1)

which are analytic in the punctured open unit disk:

U
∗

:= {𝑧 : 𝑧 ∈ C, 0 < |𝑧| < 1} =: U \ {0} . (2)

LetP denote the class of functions of the form

𝑝 (𝑧) = 1 +

∞

∑
𝑘=1

𝑝
𝑘
𝑧
𝑘

, (3)

which are analytic U and satisfy the condition

R (𝑝 (𝑧)) > 0 (𝑧 ∈ U) . (4)

A function 𝑓 ∈ Σ is said to be in the class MS∗(𝛼) of
meromorphic starlike functions of order 𝛼 if it satisfies the
inequality

R(
𝑧𝑓 (𝑧)

𝑓 (𝑧)
) < −𝛼 (𝑧 ∈ U

∗

; 0 ≤ 𝛼 < 1) . (5)

For 𝜂 > 1, Wang et al. [1] (see also Nehari and Netanyahu
[2]) introduced and studied a new subclass M(𝜂) of Σ con-
sisting of functions 𝑓 satisfying

R(
𝑧𝑓


(𝑧)

𝑓 (𝑧)
) > −𝜂 (𝑧 ∈ U

∗

) . (6)

We note that meromorphic starlike functions and related
topics attract many authors’ attentions; see (for example) the
earlier works [3–8] and the references cited therein.

Let

f (𝑧) = 𝑧 +

∞

∑
𝑘=𝑚+1

𝑎
𝑘
𝑧
𝑘

(𝑚 ∈ N := {1, 2, 3 . . .}) (7)

be analytic in U. Assuming that 𝛼 ∈ C and 0 ≤ 𝛽 < 1, we say
that a function 𝑓 ∈ H

𝑚
(𝛼, 𝛽) if it satisfies the condition

R(
𝑧𝑓 (𝑧)

𝑓 (𝑧)
+ 𝛼

𝑧𝑓 (𝑧)

𝑓 (𝑧)
) > 𝛼𝛽(𝛽 +

𝑚

2
− 1) + 𝛽 −

𝑚

2

(𝑧 ∈ U) .

(8)

The function class H
𝑚
(𝛼, 𝛽) was introduced and studied

recently by Ravichandran et al. [9], Liu et al. [10], Singh and
Gupta [11], and Wang et al. [12].
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In [13],Wang et al. introduced a subclass of meromorphic
function H̃(𝛽, 𝜆) which satisfies the condition

R(
𝑧𝑓 (𝑧)

𝑓 (𝑧)
+ 𝛽

𝑧2𝑓 (𝑧)

𝑓 (𝑧)
) < 𝛽𝜆(𝜆 +

1

2
) +

𝛽

2
− 𝜆

(𝛽 ≥ 0;
1

2
≤ 𝜆 < 1; 𝑧 ∈ U

∗

) .

(9)

It was proved that the class H̃(𝛽, 𝜆) is a subclass of the
MS∗(𝜆) of meromorphically starlike functions of order 𝜆.

Motivated essentially by the above works, we introduce
and investigate a new subclass of Σ of meromorphic func-
tions.

Definition 1. Suppose that 𝜂 > 1. Let M(𝛽, 𝜂) denote a sub-
class of Σ consisting of functions satisfying the condition that

R(
𝑧𝑓


(𝑧)

𝑓 (𝑧)
+ 𝛽

𝑧2𝑓 (𝑧)

𝑓 (𝑧)
) >

1

2
𝛽 (2𝜂
2

+ 𝜂 + 1) − 𝜂

(𝑧 ∈ U
∗

) .

(10)

Wenote that, for𝛽 = 0, the classM(0, 𝜂) reduces toM(𝜂).
In the present paper, we aim at proving some inter-

esting properties such as inclusion relationship, coefficient
estimates, neighborhoods, and partial sums for functions in
the classM(𝛽, 𝜂).

The following lemmas will be required in our investiga-
tion.

Lemma 2 (see [14]). LetΩ be a set in the complex planeC and
suppose that Φ is mapping from C2 × U to C which satisfies
Φ(𝑖𝑥, 𝑦; 𝑧) ∉ Ω for 𝑧 ∈ U and for all real 𝑥, 𝑦 such that 𝑦 ≤

−(1 + 𝑥2)/2. If the function 𝜓(𝑧) = 1 + 𝑐
1
𝑧 + 𝑐
2
𝑧2 + ⋅ ⋅ ⋅ is

analytic in U and Φ(𝜓(𝑧), 𝑧𝜓(𝑧); 𝑧) ∈ Ω for all 𝑧 ∈ U, then
R(𝜓(𝑧)) > 0.

Lemma 3. Let 𝜂 > 1, 0 ≤ 𝛽 < 1, and −1+2𝛽+𝛾 > 0. Suppose
also that the sequence {𝐴

𝑘
}
∞

𝑘=1
is defined by

𝐴
1
=

−1 + 2𝛽 + 𝛾

1 − 𝛽
,

𝐴
𝑘
=

2 (−1 + 2𝛽 + 𝛾)

(𝑘 + 1) [1 + (𝑘 − 2) 𝛽]
[1 +

𝑘−1

∑
𝑚=1

𝐴
𝑚
] .

(11)

Then

𝐴
𝑘
=

−1 + 2𝛽 + 𝛾

1 − 𝛽

⋅

𝑘−1

∏
𝑚=1

(𝑚 + 1) [1 + (𝑚 − 2) 𝛽] − 2 (1 − 2𝛽 − 𝛾)

(𝑚 + 2) [1 + (𝑚 − 1) 𝛽]

(𝑘 ≥ 2) .

(12)

Proof. From (11), we have

(𝑘 + 1) [1 + (𝑘 − 2) 𝛽]𝐴
𝑘
= 2 (−1 + 2𝛽 + 𝛾) [1 +

𝑘−1

∑
𝑚=1

𝐴
𝑚
] ,

(𝑘 + 2) [1 + (𝑘 − 1) 𝛽]𝐴
𝑘+1

= 2 (−1 + 2𝛽 + 𝛾) [1 +

𝑘

∑
𝑚=1

𝐴
𝑚
] .

(13)

Combining (13), we find that

𝐴
𝑘+1

𝐴
𝑘

=
(𝑘 + 1) [1 + (𝑘 − 2) 𝛽] + 2 (−1 + 2𝛽 + 𝛾)

(𝑘 + 2) [1 + (𝑘 − 1) 𝛽]
(𝑘 ∈ N) .

(14)

Thus, for 𝑘 ≥ 2, we deduce from (14) that

𝐴
𝑘
=

𝐴
𝑘

𝐴
𝑘−1

×
𝐴
𝑘−1

𝐴
𝑘−2

× ⋅ ⋅ ⋅ ×
𝐴
2

𝐴
1

× 𝐴
1

=
𝑘 [1 + (𝑘 − 3) 𝛽] + 2 (−1 + 2𝛽 + 𝛾)

(𝑘 + 1) [1 + (𝑘 − 2) 𝛽]

×
(𝑘 − 1) [1 + (𝑘 − 4) 𝛽] + 2 (−1 + 2𝛽 + 𝛾)

𝑘 [1 + (𝑘 − 3) 𝛽]

× ⋅ ⋅ ⋅ ×
2 (1 − 𝛽) + 2 (−1 + 2𝛽 + 𝛾)

3 [1 + 0𝛽]
×

−1 + 2𝛽 + 𝛾

1 − 𝛽

=
−1 + 2𝛽 + 𝛾

1 − 𝛽

⋅

𝑘−1

∏
𝑚=1

(𝑚 + 1) [1 + (𝑚 − 2) 𝛽] − 2 (1 − 2𝛽 − 𝛾)

(𝑚 + 2) [1 + (𝑚 − 1) 𝛽]
.

(15)

This completes the proof of Lemma 3.

Lemma 4. Let

𝜂 > 1, 0 ≤ 𝛽 <
2𝜂 − 2

2𝜂2 + 𝜂 − 1
. (16)

Suppose also that 𝑓 ∈ Σ is given by (1) and

∞

∑
𝑘=1

[𝑘 + 𝛽𝑘 (𝑘 − 1) + 𝛾]
𝑎𝑘

 ≤ 𝛾 − 1, (17)

where (and throughout this paper unless otherwise mentioned)
the parameter 𝛾 is defined as

𝛾 := 𝜂 −
1

2
𝛽 (2𝜂
2

+ 𝜂 + 1) . (18)

Then 𝑓 ∈ M(𝛽, 𝜂).

The proof of Lemma 4 is similar to that of Theorem 1 in
Wang et al. [1] and so is omitted.
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2. Main Results

We begin by proving the following result which shows that
M(𝛽, 𝜂) is a subclass ofM(𝜂).

Theorem 5. Suppose that 𝜂 > 1 and 𝛽 ≥ 0. Then

M (𝛽, 𝜂) ⊂ M (𝜂) . (19)

Proof. Define

𝜌 (𝑧) :=
𝑧𝑓 (𝑧) /𝑓 (𝑧) + 𝜂

𝜂 − 1
(𝜂 > 1; 𝑧 ∈ U) . (20)

Then 𝜌 is analytic in U. It follows from (20) that

−
𝑧𝑓 (𝑧)

𝑓 (𝑧)
= 𝜂 + 1 − (𝜂 − 1) 𝜌 (𝑧) +

(𝜂 − 1) 𝑧𝜌 (𝑧)

𝜂 − (𝜂 − 1) 𝜌 (𝑧)
. (21)

Combining (20) and (21), we obtain that

𝑧𝑓


(𝑧)

𝑓 (𝑧)
(𝛽

𝑧𝑓 (𝑧)

𝑓 (𝑧)
+ 1)

= 𝛽 (𝜂 − 1) 𝑧𝜌


(𝑧) + 𝛽 (𝜂 − 1)
2

𝜌
2

(𝑧)

− (𝜂 − 1) (2𝛽𝜂 + 𝛽 − 1) 𝜌 (𝑧) + 𝜂 (𝛽𝜂 + 𝛽 − 1)

= Φ (𝜌 (𝑧) , 𝑧𝜌


(𝑧) ; 𝑧) ,

(22)

where

Φ (𝑟, 𝑠; 𝑡) = 𝛽 (𝜂 − 1) 𝑠 + 𝛽 (𝜂 − 1)
2

𝑟
2

− (𝜂 − 1) (2𝛽𝜂 + 𝛽 − 1) 𝑟 + 𝜂 (𝛽𝜂 + 𝛽 − 1) .

(23)

For all real 𝑥 and 𝑦 satisfying 𝑦 ≤ −(1 + 𝑥2)/2, we have

R {𝜙 (𝑖𝑥, 𝑦; 𝑧)}

= 𝛽 (𝜂 − 1) 𝑦 − 𝛽 (𝜂 − 1)
2

𝑥
2

+ 𝜂 (𝛽𝜂 + 𝛽 − 1)

≤ −𝛽 (𝜂 − 1)
1 + 𝑥2

2
− 𝛽 (𝜂 − 1)

2

𝑥
2

+ 𝜂 (𝛽𝜂 + 𝛽 − 1) ≤
1

2
𝛽 (2𝜂
2

+ 𝜂 + 1) − 𝜂.

(24)

If we set

Ω = {𝜉 : R (𝜉) >
1

2
𝛽 (2𝜂
2

+ 𝜂 + 1) − 𝜂} , (25)

then Φ(𝑖𝑥, 𝑦; 𝑧) ∉ Ω for all real 𝑥, 𝑦 such that 𝑦 ≤

−(1 + 𝑥2)/2. Moreover, from definition (10), we know that
Φ(𝜌(𝑧), 𝑧𝜌(𝑧); 𝑧) ∈ Ω. Using Lemma 2, we conclude that
R(𝜌(𝑧)) > 0 for all 𝑧 ∈ U, which implies that 𝑓 ∈ M(𝜂).
This completes the proof of Theorem 5.

Now we consider the coefficient estimates for functions
belonging to the classM(𝛽, 𝜂).

Theorem 6. Suppose that

𝜂 > 1, 0 ≤ 𝛽 <
2𝜂 − 2

2𝜂2 + 𝜂 − 1
. (26)

If 𝑓 ∈ M(𝛽, 𝜂), then

𝑎1
 ≤

−1 + 2𝛽 + 𝛾

1 − 𝛽
,

𝑎𝑘
 ≤

−1 + 2𝛽 + 𝛾

1 − 𝛽

⋅

𝑘−1

∏
𝑚=1

(𝑚 + 1) [1 + (𝑚 − 2) 𝛽] − 2 (1 − 2𝛽 − 𝛾)

(𝑚 + 2) [1 + (𝑚 − 1) 𝛽]

(𝑘 ∈ N \ {1}) .

(27)

Proof. Suppose that 𝑓 ∈ M(𝛽, 𝜂). Then there exists 𝜏 ∈ P
such that

𝑧𝑓


(𝑧)

𝑓 (𝑧)
+ 𝛽

𝑧2𝑓 (𝑧)

𝑓 (𝑧)
+ 𝛾 = (−1 + 2𝛽 + 𝛾) 𝜏 (𝑧) (𝑧 ∈ U

∗

) .

(28)

It follows from (28) that

𝑧𝑓


(𝑧) + 𝛽𝑧
2

𝑓


(𝑧) = [(−1 + 2𝛽 + 𝛾) 𝜏 (𝑧) − 𝛾] 𝑓 (𝑧) . (29)

Combining (1) and (29), we have

(−
1

𝑧
+

∞

∑
𝑘=1

𝑘𝑎
𝑘
𝑧
𝑘

) + 𝛽(
2

𝑧
+

∞

∑
𝑘=1

𝑘 (𝑘 − 1) 𝑎
𝑘
𝑧
𝑘

)

= [(−1 + 2𝛽 + 𝛾)(1 +

∞

∑
𝑘=1

𝜏
𝑘
𝑧
𝑘

) − 𝛾] ⋅ (
1

𝑧
+

∞

∑
𝑘=1

𝑎
𝑘
𝑧
𝑘

) .

(30)

Evaluating the coefficient of 𝑧𝑛 in both sides of (30) yields

2 (1 − 𝛽) 𝑎
1
= (−1 + 2𝛽 + 𝛾) 𝜏

2
, (31)

(𝑘 + 1) [1 + (𝑘 − 2) 𝛽] 𝑎
𝑘

= (−1 + 2𝛽 + 𝛾)(𝜏
𝑘+1

+

𝑘−1

∑
𝑙=1

𝜏
𝑘−𝑙

𝑎
𝑙
) .

(32)

By observing the fact that |𝜏
𝑘
| ≤ 2 for 𝑘 ∈ N, we find from

(31) and (32) that

𝑎1
 ≤

−1 + 2𝛽 + 𝛾

1 − 𝛽
,

𝑎𝑘
 ≤

2 (−1 + 2𝛽 + 𝛾)

(𝑘 + 1) [1 + (𝑘 − 2) 𝛽]
[1 +

𝑘−1

∑
𝑚=1

𝑎𝑚
]

(𝑘 ≥ 2) .

(33)
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Now we define the sequence {𝐴
𝑘
}
∞

𝑘=1
as follows:

𝐴
1
=

−1 + 2𝛽 + 𝛾

1 − 𝛽
,

𝐴
𝑘
=

2 (−1 + 2𝛽 + 𝛾)

(𝑘 + 1) [1 + (𝑘 − 2) 𝛽]
[1 +

𝑘−1

∑
𝑚=1

𝐴
𝑚
] .

(34)

In order to prove that
𝑎𝑘

 ≤ 𝐴
𝑘

(𝑘 ∈ N) , (35)

we use the principle ofmathematical induction by noting that

𝑎1
 ≤ 𝐴
1
=

−1 + 2𝛽 + 𝛾

1 − 𝛽
. (36)

Therefore, we assume that
𝑎𝑚

 ≤ 𝐴
𝑚

(𝑚 = 1, 2, . . . , 𝑘; 𝑘 ∈ N) . (37)

Combining (32) and (33), we get

𝑎𝑘+1
 ≤

2 (−1 + 2𝛽 + 𝛾)

(𝑘 + 1) [1 + (𝑘 − 2) 𝛽]
[1 +

𝑘

∑
𝑚=1

𝑎𝑚
]

≤
2 (−1 + 2𝛽 + 𝛾)

(𝑘 + 1) [1 + (𝑘 − 2) 𝛽]
[1 +

𝑘

∑
𝑚=1

𝐴
𝑚
] = 𝐴

𝑘+1
.

(38)

Hence, by the principle of mathematical induction, we have
𝑎𝑘

 ≤ 𝐴
𝑘

(𝑘 ∈ N) (39)

as desired. By means of Lemma 2 and (33), we know that (12)
holds. Combining (39) and (12), we readily get the coefficient
estimates asserted byTheorem 6.

Using Lemma 4, we introduce the 𝛿-neighborhood of a
function 𝑓 ∈ Σ of the form (1) by means of the following
definition:

N
𝛿
(𝑓) := {𝑔 ∈ Σ : 𝑔 (𝑧) =

1

𝑧
+

∞

∑
𝑘=1

𝑏
𝑘
𝑧
𝑘

,

∞

∑
𝑘=1

𝑘 + 𝛽𝑘 (𝑘 − 1) + 𝛾

𝛾 − 1

𝑎𝑘 − 𝑏
𝑘

 ≤ 𝛿 (𝛿 ≥ 0)} .

(40)

By making use of definition (40), we obtain the following
result.

Theorem 7. If 𝑓 ∈ Σ satisfies the condition

𝑓 (𝑧) + 𝜀𝑧−1

1 + 𝜀
∈ M (𝛽, 𝜂) (𝜀 ∈ C; |𝜀| < 𝛿; 𝛿 > 0) , (41)

then

N
𝛿
(𝑓) ⊂ M (𝛽, 𝜂) . (42)

Proof. It is easily seen from (10) that a function 𝑔 ∈ M(𝛽, 𝜂)

if and only if

𝑧𝑔


(𝑧) + 𝛽𝑧2𝑔 (𝑧) + 𝑔 (𝑧)

𝑧𝑔 (𝑧) + 𝛽𝑧2𝑔 (𝑧) + (2𝛾 − 1) 𝑔 (𝑧)
̸= 𝜎

(𝑧 ∈ U; 𝜎 ∈ C; |𝜎| = 1) ,

(43)

which is equivalent to

(𝑔 ∗ ) (𝑧)

𝑧−1
̸= 0 (𝑧 ∈ U) , (44)

where

 (𝑧) =
1

𝑧
+

∞

∑
𝑘=1

𝑐
𝑘
𝑧
𝑘

(𝑐
𝑘
:=

𝑘 + 𝛽𝑘 (𝑘 − 1) + 1 − [𝑘 + 𝛽𝑘 (𝑘 − 1) + (2𝛾 − 1)] 𝜎

2𝛽 + (−2 + 2𝛽 + 2𝛾) 𝜎
) .

(45)

It follows from (45) that
𝑐𝑘



=



𝑘 + 𝛽𝑘 (𝑘 − 1) + 1 − [𝑘 + 𝛽𝑘 (𝑘 − 1) + (2𝛾 − 1)] 𝜎

2𝛽 + (−2 + 2𝛽 + 2𝛾) 𝜎



≤
𝑘 + 𝛽𝑘 (𝑘 − 1) + 1 + [𝑘 + 𝛽𝑘 (𝑘 − 1) + (2𝛾 − 1)] |𝜎|

(−2 + 2𝛽 + 2𝛾) |𝜎| − 2𝛽

=
𝑘 + 𝛽𝑘 (𝑘 − 1) + 𝛾

𝛾 − 1
(|𝜎| = 1) .

(46)

Furthermore, under the hypotheses ofTheorem 7, (44) yields
the following inequality:



(𝑓 ∗ ) (𝑧)

𝑧−1


≥ 𝛿 (𝑧 ∈ U; 𝛿 > 0) . (47)

Suppose that

𝜒 (𝑧) =
1

𝑧
+

∞

∑
𝑘=1

𝑑
𝑘
𝑧
𝑘

∈ N
𝛿
(𝑓) . (48)

It follows from (40) that


((𝑓 − 𝜒) ∗ ) (𝑧)

𝑧−1


=



∞

∑
𝑘=1

(𝑎
𝑘
− 𝑑
𝑘
) 𝑐
𝑘
𝑧
𝑘+1



≤ |𝑧|

∞

∑
𝑘=1

𝑘 + 𝛽𝑘 (𝑘 − 1) + 𝛾

𝛾 − 1

𝑎𝑘 − 𝑑
𝑘

 < 𝛿.

(49)

Combining (47) and (49), we have


(𝜒 ∗ ) (𝑧)

𝑧−1


=



([𝑓 + (𝜒 − 𝑓)] ∗ ) (𝑧)

𝑧−1



≥



(𝑓 ∗ ) (𝑧)

𝑧−1


−



((𝜒 − 𝑓) ∗ ) (𝑧)

𝑧−1


> 0,

(50)
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which implies that

(𝜒 ∗ ) (𝑧)

𝑧−1
̸= 0 (𝑧 ∈ U) . (51)

Thus, we have

𝜒 (𝑧) ∈ N
𝛿
(𝑓) ⊂ M (𝛽, 𝜂) . (52)

This completes the proof of Theorem 7.

Finally, we derive the partial sums of functions in the class
M(𝛽, 𝜂).

Theorem 8. Let 𝑓 ∈ Σ be given by (1) and define the partial
sums 𝑓

𝑛
(𝑧) of 𝑓 by

𝑓
𝑛
(𝑧) =

1

𝑧
+

𝑛

∑
𝑘=1

𝑎
𝑘
𝑧
𝑘

(𝑛 ∈ N) . (53)

Suppose also that

∞

∑
𝑘=1

𝑘 + 𝛽𝑘 (𝑘 − 1) + 𝛾

𝛾 − 1

𝑎𝑘
 ≤ 1. (54)

Then

(1) 𝑓 ∈ M(𝛽, 𝜂);

(2)

R(
𝑓 (𝑧)

𝑓
𝑛
(𝑧)

) ≥
𝑛 + 𝛽𝑛 (𝑛 + 1) + 2

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾
(𝑛 ∈ N; 𝑧 ∈ U) ,

(55)

R(
𝑓
𝑛
(𝑧)

𝑓 (𝑧)
) ≥

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾

𝑛 + 𝛽𝑛 (𝑛 + 1) + 2𝛾
(𝑛 ∈ N; 𝑧 ∈ U) .

(56)

Each of the bounds in (55) and (56) is the best possible for each
𝑛 ∈ N.

Proof. (1) It is easy to see that the result follows directly from
Lemma 4.

(2) Note that

𝑛 + 1 + 𝛽𝑛 (𝑛 + 1) + 𝛾

𝛾 − 1
>

𝑛 + 𝛽𝑛 (𝑛 − 1) + 𝛾

𝛾 − 1
> 1 (𝑛 ∈ N) .

(57)

Thus, we have

𝑛

∑
𝑘=1

𝑎𝑘
 +

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾

𝛾 − 1

∞

∑
𝑘=𝑛+1

𝑎𝑘


≤

∞

∑
𝑘=1

𝑘 + 𝛽𝑘 (𝑘 − 1) + 𝛾

𝛾 − 1

𝑎𝑘
 ≤ 1.

(58)

By setting

ℎ
1
(𝑧) =

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾

𝛾 − 1

⋅ (
𝑓 (𝑧)

𝑓
𝑛
(𝑧)

−
𝑛 + 𝛽𝑛 (𝑛 + 1) + 2

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾
)

=1+
((𝑛 + 𝛽𝑛 (𝑛 + 1)+1 + 𝛾) /(𝛾 − 1))∑

∞

𝑘=𝑛+1
𝑎
𝑘
𝑧𝑘+1

1 + ∑
𝑛

𝑘=1
𝑎
𝑘
𝑧𝑘+1

,

(59)

we find from (58) and (59) that


ℎ
1
(𝑧) − 1

ℎ
1
(𝑧) + 1



≤
((𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾)/(𝛾 − 1))∑

∞

𝑘=𝑛+1

𝑎𝑘


2 − 2∑
𝑛

𝑘=1

𝑎𝑘
−((𝑛 +𝛽𝑛 (𝑛 + 1)+1 + 𝛾)/ (𝛾 − 1))∑

∞

𝑘=𝑛+1

𝑎𝑘


≤ 1 (𝑧 ∈ U) ,

(60)

which implies inequality (55).
If we put

𝑓 (𝑧) =
1

𝑧
−

𝛾 − 1

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾
𝑧
𝑛+1

, (61)

then
𝑓 (𝑧)

𝑓
𝑛
(𝑧)

= 1 −
𝛾 − 1

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾
𝑧
𝑛+2

→
𝑛 + 𝛽𝑛 (𝑛 + 1) + 2

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾

(𝑧 → 1
−

) ,

(62)

which shows that the bound in (55) is the best possible for
each 𝑛 ∈ N.

Now, we set

ℎ
2
(𝑧) =

𝑛 + 𝛽𝑛 (𝑛 + 1) + 2𝛾

𝛾 − 1

⋅ (
𝑓
𝑛
(𝑧)

𝑓 (𝑧)
−

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾

𝑛 + 𝛽𝑛 (𝑛 + 1) + 2𝛾
)

= 1 −
((𝑛 + 𝛽𝑛 (𝑛 + 1) + 2𝛾) / (𝛾 − 1))∑

∞

𝑘=𝑛+1
𝑎
𝑘
𝑧
𝑘+1

1 + ∑
∞

𝑘=1
𝑎
𝑘
𝑧𝑘+1

.

(63)

In view of (58) and (63), we conclude that


ℎ
2
(𝑧) − 1

ℎ
2
(𝑧) + 1



≤
((𝑛 + 𝛽𝑛 (𝑛 + 1) + 2𝛾) / (𝛾 − 1))∑

∞

𝑘=𝑛+1

𝑎𝑘


2−2∑
𝑛

𝑘=1

𝑎𝑘
−((𝑛 + 𝛽𝑛 (𝑛 + 1) + 2) / (𝛾 − 1))∑

∞

𝑘=𝑛+1

𝑎𝑘


≤ 1 (𝑧 ∈ U) ,

(64)



6 Journal of Function Spaces

which leads to inequality (56) asserted in Theorem 8. The
bound in (56) is sharp with the extremal function 𝑓 given
by (61). We thus complete the proof of Theorem 8.

In what follows, we turn to quotients involving deriva-
tives. The proof of Theorem 9 is similar to that of Theorem 8
and so the details may be omitted.

Theorem 9. Let 𝑓 ∈ Σ be given by (1) and define the partial
sums 𝑓

𝑛
(𝑧) of 𝑓 by (53). If the condition (54) holds, then

R(
𝑓 (𝑧)

𝑓
𝑛
(𝑧)

) ≥
𝛽𝑛 (𝑛 + 1) − 𝑛𝛾

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾
(𝑛 ∈ N; 𝑧 ∈ U) ,

R(
𝑓


𝑛
(𝑧)

𝑓 (𝑧)
) ≥

𝑛 + 𝛽𝑛 (𝑛 + 1) + 1 + 𝛾

𝛽𝑛 (𝑛 + 1) + (𝑛 + 2) 𝛾
(𝑛 ∈ N; 𝑧 ∈ U) .

(65)

The bounds in (65) are sharp with the extremal function given
by (61).
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