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Feedforward controller would be useful for hybrid Functional Electrical Stimulation (FES) system using powered orthotic devices.
In this paper, Feedback Error Learning (FEL) controller for FES (FEL-FES controller) was examined using an inverse statics model
(ISM) with an inverse dynamics model (IDM) to realize a feedforward FES controller. For FES application, the ISM was tested in
learning off line using training data obtained by PID control of very slow movements. Computer simulation tests in controlling
wrist joint movements showed that the ISM performed properly in positioning task and that IDM learning was improved by using
the ISM showing increase of output power ratio of the feedforward controller. The simple ISM learning method and the FEL-FES
controller using the ISM would be useful in controlling the musculoskeletal system that has nonlinear characteristics to electrical

stimulation and therefore is expected to be useful in applying to hybrid FES system using powered orthotic device.

1. Introduction

Functional electrical stimulation (FES), which applies elec-
tric current or voltage pulses to peripheral nerves and
muscles, is a method of restoring or assisting motor functions
lost by the spinal cord injury or the cerebrovascular disease.
FES has been found to be effective clinically, especially
in controlling paralyzed upper limbs [1-3]. For restoring
lower limb functions, the hybrid FES system, which uses
an orthosis with FES, has been accepted as one of practical
methods [4, 5].

In the recent years, powered orthotic devices or robotic
exoskeletons have been focused on an assist or rehabilitation
of lower limb functions [6, 7]. Therefore, the hybrid FES
system is also expected to be realized with powered orthotic
devices. In such system, cooperative control between FES
and powered orthosis will be necessary. Feedforward control
scheme would be useful for controlling fast movements of
lower limbs in tracking to movements developed by the

powered orthosis because control performance of a feedback
controller is limited by large time delay and time constant
in responses of electrically stimulated muscles. However,
complex, time-consuming adjustment of many parameters
of the feedforward controller such as creating stimulation
data for a lot of muscles and time-varying properties of the
musculoskeletal system make it difficult to use practically the
feedforward FES controller in clinical application.

The Feedback Error Learning (FEL) proposed by Kawato
et al. [8, 9] can realize a feedforward controller by learning
inverse dynamics of controlled object. The FEL will be useful
in FES control because it can learn nonlinear characteristics
of the musculoskeletal system to electrical stimulation and
can remove the problem of manual adjustment of controller
parameters by medical staffs in applying to various subjects
that have different characteristics of the musculoskeletal
system.

In order to apply the FEL, a feedback controller is
required. The multichannel feedback FES controller has



to solve the ill-posed problem in regulating stimulation
intensities because the number of stimulated muscles is
larger than that of controlled joint angles. The feedback
FES controller based on the Proportional-Integral-Derivative
(PID) control algorithm that we developed could provide a
way of solving the ill-posed problem [10, 11]. In our previous
work, the FEL controller for FES (FEL-FES controller) using
the PID controller was found to be feasible in controlling
1-Degree-Of-Freedom (1-DOF) of wrist joint movement
(dorsi- and palmar flexions) stimulating 2 muscles [12].

The FEL-FES controller makes it possible to use both the
feedforward and feedback controllers, which is an advantage
for the cooperative control between FES and powered
orthosis in the hybrid FES system. Therefore, we performed
preliminary test to expand the previous FEL-FES controller
into controlling 2-DOF movements stimulating 4 muscles
through computer simulation. However, the previous FEL-
FES controller had a problem in learning the inverse
dynamics. That is, learning the inverse dynamics model
(IDM) in the previous FEL-FES controller sometimes failed.

Since a major problem in applying the FEL to FES is inap-
propriate learning of the IDM in FES control, a modification
of the FEL-FES controller was discussed through computer
simulation before testing with human subjects and applying
the controller to hybrid FES system in this paper. In the
previous FEL-FES controller, the IDM was only used for the
feedforward controller since learning an inverse statics model
(ISM) was not easy in clinical applications of FES because of
difficulty in acquiring training data, while the FEL controller
by Kawato was composed of the ISM and the IDM.

In this paper, in order to include the ISM into the
feedforward controller, a simple measurement method of
training data for the ISM was introduced considering FES
applications. The ISM learning and the modified FEL-FES
controller including the ISM were examined in wrist joint
movement control by computer simulations in order to be
compared to our previous work.

2. Feedback Error Learning Controller for FES

2.1. Outline. A block diagram of the feedback error learn-
ing controller for FES examined in this study is shown
in Figure 1. The sum of output stimulation intensities
from feedforward controllers (ISM and IDM) and a feed-
back controller is applied to each muscle after adding
offset (threshold value of electrical stimulation intensity)
and clipping out with the limiter to prevent excessive
stimulation.

The PID controller outputs positive and negative values
of stimulation intensity for each muscle to cancel out the
difference between the desired joint angle (6;) and the actual
angle (0) during movement control. The outputs were also
used in IDM learning on line.

Two three-layered artificial neural networks (ANNS)
were used for ISM and IDM. The IDM and the ISM
output positive values of stimulation intensity to each muscle
calculated from the desired joint angle (6;), while the IDM
uses the first and second derivatives of the desired angle. The
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FIGURE 1: Feedback error learning controller tested in this study.
The inverse statics model (ISM) and inverse dynamics model (IDM)
were used as the feedforward controller.
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Figure 2: Structure of ANN for IDM used in the FEL-FES
controller.

ISM is trained off line before IDM learning, and then the
IDM is done on line using outputs of the feedback controller.

2.2. Feedforward Controller. The structure of ANN for the
IDM is shown in Figure 2. The input data of the desired
joint angle and its first and second derivatives at continuous
6 times, from t to t + 5, (50 ms interval) in the directions
of dorsi/palmar flexion (Hdl,édl, and 6,;) and radial/ulnar
flexion (042,04, and 84,) were given simultaneously. Out-
puts were stimulation intensities to 4 muscles. Therefore, the
numbers of neurons in the IDM were 36 for the input layer
and 4 for the output layer. That for the hidden layer was 18,
which was determined based on our previous results [12].

The output of each neuron in the hidden and the output
layers was defined as

y=f(Zw,x,-+c) (1)

where x; represents outputs of the neurons in the previous
layer, w; is the connection weight from neurons in the
previous layer, ¢ is the bias term, and i is the index of the
neuron in the previous layer. The output function f(x) of
the neuron is the sigmoid function

F)= )

1+e~
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The IDM was trained on line by the error backpropaga-
tion algorithm [13, 14] using outputs of the PID controller.
ANN connection weights are changed to reduce total error,
E, as follows:

1
E= E(Idesired - IIDM)T ) (Idesired - IIDM) (3)
@_S(M>T(I ired — Tpom) (4)
dt = ow desired IDM

where Igesired and Iipy are desired stimulation intensity and
stimulation intensity of the IDM, respectively. ¢ is the learn-
ing speed coefficient that has effect on convergence speed
of learning. Ijesired — Iipm is approximated by stimulation
intensity of the PID controller, Ipip.

The ISM was trained off line before the IDM learning
by using the error backpropagation algorithm. The three-
layered ANN that had 2 neurons for the input layer, 18 and 4
for the hidden and the output layers, was used for the ISM.
The ISM and the PID controller output stimulation during
control for IDM learning, although outputs of the ISM were
not used for IDM learning.

2.3. Feedback Controller. The following PID control algo-
rithm was used in the FEL-FES controller as the feedback
controller:

n

Ipin(n) = Kpe(n) + Ki > e(i) + Kpfe(n) —e(n— 1)} (5)
i=0

where the error vector e(n) is defined as difference between
desired and measured joint angle vectors at time n. The
PID parameter matrices Kp, Ki, and Kp were determined by
modifying the Chien, Hrones, and Reswick (CHR) method,
and their elements were expressed as follows [10]:

_ 0.6At _
Mijs Kiij= I Mip
1

0.6T;
L;

0.3T; _
“ar M
(®)

Kpij = Kpij =

where L; and T; are the latency and the time constant of the
step response of muscle i, when the response is approximated
to the first order delay with latency. At is the sampling
period. In case that a muscle has two or more functions (j
shows index of the function), the delay time and the time
constant obtained for every components in a movement were
averaged, respectively. The coefficient m;; corresponds to a
reciprocal of the steady state gain of the system, which is
calculated as an element of a generalized inverse matrix of a
transformation matrix M. The matrix M transforms change
of stimulation intensity vector into change of joint angle
vector. Calculation method of the coefficient m;; is shown in
Appendix A.

3. Computer Simulation Tests

The FEL-FES controller including the ISM was tested in con-
trolling 2-DOF movements of the wrist joint. The muscles to
be stimulated were the extensor carpi radialis longus/brevis

(ECRL/ECRB), the extensor carpi ulnaris (ECU), the flexor
crpi radialis (FCR) and the flexor crpi ulnaris (FCU). The
ECRL and the ECRB were assumed to be one muscle group
(ECR) because of difficulty in selective stimulation to them
in experiments using surface electrodes that we performed
[10].

For computer simulation tests of learning the ISM and
the IDM and of control performance, a musculoskeletal
model of the upper limb was developed. In brief, muscle
force Fcg, produced by electrical stimulation was described by
the Hill type muscle model with nonlinear length-force rela-
tionship k(I) and nonlinear velocity-force relationship h(v),
which included muscle activation level a,,(s) determined
by nonlinear recruitment characteristics with dynamics to
applied electrical stimulation (refer to Appendix B for
details). That is,

FCE = am(s)k(l)h(V)Fmax (7)

where s, [, and v were normalized stimulation intensity,
muscle length and contraction velocity, respectively. Fmax
showed a constant of maximum muscle force. Active torque
7cg produced by electrical stimulation was calculated by
muscle force Fcg and moment arm r¢(6). That is,

7cg = Feg r£(0). (8)

Moment arm rf(0) was represented by an approximated
polynomial equation as a nonlinear function of joint angle
0 for each movement developed by each muscle [15]. Six
different subject models were prepared, in which the differ-
ence between 6 subjects was represented by adjusting mainly
parameters of recruitment characteristics based on step
responses and input-output (stimulus intensity-joint angle)
relationships of the muscles measured on 6 neurologically
intact subjects.

In this study, ISM learning was carried out off line
using training data that consisted of stimulation intensities
to 4 muscles and 2 joint angles. A set of training data was
obtained by the tracking control of very slow movements
using the PID controller. Figure 3 shows target trajectories of
the tracking controls to obtain the training data set. The cycle
period was 30 s for all trajectories. In Figure 3(a), the training
data set was obtained from 2 target trajectories which were
ellipses on the joint angle plane with the major radius of
20 deg in dorsi/palmar flexion and the minor radius of 15 deg
in radial/ulnar flexion and those of 10 deg and 7.5 deg. Four
target trajectories as shown in Figure 3(b) were also used for
measurement of another training data set for ISM learning,
in which 2 trajectories with the radius of 15 deg and 11.25 deg
and 5 deg and 3.5 deg were added to those in Figure 3(a). The
ISM was trained off line applying training data in random
order. Initial values of the ANN connection weights were
random values.

The IDM was trained on line for different 5 target trajec-
tories shown in Figure 4, which were also ellipses on the joint
angle plane with the radius of 20 deg in dorsi/palmar flexion
and that of 15deg in radial/ulnar flexion. The centers of
those trajectories were 0 deg, 5 deg moved to the radial, ulnar,
dorsi, and palmer directions. Three cycle periods, 2, 3, and



Dorsi flexion
(deg)

|/

Ulnar flexion

. Radial flexion
10 20 (deg)

=20

Palmar flexion

(a) 2 target trajectories

Journal of Robotics

Dorsi flexion
(deg)

Ulnar flexion

=20 10

. Radial flexion
1 20 (deg)

Palmar flexion

(b) 4 target trajectories

FIGURE 3: Target joint angle trajectories to obtain training data for ISM learning. Cycle period was 30 s for all trajectories.
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FIGURE 4: Target joint angle trajectories for IDM learning. Each
movement had different center.

65, were used for all trajectories. Six cycles were included in
one control trial for IDM learning. Three sets of initial values
of ANN connection weights were prepared, which were
random small values that did not have effect on movements
at the 1st control trial (before IDM learning). Therefore, a
total of 45 learning tasks were tested on 6 subject models
with all controllers (without ISM, using ISM trained with
2 trajectories, and using ISM trained with 4 trajectories).
Iteration number of IDM learning was fixed at 50.

4. Results

The ISM was evaluated by feedforward control of position-
ing. Target position for the control was set by a pair of
dorsi/palmar flexion and radial/ulnar flexion angles at every

2 deg in the range of 20 deg in dorsi- and palmar flexions and
in the range of 16 deg in radial and ulnar flexions. An exam-
ple of the evaluation result of the ISM is shown in Figure 5.
In the case of using 2 target trajectories for obtaining training
data (ISM-2), the error did not reduce around the center
of the target trajectory and at positions between training
data. As for the 4 trajectories for training data (ISM-4), the
errors were small inside the largest target trajectory. Larger
target joint angles outside the largest trajectory could not be
controlled appropriately with both ISM-2 and ISM-4.

Figure 6 shows average errors in open loop control of
the positioning for ISM-2 and ISM-4. There was no large
difference in the error between 6 subject models. Positioning
errors shown in Figure 6(a) are for evaluation including
targets outside the largest trajectory, and those in Figure 6(b)
show those excluding targets outside the largest trajectory.
Average positioning errors inside the largest trajectory (Fig-
ure 6(b)) were smaller than those in Figure 6(a). Figure 6(b)
suggests that positioning in the radial/ulnar flexion was not
trained sufficiently with the ISM-2.

Figure 7 indicates an example of control result of the FEL-
FES controller using the ISM with the IDM. The IDM was
trained during the tracking control. The first cycle period
of 5s, which was set for moving to the start position of
tracking control, was not used in the IDM learning. Before
IDM learning (the Ist control trial), the ISM and the PID
controller performed tracking control without the IDM.
After IDM learning (the 50th control trial), the FEL-FES
controller could perform good tracking with very small
outputs of the PID controller.

In order to evaluate performance of the FEL-FES con-
troller, mean error (ME) and power ratio (PR) shown in the
following equations were calculated in each learning task:

_ Zale(m)| _ 2,10a(n) — 6(n)|

ME
N N

[deg],  (9)

2. Prr(n)

PR = S () + 5, Prr()

X 100

[%], (10)
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FIGURE 6: Evaluation results of ISM learning in positioning control.

where, e(n) represents the error between target joint angle
and the resulted one at time n. N is the number of sampled
data. Ppp(n) and Ppg(n) represent the output power of the
feedforward and the feedback controllers, respectively. The
ME was calculated for each movement direction, and the PR
was done for each muscle.

Average values of ME are shown in Figure 8. The
controllers using the ISM decreased the error at the Ist
control trial (before IDM learning). Especially, the ME was
very small for slow movement control. All 3 controllers

performed good tracking control after the IDM learning (the
50th control trial). There was no difference in ME after the
IDM learning between ISM-2 and ISM-4 and also between
with and without the ISM.

The power ratio, PR, gives us information of IDM
learning. Figure 9 shows average value, the minimum
and the maximum values of the PR. The FEL-FES con-
troller using the IDM and the ISM achieved larger aver-
age value and larger minimum value of the PR than
those of the previous controller before and after IDM
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FIGURE 7: An example of control result by the FEL-FES controller using the ISM and the IDM. (model C, center at palmar position, cycle

period of 3s).

learning. After IDM learning, the minimum value of
PR was greatly improved by using the ISM. There was
no difference in those improvements between ISM-2 and
ISM-4.

5. Discussion

The off line ISM learning was effectively achieved with
the small number of measurements of training data. For
practical clinical application, small number of measurements

and short period of control time for acquiring the training
data are required to avoid muscle fatigue and burden to
patients. Therefore, training data acquired from feedback
FES control of very slow continuous movements can be
useful in ISM learning for FES.

Increasing the number of target trajectories to obtain
training data may be required for learning the ISM of the
musculoskeletal system that has nonlinear characteristics.
However, if the ISM is mainly used to improve learning
performance of the IDM, it is possible to decrease the
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FIGURE 8: Average values of the mean error (ME) in tracking control
by FEL-FES controllers. Error bar shows the standard deviation.

number of measurements of training data because there was
no large difference between ISM-2 and ISM-4. On the other
hand, target positions that had larger joint angles outside
the largest trajectory could not be controlled appropriately
as seen in Figure 5. This was a natural result because those
targets were outside the training data. Since the control
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FIGURE 9: Average values of the power ratio (PR) in tracking control
by FEL-FES controllers. Error bar shows the minimum and the
maximum values of the PR.

performance of the ISM was improved by adding target
trajectories to obtain training data, the ISM is expected to
perform properly in the range of motion if the training data
that cover the range of motion are added.

The output power of the feedforward controller, PR, was
increased by using the ISM as shown in Figure 9. More
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than 84% of the number of muscle outputs showed the
increase of PR for movements with the cycle period of 2 s. For
movements with the cycle period of 3s and 6, it was more
than 65% and more than 40%, respectively. These results
show that IDM learning was improved in most of learning
tasks. For evaluating the improvement of IDM learning,
the large PR rate that was defined as the percentage of the
number of muscle outputs that had PR larger than 80% was
calculated (Figure 10). The large PR rate was also improved
by using ISM, especially for fast movement control. These
results suggest that the FEL-FES controller using the ISM can
be effective to realize a feedforward controller by learning
nonlinear characteristics of the musculoskeletal system to
electrical stimulation. For practical applications of the FEL
to FES, an effective method of IDM learning will be
needed, because the musculoskeletal system has nonlinear
characteristics and also has hysteresis characteristics.

The FEL-FES controller using the ISM made better
control with small values of ME at the first control trial for
IDM learning as expected (Figure 8(a)). Since the difference
in ME between with and without the ISM was not so large,
the feedback controller was considered to perform well.
However, control performance of the feedback FES con-
troller sometimes deteriorated in tracking control because
of nonlinear characteristics of the musculoskeletal system to
electrical stimulation [16] although the feedback controller
has been shown to perform properly [10, 11]. Therefore, the
ISM is expected to become useful in controlling before IDM
learning.

After IDM learning, all controllers showed small values
of ME with no significant difference between the controllers
(Figure 8(b)). However, the controllers using ISM resulted
in larger average and minimum values of PR than those of
the controller without the ISM (Figure 9(b)). This suggests
that the PID controller had effect on decreasing errors for
the controller without the ISM even after IDM learning while
the feedforward controller worked mainly in the controllers
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FiGUrEe 11: Outline of determination of gain of the musculoskeletal
system. The gray solid line shows the approximated linear line of the
input-output relationship of the muscle.

using ISM. Therefore, there is a possibility that the controller
without ISM has a problem in movement control of the
musculoskeletal system that has nonlinear characteristics.

6. Conclusions

Feedback error learning (FEL) controller using the ISM
with the IDM was applied to FES control. The FEL-FES
controller was examined in controlling 2-DOF movements
of the wrist joint through computer simulation. In order
to train the ISM in FES application, training data were
acquired by controlling very slow movements with the PID
controller. The ISM trained off line using the training data
obtained by the simple measurement method was found to
perform properly in the positioning task. The output power
ratio of the feedforward controller in the FEL-FES controller
was increased by using the ISM showing improvement of
IDM learning. The FEL-FES controller using ISM would
be useful in realizing feedforward controller for controlling
musculoskeletal system that has nonlinear characteristics to
electrical stimulation and therefore expected to be useful in
applying to hybrid FES system.

Appendix
A. Calculation of Gain of Feedback Controller

The transformation matrix M was obtained as follows
(see Figure 11). First, the input (stimulus intensity)-output
(joint angle) characteristics of each muscle were measured
by applying electrical stimulation, in which stimulation
intensity was increased very slowly. Then, the minimum
(Simin) and the maximum (S;max) stimulus intensities for
FES control were determined, and the characteristics were
approximated to a linear line between these intensities by
the least square method. The slope of the approximated
line was used as an element of the matrix M, m;;. Here,
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the input-output relationship of the musculoskeletal system
was represented approximately by using experimentally

determined constant matrix M:
A® = MAS. (A1)

In case of controlling 2-DOF movements stimulating 4
muscles, the following equation is obtained:

AS;

AO, myy my mz ma \ | AS;
AO, miy My M3y My AS;3 ’

ASy

(A.2)

where Af; and A0, show change of joint angles of
dorsi/palmar flexion and radial/ulnar flexion, respectively.
AS; means change of stimulation intensity to muscle i.

The matrix M is not the square matrix in general
because the number of muscles stimulated is larger than that
of degree-of-freedom of movement controlled. Therefore,
the generalized inverse matrix of the matrix M, M~, was
calculated. That is,

AS =M™ AO, (A.3)
AS, myp mp
AS, My My, AD,
= . (A.4)
AS3 m;l mgz A@z
AS, My My,

Since there are many generalized inverse matrices for M,
the generalized inverse matrix M~ has to be determined
uniquely.

Here, after changing negative sign of m;; into positive
one, the calculation of the generalized inverse matrix can be
solved as the quadratic programming problem using (A.5) as
the objective function under the constraints shown by (A.6)
and (A.7) [17]

2
L= (my), (A.5)
ij
myy my,
my My M3y My My My 10
= ,  (A6)
My My M3y My mszy M3, 01
My My,
m;; > 0. (A.7)

This type of the quadratic programming problem can
be converted to the linear programming problem by the
Wolfe’s algorithm [18]. The unique solution of such linear
programming problem can be obtained after the finite
number of iterative calculations by the simplex method [18].
That is, a set of positive values of m;; minimizing the value
L can be calculated under the condition of MM~ = T after
changing negative sign of m;; into positive one. Finally, the
sign of m;; was changed to negative sign based on the sign of
m,‘j.

Elbow

Upper arm

. Wrist
Extension

Pronation

Radial flexion

Flexion

Supination

Ulnar flexion!

Palmar flexion

FIGURE 12: Skeletal model structure of the upper limb.

B. Musculoskeletal Model for FES Control

In this study, the 2-DOF wrist joint movements (dorsi/
palmar flexions and radial/ulnar flexions) were controlled
stimulating the flexor carpi radialis (FCR), the flexor carpi
ulnaris (FCU), the extensor carpi radialis longus/brevis
(ECRL/B), and the extensor carpi ulnaris (ECU). Since the
four stimulated muscles also relate to forearm or elbow
movements, the skeletal model structure of the upper
extremity was constructed in order to represent elbow
flexion/extension, forearm pronation/supination, and wrist
dorsi/palmar flexions and radial/ulnar flexions as shown
in Figure 12. The shoulder joint was designed to be fixed
at arbitrary angles of flextion/extention and rotation. The
15 muscles relating these movements as the agonist were
included as listed in Table 1. Some muscles were also modeled
as the synergistic muscles for other movements.

The musculoskeletal model to predict responses of elec-
trically stimulated muscles is outlined in Figure 13. Muscle
force Fcg produced by electrical stimulation was described
by the Hill type muscle model including muscle activation
level determined by electrical stimulation a,(s), length-
force relationship k(I), velocity-force relationship h(v), and
maximum muscle force Fy,.c. That is,

Fcg = am(s)k(D)h(v)Frax (B.1)

where s, [, and v were normalized stimulation intensity,
muscle length, and contraction velocity, respectively. Active
torque 7cg produced by electrical stimulation was calculated
by muscle force Fcg and moment arm ry(6). That is,

7cg = Feg r£(0). (B.2)

Moment arm rf(0) was represented by an approximated
polynomial equation as a nonlinear function of joint angle 0
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FIGure 13: Outline of the musculoskeletal model for FES.
TaBLE 1: Muscles included into the model.

Joint Movement Agonist muscle Synergistic muscle

Elbow flexion biceps brachii long head flexor carpi radialis
biceps brachii short head extensor carpi radialis longus
Brachialis extensor carpi radialis brevis
brachioradialis pronator teres

extension triceps brachii long head extensor carpi ulnaris

triceps brachii medial head
triceps brachii lateral head

Forearm pronation pronator quadratus
pronator teres

supination biceps brachii long head Brachioradialis

biceps brachii short head
Supinator

Wrist palmar flexion flexor carpi radialis

flexor carpi ulnaris

dorsi flexion

extensor carpi radialis longus

extensor carpi radialis brevis

extensor carpi ulnaris

radial flexion

extensor carpi radialis longus

extensor carpi radialis brevis

flexor carpi radialis

ulnar flexion

extensor carpi ulnaris

flexor carpi ulnaris

for each movement developed by each muscle [15]. For
example, the moment arm for the wrist dosri/palmar flexion
and elbow flexion/extension was described by the following
equation:

r7(0) = ag+ a10 + a:0° + as0° + a40* + as6° (B.3)

where ay ~ as were parameters for each movement of each

muscle. Each element of the Fcg is described in the following.
The nonlinear recruitment property of electrically stim-

ulated muscle u(s) was modeled by the following [19]:

u(s) = s, tanh{sp(s — x;)} + ye (B.4)

where s, si, X., and y, were constants. Electrical stimulation
was expressed in normalized stimulation intensity s. The

muscle activation a,, was described by the following dynam-
ics using the recruitment property with different two time
constants, ¢, and ¢; [20]:

dan _ l{u(S) — aptu(s) + %{u(S) — ).

Fra (B.5)

The length-force relationship k(I) was described by the
following equation. I, means optimum muscle length [21]:

-1 (G5):

(B.6)

The velocity-force relationship h(v) during shorten-
ing and lengthening of muscle was modeled. vimax shows



Journal of Robotics

maximum contraction velocity [21, 22]:

Vmax — V . .
h(v) = 2y (v < 0: shortening),
‘max T 2.5 .
h(v) = 1.3 — 0.3 —max T =9V (v > 0 : lengthening).

Vmax — 2.5%V
(B.7)

The maximum muscle force produced by electrical
stimulation Fp,x was determined by PCSA (physiological
cross-sectional area) as follows [15]:

Fnax = 2.2 PCSA. (B.8)

The passive viscoelastic element developed passive torque
7p calculated by the following equation for each joint
movement [23]. The range of motion was also represented
by this property:

7p = koO + bow + ki {exp(k, 0) — 1} (B.9)
where 6 and w were joint angle and angular velocity,

respectively. Constants ko, by, k1, and k, were determined for
each joint movement.
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