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This paper presents the decentralized trackers using the observer-based suboptimal method for the interconnected time-delay
singular/nonlinear subsystems with closed-loop decoupling property.The observer-based suboptimal method is used to guarantee
the high-performance trajectory tracker for two different subsystems.Then, due to the high gain that resulted from the decentralized
tracker, the closed-loop system will have the decoupling property. An illustrative example is given to demonstrate the effectiveness
of the proposed control structure.

1. Introduction

The singular system model is a natural presentation of
dynamic systems, such as power systems [1] and large-
scale systems [2, 3]. In general, an interconnection of state
variable subsystems is conveniently described as a singular
system, even though an overall state space representationmay
not even exist. Over the past decades, much attention has
been focused on the decentralized control [4–6] for time-
delay singular systems. In [7], the problem of decentralized
stabilization has been discussed for nonlinear singular large-
scale time-delay control systems with impulsive solutions.
The 𝐻

∞
control for singular systems with state delay has

been presented in [8]. And the decentralized output feedback
control problem [9] is considered for a class of large-scale
systems with unknown time-varying delays.

In the recent years, a large number of control systems are
characterized by interconnected large-scale subsystems, and
many practical examples have been applied to decentralized
control systems. The decentralized control of interconnected
large-scale systems has commonly appeared in our modern
technologies, such as transportation systems, power systems,

and communication systems [10–12]. However, a survey of
the literature indicates that the singular system issue has
seldom been studied in such systems. Many research [13–
16] results concerning the singular/nonlinear system have
successfully solved lots of complex problems. For the above
reasons, we will discuss the decentralized control of the
interconnected large-scale time-delay singular subsystemand
nonlinear subsystem.

In this paper, we consider the time-delay effect. In
practical applications, the time-delay effect [17–19]may result
in an unexpected and unsatisfactory system performance,
even including the serious instability, if it is ignored in the
design of control systems. In order to overcome this problem,
the controller design method [20, 21] is necessary to be
further explored in this paper. Sequentially, the decentralized
trackerwith the high-gain propertywillmake the closed-loop
system own the decoupling property.

This paper is organized as follows. Section 2 describes
the problem of interest. Section 3 presents the observer-based
suboptimal digital tracker. Section 4 presents the simulation
results of interconnected time-delay singular/nonlinear sub-
systems. Finally, Section 5 draws conclusions.
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The equivalent time-delay linear nonsingular system

The equivalent time-delay linear system

T1

T1

T2

T1

T2

T2

+
+

+
+

xd1(t)

xd2(t)

C1

C2

T2

T1

Z.O.H.

Z.O.H.

S2

S1

E (t) = Ax1(t) + A1x1(t − 𝜏s1)
+ B1u1(t − 𝜏i1)
+ h󳰀12x2(t − 𝜏c2 − 𝜏i1)

L(𝜏o1)

L(𝜏o2)

ud1(k1T1)

ud2(k2T2)

ud1(t − 𝜏i1)

ud2(t − 𝜏i2)

yd1(k1T1)

yd2(k2T2)

L(𝜏c1)

L(𝜏c2) h󳰀12(xd2(t))

h󳰀21(xd1(t))

L(𝜏i1)

L(𝜏i2)

L(𝜏i2)

L(𝜏i1)

2(t) = f2(x2(t − 𝜏s2))

+ h󳰀21x1(t − 𝜏c1 − 𝜏i2)]
+ g2(x2(t − 𝜏s2))[u2(t − 𝜏i2)) ]

.
x

.
x

Figure 1: The schematic design methodology for the interconnected time-delay singular/nonlinear system.

2. System and Problem Description

Consider the time-delay system consisting of two intercon-
nected MIMO subsystems shown as

𝑆1: 𝐸𝑥̇ (𝑡) = 𝐴𝑥
1
(𝑡) + 𝐴

1
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1
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𝑦
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𝑥
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1
(𝑡) and 𝑥

2
(𝑡) are the state vectors, 𝑢

1
(𝑡) and 𝑢

2
(𝑡) are

the control input vectors, and 𝑦
1
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2
(𝑡) are the output

vectors. 𝑓
2
(⋅) and 𝑔

2
(⋅) are nonlinear functions of the states
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2
(𝑡) of 𝑆2. 𝐸, 𝐴, 𝐴

1
, 𝐵
1
, 𝐶
1
, and 𝐶

2
are known as constant

systemmatrices of appropriate dimensions and𝐸 is a singular
matrix. State time delays 𝜏

𝑠1
and 𝜏

𝑠2
, interconnection time

delays 𝜏
𝑐1
and 𝜏
𝑐2
, input time delays 𝜏

𝑖1
and 𝜏
𝑖2
, and output

time delays 𝜏
𝑜1

and 𝜏
𝑜2

are assumed to be known. The time
delays of interconnected state vectors ℎ󸀠
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𝑥
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(𝑡 − 𝜏
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− 𝜏
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and ℎ
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21
𝑥
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(𝑡 − 𝜏

𝑐1
− 𝜏
𝑖2
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at different rates to accurately produce a reliable navigation
solution.

The subsystem 𝑆1 is the time-delay singular system and
subsystem 𝑆2 is the time-delay nonlinear subsystem. Before
designing the controller, the decentralized modeling of the
interconnected time-delay system is proposed in Figure 1.
The notation 𝐿(⋅) through this paper is a time lag operator;
for example, 𝐿(𝜏

𝑖𝑗
)𝑢(𝑡) = 𝑢(𝑡 − 𝜏

𝑖𝑗
).

It is very difficult to directly design the tracker and
observer for 𝑆1 and 𝑆2 because their system models are
not nonsingular and linear models. To solve this problem,
the previously proposed method in [21] and the OKID
(observer/Kalman filter identification) method in [22] are
appropriately utilized to make 𝑆1 and 𝑆2 become the equiva-
lent linear time-delay nonsingular subsystems. As a result, the
process becomes quite simple. Besides, as long as the designed
tracker for each subsystem has the high-gain property, the
designed global system will have the closed-loop decoupling
property.

We will use the proposed schematic design in Figure 1 to
construct the methodology of the decentralized control for
the interconnected time-delay singular/nonlinear subsystems
with the closed-loop decoupling property.

3. Main Results

In this section, we construct the methodology of the
decentralized control by using the design concept of the
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observer-based suboptimal digital tracker to control time-
delay singular subsystem and time-delay nonlinear subsys-
tem, respectively. Before designing the controller, we need
to obtain the equivalent time-delay linear nonsingular sub-
system and the equivalent time-delay linear subsystem. The
problem of decentralized stabilization is discussed in the
appendix.

3.1.TheEquivalent Time-Delay LinearNonsingular Subsystems
for the Time-Delay Singular/Nonlinear Subsystems. From the
schematic design methodology of Figure 1, and by using the
previousmethod in [20], we canmake the time-delay singular
subsystems (1a) and (1b) become the equivalent time-delay
regular system as follows:
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and input V
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(𝑡)

can be referred to in [20].

Remark A.0. Notably, definitions of the regular pencil [23]
and the standard pencil [24] are satisfied on no state delay
term in systems (1a) and (1b). If 𝐴

1
exists, then definitions of

the regular pencil and the standard pencil do not guarantee
that systems (1a) and (1b) can be decomposed into the
equivalent time-delay regular system.

Similarly, the time-delay nonlinear subsystems (2a) and
(2b) can transform the equivalent time-delay linear subsys-
tem by OKID method [21, 22] as follows:
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where 𝐺
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, and 𝐶

𝑑2
are the identified parameters by

OKID method. The corresponding continuous-time system
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Notably, 𝐴
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are known as constant system

matrices of appropriate dimensions.
The equivalent subsystems (3a), (3b), and (5a) and (5b)

will be applied to the observer-based suboptimal digital
tracker [21] for the singular/nonlinear subsystem in the next
subsection and finally we proposed the schematic design
methodology of decentralized control for the interconnected
time-delay singular/nonlinear subsystems with closed-loop
decoupling property.

3.2. The Observer-Based Suboptimal Digital Tracker Design
[21]. Consider the continuous time-delay singular subsys-
tems (3a) and (3b) or the time-delay subsystems (5a) and

(5b). Here, we take the time-delay singular subsystems (3a)
and (3b) to design the observer-based suboptimal digital
tracker and the design results are similar to the time-delay
subsystems (5a) and (5b).

Consider the continuous time-delay singular subsystems
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= [2𝑞

(2)

1
− (

𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1

𝑇
1

− 𝛽
1
)

2

𝐼
𝑛

+ 𝛽
2

1
𝛿
1
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
)] (𝐴

𝑠
𝑇
1
)
−1

.

(12)
Some terms in (10) may be combined as in (9), and (10) can
be rewritten as
𝑥
𝑠
(𝑡 − 𝜏
𝑜1
) = 𝛿
0
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) 𝑥
𝑑𝑠
(𝑘𝑇
1
)

+

𝑀
1

∑

𝑖=1

𝛿
𝑖
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) 𝑥
𝑑𝑠
(𝑘𝑇
1
− 𝑖𝑇
1
)

+ 𝜑
0
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) V
𝑑
(𝑘𝑇
1
)

+

𝑀
2

∑

𝑗=1

𝜑
𝑗
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) V
𝑑
(𝑘𝑇
1
− 𝑗𝑇
1
) .

(13)

Then, the output (3b) can be rewritten as
𝑦
1
(𝑡) = 𝐶

11
𝑥
𝑠
(𝑡 − 𝜏
𝑜1
) − 𝐷
1
V
𝑐
(𝑡 − 𝜏
𝑖1
)

= 𝐶
11
𝛿
0
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) 𝑥
𝑑𝑠
(𝑘𝑇
1
)

+

𝑀
1

∑

𝑖=1

𝐶
11
𝛿
1
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) 𝑥
𝑑𝑠
(𝑘𝑇
1
− 𝑖𝑇
1
)

+ 𝐶
11
𝜑
0
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) V
𝑑
(𝑘𝑇
1
)

+

𝑀
2

∑

𝑗=1

𝐶
11
𝜑
𝑗
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) V
𝑑
(𝑘𝑇
1
− 𝑗𝑇
1
)

− [𝐷
(0)

1
V
𝑑
(𝑘𝑇
1
− 𝜂
1
𝑇
1
) + 𝐷
(1)

1
V
𝑑
(𝑘𝑇
1
− 𝜂
1
𝑇
1
− 𝑇
1
)] ,

(14)

where 𝐷(0)
1

= 𝐷
∗

1
(𝐵
𝑇

𝑑
𝐵
𝑑
)
−1

𝐻
(0)

1
, 𝐷(1)
1

= 𝐷
∗

1
(𝐵
𝑇

𝑑
𝐵
𝑑
)
−1

𝐻
(1)

1
, and

𝐷
∗

1
= [𝐷
1
𝑂]
𝑇.

Similarly, some terms in (14) can be combined so (14) can
be rewritten as

𝑦
1
(𝑡) = 𝐶

11
𝛿
0
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) 𝑥
𝑑𝑠
(𝑘𝑇
1
)

+

𝑀
1

∑

𝑖=1

𝐶
11
𝛿
1
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) 𝑥
𝑑𝑠
(𝑘𝑇
1
− 𝑖𝑇
1
)

+ 𝐶
11
𝜑
∗

0
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) V
𝑑
(𝑘𝑇
1
)

+

𝑀
2

∑

𝑗=1

𝐶
11
𝜑
∗

𝑗
(𝑡 − 𝜏
𝑜1
− 𝑘𝑇
1
) V
𝑑
(𝑘𝑇
1
− 𝑗𝑇
1
) ,

(15)

where𝜑∗
0
,𝜑∗
𝑗
,𝜑
0
, and𝜑

𝑗
are the summation ofmultiple input-

delay terms.
In the following work, we use (13) and (15) to derive the

equivalent extended delay-free system as follows:

𝑋
𝑑
((𝑘 + 1) 𝑇

1
) = 𝐺
𝑒
𝑋
𝑑
(𝑘𝑇
1
) + 𝐻̂
𝑒
V
𝑑
(𝑘𝑇
1
) , (16a)

𝑦
𝑑
(𝑘𝑇
1
) = 𝐶
𝑒
𝑋
𝑑
(𝑘𝑇
1
) , (16b)
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where

𝑋
𝑑
(𝑘𝑇
1
) = [𝑥

𝑑𝑠
(𝑘𝑇
1
) 𝑥
𝑑𝑠
(𝑘𝑇
1
− 𝑇
1
) ⋅ ⋅ ⋅ 𝑥

𝑑𝑠
(𝑘𝑇
1
−𝑀
1
𝑇
1
) V
𝑑
(𝑘𝑇
1
− 𝑇
1
) ⋅ ⋅ ⋅ V
𝑑
(𝑘𝑇
1
−𝑀
2
𝑇
1
) 𝑟
∗

(𝑘𝑇
1
)]
𝑇 (17)

means the extended virtual state vector.
By the previous method [21], we derive the observer-

based suboptimal tracker for the time-delay singular system
with unavailable states using the equivalent extended delay-
free system. The extended observer-based suboptimal digital
tracker can be represented as

𝑋
𝑑
((𝑘 + 1) 𝑇

1
)

= 𝐺
𝑜
𝑋
𝑑
(𝑘𝑇
1
) + 𝐻̂
𝑜
V
𝑑
(𝑘𝑇
1
) + 𝐿
𝑑
[𝑦
𝑑
(𝑘𝑇
1
) − 𝐶
𝑒
𝑋
𝑑
(𝑘𝑇
1
)] ,

(18a)

V
𝑑
(𝑘𝑇
1
) = −𝐾̂ (𝑘𝑇

1
)𝑋
𝑑
(𝑘𝑇
1
) , (18b)

where 𝑋
𝑑
(𝑘𝑇
1
) is the estimate of the extended state 𝑋

𝑑
(𝑘𝑇
1
)

in (17) and

𝐺
𝑜
= 𝐺
𝑒
− 𝐿
𝑑
𝐶
𝑒
𝐺
𝑒
,

𝐻̂
𝑜
= 𝐻̂
𝑒
− 𝐿
𝑑
𝐶
𝑒
𝐻̂
𝑒
,

𝐾̂ (𝑘𝑇
1
) = [𝐾

𝑑
(𝑘𝑇
1
) 𝐹
𝑑
(𝑘𝑇
1
) 𝐸
𝑑
(𝑘𝑇
1
)] ,

(19)

in which

𝐾
𝑑
(𝑘𝑇
1
) = [𝐾

(0)

𝑑
(𝑘𝑇
1
) 𝐾
(1)

𝑑
(𝑘𝑇
1
) ⋅ ⋅ ⋅ 𝐾

(𝑀
1
)

𝑑
(𝑘𝑇
1
)] ,

𝐹
𝑑
(𝑘𝑇
1
) = [𝐹

(1)

𝑑
(𝑘𝑇
1
) ⋅ ⋅ ⋅ 𝐹

(𝑀
2
)

𝑑
(𝑘𝑇
1
)] .

(20)

The details of the parameters can be referred to in [21]. Here,
the observer-based suboptimal tracker has been completely
obtained. Figure 2 presents the realization of decentralized
control for the interconnected time-delay singular/nonlinear
subsystems.

From Figures 1 and 2, the design procedure can be
summarized as the following steps.

Step 1. Perform the previously proposed method [21] and the
OKID method [22] to determine the equivalent time-delay
linear subsystems in Figure 1.

Step 2. Design the observer-based suboptimal digital trackers
from the equivalent time-delay linear subsystems obtained in
Step 1.

Step 3. Perform the observer-based suboptimal digital track-
ers obtained in Step 2. The decentralized control for the
interconnected time-delay singular/nonlinear subsystems is
shown in Figure 2.

4. An Illustrative Example

Consider the time-delay system consisting of two intercon-
nected MIMO subsystems shown as

𝑆1: 𝐸𝑥̇ (𝑡) = 𝐴𝑥
1
(𝑡) + 𝐴

1
𝑥
1
(𝑡 − 𝜏
𝑠1
) + 𝐵
1
𝑢
1
(𝑡 − 𝜏
𝑖1
)

+ ℎ
󸀠

12
𝑥
2
(𝑡 − 𝜏
𝑐2
− 𝜏
𝑖1
) ,

(21a)

𝑦
1
(𝑡) = 𝐶

1
𝑥
1
(𝑡 − 𝜏
𝑜1
) , (21b)

𝑆2: 𝑥̇
2
(𝑡) = 𝑓

2
(𝑥
2
(𝑡 − 𝜏
𝑠2
)) + 𝑔

2
(𝑥
2
(𝑡 − 𝜏
𝑠2
))

⋅ [𝑢
2
(𝑡 − 𝜏
𝑖2
) + ℎ
󸀠

21
𝑥
1
(𝑡 − 𝜏
𝑐1
− 𝜏
𝑖2
)] ,

(22a)

𝑦
2
(𝑡) = 𝐶

2
𝑥
2
(𝑡 − 𝜏
𝑜2
) , (22b)

where

𝑢
1
(𝑡) = [

𝑢
1,1
(𝑡)

𝑢
1,2
(𝑡)
] , 𝑢

2
(𝑡) = [

𝑢
2,1
(𝑡)

𝑢
2,2
(𝑡)
] ,

𝑥
1
(𝑡) =

[
[
[
[
[
[
[
[
[
[
[

[

𝑥
1,1
(𝑡)

𝑥
1,2
(𝑡)

𝑥
1,3
(𝑡)

𝑥
1,4
(𝑡)

𝑥
1,5
(𝑡)

𝑥
1,6
(𝑡)

]
]
]
]
]
]
]
]
]
]
]

]

, 𝑥
2
(𝑡) =

[
[
[
[
[

[

𝑥
2,1
(𝑡)

𝑥
2,2
(𝑡)

𝑥
2,3
(𝑡)

𝑥
2,4
(𝑡)

]
]
]
]
]

]

.

(23)

The first subsystem 𝑆1 of the large-scale system is given as
follows:

𝐸 =

[
[
[
[
[
[
[
[
[
[
[

[

1 2 1 1 −3 −2

0 2 2 1 −3 −3

1 2 1 1 −3 −2

1 2 1 3 −5 −4

0 2 1 1 −2 −2

1 0 0 0 −1 0

]
]
]
]
]
]
]
]
]
]
]

]

, 𝐴 = 𝐼
6
,
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d1
(k1T1)

K(0)
d1

(k1T1)

K(1)
d1

(k1T1)

K
(M11)

d1
(k1T1)

x̂d1(k1T1)

x̂d1(k1T1 − T1)

x̂d1(k1T1 − M11T1)
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(1)

11 x̂d1(k1T1 − 𝜌11T1 + T1)(k

x̂d2( 2 + 1)T2) = G2x̂d2(k2T2) + Ĝ
(1)

12 x̂d2(k2T2 − 𝜌12T2 + T2)(k

+ Ĝ
(2)

11 x̂d1(k1T1 − 𝜌11T1) + Ĝ
(3)

11 x̂d1(k1T1 − −𝜌11T1 T1) + H(0)
11 ud1(k1T1 − 𝜂11T1)

+ H(1)
11 ud1(k1T1 − 𝜂11T1 − T1) + Ld1(yd1(k1T1) ))− ŷd1(k1T1
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ŷd2(k2T2) = Cc2[G−	22 x̂d2( (k2T2) + H(0)
(𝜂12+1)

ud2[ [[− 𝜂12 − 1)T2k2

ud2(k2T2 − T2)

ud2(k2T2 − 2T2)

ud1(k1T1 − M21T1)

F(1)
d2

(k2T2)

F(2)
d2

(k2T2)

F
(M22)

d2
(k2T2)

K(0)
d2

(k2T2)

K(1)
d2

(k2T2)

K
(M12)

d2
(k2T2)

x̂d2(k2T2)

x̂d2(k2T2 − T2)

x̂d2(k2T2 − M12T2)

L(𝜏c1)

L(𝜏c2) h󳰀12(xd2(t))

h󳰀21(xd1(t))

Ĝ
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Figure 2: The decentralized control for the interconnected time-delay singular/nonlinear subsystems.
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q1

q2

Γ2

Γ1

Figure 3: Two-link robot.

𝐴
1

=

[
[
[
[
[
[
[
[
[
[
[

[

1.6207 0 0 0 −1.6207 0

0 0.8103 −0.4052 0 −1.6207 0

0 0 0.8103 0 0 0

0 0 0 1.6207 −3.2413 0

0 0 0 0 1.6207 0

0 0 0 0 −3.2413 1.6207

]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵
1
= [

1 0 0 0 0 −1

0 0 −1 1 0 0
]

𝑇

,

𝐶
1
= [

1 0 1 0 0 0

0 1 0 1 0 0
] ,

𝜏
𝑠1
= 0, 𝜏

𝑖1
= 𝜏
𝑜1
= 0.5 × 𝑇

1
.

(24)

Let the sampling period 𝑇
1

= 0.01 sec and the initial
condition is 𝑥

𝑐
(0) = [0 0 0 0 0 0]

𝑇.
The second subsystem 𝑆2 of the large-scale system is given

by two-link robot [27, 28], which is described as shown in
Figure 3.

The dynamic equation of the two-link robot system can
be expressed as follows:

𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) = Γ, (25)

where

𝑀(𝑞) = [

(𝑚
1
+ 𝑚
2
) 𝑙
2

1
𝑚
2
𝑙
1
𝑙
2
(𝑠
1
𝑠
2
+ 𝑐
1
𝑐
2
)

𝑚
2
𝑙
1
𝑙
2
(𝑠
1
𝑠
2
+ 𝑐
1
𝑐
2
) 𝑚

2
𝑙
2

2

] ,

𝐶 (𝑞, ̇𝑞) = 𝑚
2
𝑙
1
𝑙
2
(𝑐
1
𝑠
2
− 𝑠
1
𝑐
2
) [

0 − ̇𝑞
2

− ̇𝑞
1

0
] ,

𝐺 (𝑞) = [

− (𝑚
1
+ 𝑚
2
) 𝑙
1
𝑔
𝑟
𝑠
1

−𝑚
2
𝑙
2
𝑔
𝑟
𝑠
2

] ,

(26)

and 𝑞 = [𝑞
1
𝑞
2
]
𝑇, 𝑞
1
, 𝑞
2
are the angular positions,𝑀(𝑞) is the

moment of inertia, 𝐶(𝑞, ̇𝑞) includes Ceoriolis and centripetal
forces, 𝐺(𝑞) is the gravitational force, and Γ is the applied
torque vector. Here, we use the short hand notations 𝑠

𝑖
=

sin(𝑞
𝑖
) and 𝑐

𝑖
= cos(𝑞

𝑖
).Thenominal parameters of the system

are given as follows: the link masses 𝑚
1
= 5 kg, 𝑚

2
= 2.5 kg,

the length 𝑙
1
= 𝑙
2
= 0.5m, and the gravitational acceleration

𝑔
𝑟
= 9.81ms−2. Rewrite (25) in the following form:

̈𝑞 = 𝑀
−1

(𝑞) (Γ − 𝐶 (𝑞, ̇𝑞) ̇𝑞 − 𝐺 (𝑞)) . (27)

Let 𝑥
1
and 𝑓

1
(𝑥
1
) represent the state of the system and

the nonlinear function of the state 𝑥
1
, respectively. And the

notation is shown as follows:

𝑥
2
(𝑡) ≡ [𝑥

2,1
𝑥
2,2

𝑥
2,3

𝑥
2,4
]
𝑇

= [𝑞
1

̇𝑞
1
𝑞
2

̇𝑞
2
]
𝑇

,

𝑓
2
(𝑥
2
(𝑡)) ≡ [𝑓

2,1
𝑓
2,2

𝑓
2,3

𝑓
2,4
]
𝑇

,

(28)

where 𝑓
2,1

= 𝑥
2,2
, 𝑓
2,3

= 𝑥
2,4
, and [𝑓

2,2
𝑓
2,4
]
𝑇

=

𝑀
−1

(−𝐶 [𝑥
2,2

𝑥
2,4
]
𝑇

− 𝐺). Also, let 𝑢
2
≡ Γ, in which Γ =

[Γ
1
Γ
2
]
𝑇.

Calculate the inverse of the matrix 𝑀, and then we can
have𝑀−1 = [ 𝑝11 𝑝12

𝑝
21
𝑝
22

] such that

𝑔
2
(𝑥
2
(𝑡)) =

[
[
[
[
[

[

0 0

𝑝
11

𝑝
12

0 0

𝑝
21

𝑝
22

]
]
]
]
]

]

. (29)

Therefore, the dynamic equation of the two-link robot system
can be reformulated as follows:

𝑥̇
2
(𝑡) = 𝑓

2
(𝑥
2
(𝑡 − 𝜏
𝑠2
)) + 𝑔

2
(𝑥
2
(𝑡 − 𝜏
𝑠2
)) 𝑢
2
(𝑡 − 𝜏
𝑖2
) ,

(30a)

𝑦
2
(𝑡) = 𝐶

2
𝑥
2
(𝑡 − 𝜏
𝑜2
) , (30b)

where 𝐶
2
= [
1 0 0 0

0 0 1 0
], the sampling period 𝑇

2
= 0.02 sec, and

the initial condition 𝑥
2
(0) = [0 0 0 0]

𝑇.
Combining the above systems with the nonlinear inter-

connected terms, the large-scale system can then be shown
in Figures 1 and 2, where the nonlinear interconnected terms
ℎ
󸀠

12
(𝑥
𝑑2
(𝑡)) and ℎ

󸀠

21
(𝑥
𝑑1
(𝑡)) are given as [ 𝑥

2

𝑑2,3
cos(𝑥
𝑑2,1
)

sin2(𝑥
𝑑2,2
)

] and

[
𝑥
2

𝑑1,1

𝑥
𝑑1,3

sin(𝑥
𝑑1,2
)
], respectively. The time delays of the nonlinear

interconnected terms are 𝜏
𝑐1
= 3 ×𝑇

2
and 𝜏
𝑐2
= 1 ×𝑇

1
, where

𝑇
1
= 0.01 sec and 𝑇

2
= 0.02 sec.

Based on Section 3.1 [20], the time-delay singular sub-
system 𝑆1 can be transformed into the equivalent time-delay
regular system as follows:

𝑆1: ̇̃𝑥
𝑠
(𝑡) = 𝐴

𝑠
𝑥
𝑠
(𝑡) + 𝐴

𝑑
𝑥
𝑠
(𝑡 − 𝜏
𝑠1
) + 𝐵
𝑑
V
𝑐
(𝑡 − 𝜏
𝑖1
)

+ ℎ
󸀠

12
𝑥
2
(𝑡 − 𝜏
𝑐2
− 𝜏
𝑖1
) ,

(31a)

𝑦
1
(𝑡) = 𝐶

11
𝑥
𝑠
(𝑡 − 𝜏
𝑜1
) − 𝐷
1
V
𝑐
(𝑡 − 𝜏
𝑖1
) , (31b)
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where

𝐴
𝑠
=

[
[
[
[
[

[

1 0 0 −0.5001

0 0.4999 −0.25 −0.4999

0 0 0.4999 0

0 0 0 0.4999

]
]
]
]
]

]

,

𝐴
𝑑
=

[
[
[
[
[

[

0.4472 0 0 −0.2236

0 0.2236 −0.1118 −0.2236

0 0 0.2236 0

0 0 0 0.2236

]
]
]
]
]

]

,

𝐵
𝑑
=

[
[
[
[
[

[

0.4999 0.5001

−0.25 −0.25

0.4999 0.4999

0.4999 −0.4999

]
]
]
]
]

]

,

𝐶
11
= [

1 0 1 0

1 0 0 0
] , 𝐷

1
= [

0 2

0.5 1.5
] .

(32)

By OKID [21, 22] in Figure 1, the identified subsystem 𝑆2 is
given as

𝑆2: 𝑥
𝑑2
(𝑘
2
𝑇
2
+ 𝑇
2
) = 𝐺
𝑑2
𝑥
𝑑2
(𝑘
2
𝑇
2
)

+ 𝐻
𝑑2
𝑢
𝑑2
(𝑘
2
𝑇
2
− 𝜏
𝑖2
) ,

(33a)

𝑦
𝑑2
(𝑘
2
𝑇
2
) = 𝐶
𝑑2
𝑥
𝑑2
(𝑘
2
𝑇
2
− 𝜏
𝑜2
) , (33b)

where

𝐺
𝑑2
=

[
[
[
[
[
[
[
[
[

[

1.16 × 10
0

−5.39 × 10
−2

−8.39 × 10
−2

1.15 × 10
−2

1.48 × 10
−8

5.81 × 10
−2

1.07 × 10
0

−9.69 × 10
−3

−8.64 × 10
−2

−3.85 × 10
−8

1.83 × 10
−1

2.44 × 10
−3

9.23 × 10
−1

−5.00 × 10
−2

−9.23 × 10
−9

6.99 × 10
−3

1.90 × 10
−1

5.30 × 10
−2

7.99 × 10
−1

−5.21 × 10
−8

−8.04 × 10
−9

3.30 × 10
−9

1.38 × 10
−8

−1.29 × 10
−8

−7.21 × 10
−3

]
]
]
]
]
]
]
]
]

]

,

𝐻
𝑑2
=

[
[
[
[
[
[
[
[
[

[

−4.08 × 10
−6

2.11 × 10
−4

−1.46 × 10
−4

2.92 × 10
−4

2.32 × 10
−5

−2.69 × 10
−4

1.98 × 10
−4

−3.77 × 10
−4

−6.01 × 10
−12

1.85 × 10
−8

]
]
]
]
]
]
]
]
]

]

,

𝐶
𝑑2
= [

6.43 × 10
−1

−8.50 × 10
−1

5.29 × 10
−1

−6.39 × 10
−1

−1.52 × 10
−8

8.72 × 10
−1

7.84 × 10
−1

7.35 × 10
−1

4.80 × 10
−1

−2.02 × 10
−8

] ,

(34)

in which the input time-delay 𝜏
𝑖2
= 0.5 ×𝑇

2
and output time-

delay 𝜏
𝑜2
= 0.5 × 𝑇

2
.

Following the proposed method in this paper, let the
reference inputs 𝑟(𝑡) = [0.5 sin(𝑡) 0.5 cos(𝑡)]𝑇 and apply
them to subsystem 𝑆1 and subsystem 𝑆2, respectively. We
obtain the observer gain matrix 𝐿

𝑑
for 𝑆1 and 𝑆2 as follows:

𝑆1: 𝐿
𝑑1
= [

−7.19 × 10
−3

−1.26 × 10
2

1.00 × 10
0

1.02 × 10
0

2.60 × 10
2

−1.00 × 10
0

1.98 × 10
0

−1.57 × 10
−2

−1.26 × 10
2

−3.97 × 10
0

2.83 × 10
−1

2.58 × 10
2

2.49 × 10
−1

1.97 × 10
0

−1.23 × 10
0

−2.49 × 10
−1

−3.94 × 10
0

1.18 × 10
0

−1.77 × 10
2

−8.82 × 10
−2

1.96 × 10
0

3.62 × 10
2

8.81 × 10
−2

−3.93 × 10
0

−1.94 × 10
−3

−1.94 × 10
−3

0 0

1.09 × 10
−4

1.15 × 10
−4

0 0

]

𝑇

,

(35)

𝑆2: 𝐿
𝑑2
= [

[

−3.90 × 10
−1

−3.39 × 10
−1

−4.23 × 10
−1

−3.28 × 10
−1

3.97 × 10
−1

−3.61 × 10
−1

3.25 × 10
−1

4.90 × 10
−8

−1.01 × 10
−1

−3.67 × 10
−1

7.07 × 10
−10

−8.27 × 10
−2
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Figure 4: (a) Output responses of the subsystem 𝑆1: output 𝑦
𝑑11
(𝑡) and reference 𝑟

11
(𝑡). (b) Output responses of the subsystem 𝑆1: output

𝑦
𝑑12
(𝑡) and reference 𝑟

12
(𝑡).
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Figure 5: (a) Output responses of the subsystem 𝑆2: output 𝑦
𝑑21
(𝑡) and reference 𝑟

21
(𝑡). (b) Output responses of the subsystem 𝑆2: output

𝑦
𝑑22
(𝑡) and reference 𝑟

22
(𝑡).

−8.23 × 10
−2

−1.09 × 10
−1

8.07 × 10
−2

1.00 × 10
−1

−8.55 × 10
−2

−9.41 × 10
−2

−2.15 × 10
−7

2.22 × 10
−2

3.66 × 10
−2

−1.98 × 10
−8

2.55 × 10
−2

−3.11 × 10
−2

2.43 × 10
−2

−3.02 × 10
−2

−1.81 × 10
−6

2.40 × 10
−2

2.43 × 10
−2

−1.58 × 10
−7

7.80 × 10
−6

−9.87 × 10
−6

0 0

−7.04 × 10
−6

2.65 × 10
−5

0 0

]

𝑇

.

(36)

Finally, the scheme of Figure 2 is implemented. For simplifi-
cation, the numerical analysis is not presented and Figures 4
and 5 show the results of the simulation.

In order to confirm the independence of the control
for the two subsystems, the time-varying optimal digital
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Figure 6:The unanticipated failure occurs without fault-tolerant control during 𝑡 = 4∼6 sec. (a) Output responses of the subsystem 𝑆1: output
𝑦
𝑑11
(𝑡) and reference 𝑟

11
(𝑡). (b) Output responses of the subsystem 𝑆1: output 𝑦

𝑑12
(𝑡) and reference 𝑟

12
(𝑡).
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Figure 7:The unanticipated failure occurs without fault-tolerant control during 𝑡 = 4∼6 sec. (a) Output responses of the subsystem 𝑆2: output
𝑦
𝑑21
(𝑡) and reference 𝑟

21
(𝑡). (b) Output responses of the subsystem 𝑆2: output 𝑦

𝑑22
(𝑡) and reference 𝑟

22
(𝑡).

controller of the subsystem 𝑆2 is reduced by multiplying a
scalar 0.97 during 4 sec to 6 sec in this simulation. Although
the time-varying optimal digital controller of the subsystem
𝑆2 is reduced, the tracking performance of the subsystem 𝑆1

will not be affected by this condition and the results are shown
in Figures 6 and 7.

To show the effectiveness of the proposed method, we
compare it with the observer/Kalman filter identification
(OKID) method in the simulation for the subsystem 𝑆2.

Following [20, 21], let the subsystem 𝑆2 be excited by the con-
trol force 𝑢(𝑡) with white noise 𝑢(𝑡) = [𝑢

1
(𝑡) 𝑢
2
(𝑡)]
𝑇 having

zero mean and covariance diag [cov(𝑢
1
(𝑡)) cov(𝑢

2
(𝑡))] =

diag [0.2 0.2]. Then, the comparisons between the actual
outputs and the OKID method for subsystem 𝑆2 are shown
in Figure 8, and the comparisons between the actual outputs
and the proposed method for subsystem 𝑆2 are shown in
Figure 9.
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Figure 8: (a) The comparison between the system output 𝑦
𝑑21
(𝑘
2
𝑇
2
) and its observer-based output 𝑦okid21(𝑘2𝑇2) by OKID for the subsystem

𝑆2. (b) The comparison between the system output 𝑦
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(𝑘
2
𝑇
2
) and its observer-based output 𝑦okid22(𝑘2𝑇2) by OKID for the subsystem 𝑆2.
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Figure 9: (a)The comparison between the system output𝑦
𝑑21
(𝑘
2
𝑇
2
) and its observer-based output𝑦

𝑖𝑑21
(𝑘
2
𝑇
2
) by the proposedmethod for the

subsystem 𝑆2. (b) The comparison between the system output 𝑦
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(𝑘
2
𝑇
2
) and its observer-based output 𝑦

𝑖𝑑22
(𝑘
2
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2
) by the proposed method

for the subsystem 𝑆2.



12 Mathematical Problems in Engineering

From the comparison between Figures 8 and 9, the
effectiveness of the proposed method is better than OKID
method in the tracking error performance.

5. Conclusion

This paper presents a systematical methodology of the
decentralized control for the interconnected time-delay
singular/nonlinear subsystems with closed-loop decoupling
property. We use the observer-based suboptimal digital
tracker with high gain property to keep the good tracking
performance. Moreover, the decoupling property performs
very well such that even if some unanticipated fault occurs
in some of subsystems, it still will not affect the tracking
performance of each subsystem. The proposed methods
depend on the decentralized modeling of the interconnected
sampled-data time-delay subsystems in Section 2 and the
controller design is suitable to time-delay singular/nonlinear
subsystems in Section 3.Thus, the proposedmethod can deal
with the signal quantization and sensor delay but cannot
deal with intermittent measurements and missing/fading
measurements. In future works, we will paymore attention to
fault-tolerant control, intermittent measurements, and miss-
ing/fading measurements by using the proposed methods.

Appendix

The Decentralized Control Stabilization

The necessary and sufficient conditions for the decentralized
stabilization are presented in [29]. Here, we provide the proof
for the decentralized stabilization and more details can be
seen [29]. The following proofs are cited from [29].

Consider the given system Σ:

Σ: 𝑥 (𝑘𝑇 + 𝑇) = 𝐴𝑥 (𝑘𝑇) +

V

∑

𝑖=1

𝐵
𝑖
𝑢
𝑖
(𝑘𝑇) ,

𝑦
𝑖
(𝑘𝑇) = 𝐶

𝑖
𝑥 (𝑘𝑇) , 𝑖 = 1, . . . , V.

(A.1)

The decentralized stabilization problem for Σ is to find
controllers Σ

𝑖
, 𝑖 = 1, . . . , V, such that the poles of the closed

loop system are in the desired locations in the open unit
disc. In order to provide an easier bookkeeping, we define the
following matrices:

𝐵 = [𝐵
1
⋅ ⋅ ⋅ 𝐵V] , 𝐶 = [𝐶

𝑇

1
⋅ ⋅ ⋅ 𝐶
𝑇

V ]
𝑇

,

𝐾 = diag [𝐾
1
⋅ ⋅ ⋅ 𝐾V] , 𝐿 = diag [𝐿

1
⋅ ⋅ ⋅ 𝐿V] ,

𝑀 = diag [𝑀
1
⋅ ⋅ ⋅𝑀V] , 𝑁 = diag [𝑁

1
⋅ ⋅ ⋅ 𝑁V] .

(A.2)

Definition A.1. Consider system Σ; 𝜆 ∈ 𝐶 is called a
decentralized fixed mode if for all block diagonal matrices𝐻
one has det(𝜆𝐼 − 𝐴 − 𝐵𝐻𝐶) = 0.

Lemma A.2. Necessary and sufficient condition for the exis-
tence of a decentralized feedback control law for the system Σ

such that the closed loop system is asymptotically stable is that

all the fixed modes of the system are asymptotically stable (in
the unit disc).

Proof. We first establish necessity. Assume local controllers
Σ
𝑖
together stabilize Σ then for any |𝜆| ≥ 1 there exists a 𝛿

such that (𝜆+𝛿)𝐼−𝐾 is invertible and the closed loop system
replacing 𝐾 with 𝐾 − 𝛿𝐼 is still asymptotically stable. This
choice is possible because if 𝜆𝐼 −𝐾 is invertible obviously we
can choose 𝛿 = 0. If 𝜆𝐼 −𝐾 is not invertible, by small enough
choice of 𝛿 we can make sure that (𝜆 + 𝛿)𝐼 − 𝐾 is invertible
and the closed loop system replacing 𝐾 with 𝐾 − 𝛿𝐼 is still
asymptotically stable. But the closed loop systemwhen𝐾−𝛿𝐼
is in the loop is asymptotically stable. In particular, it cannot
have a pole in 𝜆. So

det (𝜆𝐼 − 𝐴 − 𝐵 [𝑀 (𝜆𝐼 − (𝐾 − 𝛿𝐼))
−1

𝐿 + 𝑁]𝐶) ̸= 0.

(A.3)

Hence the block diagonal matrix 𝑆 = 𝑀(𝜆𝐼−(𝐾−𝛿𝐼))
−1

𝐿+𝑁

has the property that

det (𝜆𝐼 − 𝐴 − 𝐵𝑆𝐶) ̸= 0. (A.4)

Thus 𝜆 is not a fixed mode. Since this argument is true for
any 𝜆 on or outside the unit disc, this implies that all the fixed
modes must be inside the unit disc. This proves the necessity
of the Lemma A.2.

Next, we establish sufficiency. To prove that we can
actually stabilize the system, we use a recursive argument.
Assume the system has an unstable eigenvalue in 𝜇. Since 𝜇 is
not a fixed mode there exists𝑁

𝑖
such that

𝐴 +

V

∑

𝑖=1

𝐵
𝑖
𝑁
𝑖
𝐶
𝑖

(A.5)

no longer has an eigenvalue in 𝜇. Let 𝑘 be the smallest
integer such that an unstable eigenvalue of 𝐴 is no longer an
eigenvalue of

𝐴 +

𝑘

∑

𝑖=1

𝐵
𝑖
𝑁
𝑖
𝐶
𝑖
, (A.6)

while 𝑁
𝑖
can be chosen small enough not to introduce

additional unstable eigenvalues. Then for the system

(𝐴 +

𝑘−1

∑

𝑖=1

𝐵
𝑖
𝑁
𝑖
𝐶
𝑖
, 𝐵
𝑘
, 𝐶
𝑘
) , (A.7)

an unstable eigenvalue is both observable and controllable.
But this implies that there exists a dynamic controller which
moves this eigenvalue in the open unit disc without introduc-
ing new unstable eigenvalues. Through a recursion, we can
move all eigenvalues one-by-one in the open unit disc and in
this way find a decentralized controller which stabilizes the
system. This proves the sufficiency of Lemma A.2.
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