
Research Article
CUDT: A CUDA Based Decision Tree Algorithm

Win-Tsung Lo,1 Yue-Shan Chang,2 Ruey-Kai Sheu,1

Chun-Chieh Chiu,3 and Shyan-Ming Yuan3

1 Department of Computer Science, Tung Hai University, Taichung 40704, Taiwan
2Department of Computer Science and Information Engineering, National Taipei University, New Taipei 23741, Taiwan
3Department of Computer Science, National Chiao Tung University, Hsinchu 30010, Taiwan

Correspondence should be addressed to Shyan-Ming Yuan; smyuan@gmail.com

Received 22 May 2014; Accepted 17 June 2014; Published 22 July 2014

Academic Editor: Jason J. Jung

Copyright © 2014 Win-Tsung Lo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Decision tree is one of the famous classificationmethods in datamining.Many researches have been proposed, which were focusing
on improving the performance of decision tree.However, those algorithms are developed and run on traditional distributed systems.
Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without
new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a
new parallelized decision tree algorithm on a CUDA (compute unified device architecture), which is a GPGPU solution provided
by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have
conductedmany experiments to evaluate system performance of CUDT andmade a comparison with traditional CPU version.The
results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.

1. Introduction

With the advances of Internet-Of-Thing and sensing tech-
nology, there are increasingly sensing devices which com-
prise sensors and actuators, and data processors have been
deployed to sensing, capturing, and collecting real world
environmental data. The European Commission [1] has
predicted that the present “Internet of PCs”willmove towards
“Internet of Things” in which 50 to 100 billion devices will
be connected to the Internet by 2020 and it is expected
that the generated data will reach 35 ZB in 2020 [2]. To
process and employ the tremendous data, a well-designed
high-performance computing environment with excellent
data mining technology can accelerate the data processing
latency.

In addition, the GPU (graphics processing unit) is a
specialized electronic circuit designed to rapidly manipulate
and alter memory to accelerate the creation of images in a
frame buffer intended for output to a display. In recent years,
the general-purpose computing on GPU (GPGPU for short)

has become popular due to its highly parallelization and
powerful computing ability of float point. Some documents
show that the computing power of GPUs can now vastly
exceed traditional CPU [3–5]. More and more nongraphic
applications which needed amounts of computation are
employed on GPU.

Data mining on various environments and data sources
is an important technique in recent years [6–9]. Decision
tree learning is a famous learning method commonly used
to data classification in data mining [6, 7, 10–12]. It is one of
the most successful techniques for supervised classification
learning.Manydatamining software packages provide imple-
mentations of one ormore decision tree algorithms. Recently,
many researches were focusing on improving performance
of decision tree [13–15]. However, those algorithms are
developed and run on traditional distributed systems. In
the [16], authors presented two basic parallel formulations
of classification decision tree learning algorithm based on
induction. In the work, experimental results on an IBM SP-
2 demonstrate excellent speedups and scalability. Obviously

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 745640, 12 pages
http://dx.doi.org/10.1155/2014/745640



2 The Scientific World Journal

Car typeRid Age Risk

Family0 23 High

Sports1 17 High

Sports2 43 High

Family3 68 Low

Truck4 32 Low

Family5 20 High

Car type in
sports

Low High

High

Training data

Age < 25

Figure 1: An example of decision tree.

the latency could not be improved while processing huge
data generated by ubiquitous sensing nodes without new
technology help [17].

In order to improve data processing latency in huge
data mining, in this paper we design and implement a new
parallelized decision tree algorithm on a CUDA (compute
unified device architecture), which is a GPGPU solution
provided by NVIDIA [18–20]. By leveraging the existing
CUDA components, such as prefix-sum and parallel sorting,
our proposed CUDT (CUDA based decision tree algorithm)
system performs well and gets major performance improve-
ment than sequential decision tree algorithms. We have con-
ducted many experiments to evaluate system performance of
CUDT andmade a comparisonwith traditional CPU version.
Comparing to the famous Java open source project Weka,
the CUDT has 5∼55 times faster than Weka in similar data
accuracy level. Comparing to the best optimized SPRINT
[14, 21], CUDT has maximum 18 times faster than SPRINT.
The experiment result shows that CUDT gets remarkable
performance improvement than other decision tree imple-
mentations.

The rest of the paper is organized as follows. Section 2 is
background and related works. We will present the CUDA
architecture and some important parallel primitives. The
related works show the recent researches of decision tree on
GPUs. Section 3 is our system architecture in detail. Section 4
is the evaluation of our algorithm. The last part of the paper
is the conclusion and future work.

2. Background and Related Work

2.1. Decision Tree. A decision tree is a decision support tool
that uses a tree-like graph or model of decisions and their
possible consequences, including chance event outcomes,
resource costs, and utility [6, 7]. It is commonly used in
machine learning or datamining and shows the one-way path
for specific decision algorithms. A decision tree consisted of

two kinds of nodes. An internal node represents a decision
rule, and a leaf node shows the result of a decision.

Figure 1 shows an example of a decision tree used for
classifying training data into groups of high or low risk. For
the root node, the decision rule is whether the age of the input
training data that is smaller than 25 or not. For the first row
of the training data, the age is 23 and is smaller than 25. The
result of the risk level would be high. Similarly, for the row of
the 3rd one, the age is 43, and it is larger than 25.The decision
path will go to the next internal node to check the car type.
Again, the car type is sports, and it matches the decision rule.
The result of the decision path would be directed into the leaf
node of high risk level.

2.2. Prefix-Sum. Prefix-sum is a very important building
block of parallel algorithms, and it is implemented by a
scan function in CUDA environments. Many applications
such as sorting, lexically comparing strings, and evaluated
polynomial can be implemented by the scan function [22,
23]. A definition of the prefix-sum is shown in Algorithm 1.
The prefix-sum element will be the result of interoperations
between all previous elements.

Prefix-sum makes no sense in sequential algorithms but
it is very important in parallel algorithms. Both CUDA SDK
and CUDPP (CUDAData Parallel Primitives Library) have a
scan function for it. The CUDPP sorting algorithm is a very
high-performance function for CUDA radix sort. The scan
function is the major backbone of CUDPP sorting function,
and each round of sorting is building on the prefix-sum
function [22]. In our proposed decision tree algorithm, the
parallel prefix-sum function of CUDPP is also heavily used
in many system components.

2.3. SPRINT: A Scalable Parallel Classifier for Data Mining.
SPRINT is a classical algorithm for building parallel decision
trees, and it aims at reducing the time of building a decision
tree and eliminating the barrier of memory consumptions
[14, 21]. Traditionally, decision tree algorithms need several



The Scientific World Journal 3

Given an array 𝐴 of 𝑛 elements
𝐴 = [𝑎

0
, 𝑎

1
, . . . , 𝑎

𝑛−1
]

Given a binary operator ⊚
Given I as identify of ⊚
Scan (𝐴) = [𝐼, 𝑎

0
, (𝑎

0
+ 𝑎

1
) , . . . , (𝑎

0
+ 𝑎

1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛−2
)]

Algorithm 1: The definition of prefix-sum.

Car typeRidAge Class

Family117 High

Sports520 High

Sports023 High

Family432 Low

Truck243 High

Family368 Low

RidClass

0High

1High

2High

3Low

4Low

5High

Figure 2: Sample of SPRINT attributes list.

passes to sort a sequence of continuous data set and will cost
much in execution time. In contrast to traditional algorithms,
the SPRINT just needs one pass to sort a sequence of data
by leveraging its own data structure, called attributed list.
Figure 2 shows an example of attribute list. The left one is
an attribute list of continuous attributes, and the right one
is an example of categorical attributes. An attribute list is
composed of three arrays.The first array is the attribute value,
the second one is the class label of the record, and the last one
is the index of records. It is obvious that each attribute list is
independent, so that we can sort each continuous attribute in
one pass, and does not need extra sorting phases.The key of a
high-performance decision tree is how to find a data point to
split attributes into subsets. SPRINT has a good strategy for
splitting attributes into disjoint subsets. In its split stage, each
list will be split into two disjoint subspaces. Figure 3 shows an
example of splitting. This mechanism reduces the overhead
of sorting but increases the overhead in splitting the attribute
lists. However, the new overhead is smaller compare to repeat
sorting.

In order to find the best split point, the SPRINT algorithm
needs to calculate the criteria of splitting. SPRINT has
two different approaches for each attribute. For continuous
attribute, SPRINT uses two histograms, denoted by 𝐶below
and 𝐶above, to capture the class distribution of the attribute
records at a given node. Figure 4 shows an example of the
two histograms. 𝐶below records the sum of each class number
before current data and 𝐶above records the sum of each class
number after current data.

For categorical attribute, SPRINT uses a histogram called
“count matrix” to split attributes. Figure 5 shows an exam-
ple of count matrix. Each entry of count matrix records

a distributed class value of the attribute. After finishing the
calculation of class distribution, we have all information of
calculating split criteria.

In parallel version SPRINT, it partitions the attribute
lists into several subspaces of the same size. Each processor
calculates the local class distribution and exchanges with
each other to get the global class distribution. After getting
the global class distribution, each processor calculates the
local split criteria of all possible split points. For continuous
attributes, the possible split points of an attribute are all
different value points. For categorical attributes, the number
of possible split points is equal to the number of different
values of the attributes. After finishing the local split criteria,
each processor finds the local best point. In order to get the
global best split point, all processors communicate with each
other to find the best spilt points.

3. System Design

By leveraging the idea and advantages of the parallel SPRINT
algorithm, the proposed CUDT algorithm and the prototype
of the implementation are shown in the following sessions.
Firstly, the system overview and the flowchart of the pro-
totype are illustrated, and then the details of how to find a
splitting data point and the algorithms for splitting attribute
list are described in the next session.

3.1. System Overview. The principle of CUDT is dispatching
flow control, I/Ohandling, and communication tasks to CPU
and on the other hand assigning computing intensive jobs
to GPU. Figure 6 shows the components of CUDT system.
The blue parts are running on CPU, and they are data
I/O, classifier controller, classification, initiate device, and
classifier builder components. As for the green parts running
on a GPU, there are three components, and they are create
attribute list, split criteria, and split attribute lists.

In contrast to common CudaRF functions which par-
allelize both the training and the classification phase, the
CUDT focuses only on how to process the computation of
splitting nodes in parallel. Although it gains nothing from the
parallelism of building multiple trees, the CUDT increases
much improvement of system scalability and performance
while the data set is huge.

3.2. CUDT Flowchart. As shown in Figure 7, there are seven
major steps in the CUDT system.

(1) Training and testing data are loaded to host memory
from disks.



4 The Scientific World Journal

Car typeRidAge Class

Family117 High

Sports520 High

Sports023 High

Family432 Low

Truck243 High

Family368 Low

RidClass

0High

1High

2High

3Low

4Low

5High

0

1 2

RidAge Class

117 High

520 High

023 High

RidAge Class

432 Low

243 High

368 Low

Car type

Family

Sports

RidClass

0High

1High

Family 5High

Car type

Sports

Family
Truck

RidClass

2High

3Low
4Low

Age < 27.5

Figure 3: Splitting an attributes list into disjoint subspaces in SPRINT.

RidAge Class

117 High

520 High

023 High

432 Low

243 High

368 Low

Attribute list

Position of
cursor in scan

00

24

03

21

24

00

H L

H L

H L

Cabove

Cbelow

Cabove

Cbelow

Cabove

Cbelow

Position 0

Position 3

Position 6

Cursor
position 0

Cursor
position 3

Cursor
position 6

Figure 4: 𝐶above and 𝐶below of SPRINT [14].

(2) Initialization of the device includes query device
information, allocation memory space, and copy of
training data into device.

(3) In this step, the system will set up some parameters
from user. For instance, the minimum numbers of
data of a leaf are, the maximum depth of the classifier
is.

(4) Creating attribute lists in device. We will move each
attribute to corresponding position. After finishing

the data movement, we would sort all attribute lists
in devices.

(5) Step 5 is themost important one of the system. Instead
of using the recursive model of decision tree building
algorithm, we use an iterative breadth first scheme for
our proposed system. Host plays a role of a manager
and is in charge of working flow of the whole system.
Figure 8 shows a flowchart of building classifier.



The Scientific World Journal 5

Car type

Family

Sports

Sports

Family

Truck

Family

RidClass

0High

1High

2High

3Low

4Low

5High

12

02

H L

10

Attribute list

Count matrix

Family

Sports

Truck

Figure 5: Count matrix of SPRINT [14].

Data I/O
Classifier
controller Classification

Initiate device Classifier builder
CPU

Attribute list 
creator

Splitter criteria Attribute list 
splitter

GPU

Figure 6: The CUDT system components.

(6) The classification is performed on the host. In
other words, the process of classification is executed
sequentially.

(7) The results are presented on hosts.

More details of the flowchart of building classifier are
identified as follows. The system will execute loop until all
data have belonged to leaf. For a segment of data, the system
would check if all data of this segment have the same class
label, which is positive or negative in our system. It makes
a leaf node if all classes of data are the same or process the
finding of a split point process of the segment. A leaf node
denotes a result of classification. The data would be classified
as the class of leaf nodes if it stops at this node in classifying
process. After finding a candidate split point, we need to split
the attribute list andmake an internal node. An internal node
could be thought of as a rule which decides the path to classify
the data.

In the next section, we will describe in more detail all
system components, for instance, how the attribute list is
created in step 4 and how to find a candidate split point and
split attribute lists in step 5. It also shows how CUDT applies
those parallel primitives and how it employs the computation
power of GPU to our system.

Training
data Load data

Initiate 
classifier 
parameter

Initiate
device

Classification

Attribute list
creator

Classifier 
building

Result

Figure 7: Flowchart of the proposed CUDT algorithm.

Classifier
builder
start

All data 
belong to leaf 

node?

Classifier 
builder
finish

Make a leaf

Make an 
internal node

Candidate 
attribute value 

is null?

Perform the 
split function

Find a split 
point

YESNO

YES

NO

Figure 8: Flowchart of the classifier building phase.

3.3. System Components

3.3.1. Load Data and Initiate Device. The CUDT flowchart
starts with the host reading input data from a disk. After
loading data from the disk, the system will allocate the
space of the device memory to store the data. The allocation
includes entire training data, the space of attribute lists, and
some internal buffer inside of the device.

3.3.2. Initiate Classifier Parameters. After finishing the allo-
cation of device memory, we set the user-defined parameters
of CUDT, for example, the minimum size of data of a leaf, the
maximumdepth of the decision tree, the type of classification
evaluation, and the like.

3.3.3. Create Attribute Lists. There are two parts of creating
attribute lists. The first one is moving the data to its corre-
sponding list. After finishing the data movement, we need to
sort all attribute lists. There is a well-known CUDA library
which is calledCUDPP. CUDPPoffers a serial efficient library



6 The Scientific World Journal

Algorithm Compact
Input: A class distribution table 𝐶

A flag array Flag (Records each possible splits point)
An address array Addr (Records address of valid elements)

(1) Declare buffer[]
(2) For each element 𝐶[𝑖] do in parallel
(3) If (Flag[𝑖] == 1)
(4) buffer[Addr[𝑖]] = 𝐶[𝑖]
(5) For each element buffer[𝑖] do in parallel
(6) 𝐶[𝑖] = buffer[𝑖]

Algorithm 2: Algorithm of compact function.

to developers. Several important algorithms are implemented
in those libraries, for instance, parallel prefix-sum and par-
allel sorting. However the CUDPP has a wonderful parallel
radix sort algorithm; the sorting algorithm is not suitable for
our system. The sorting algorithm of CUDPP can sort two
1D arrays as input, the first is called key array, and the second
one is called value array. The key array would be sorted and
the position of each element of value array would be changed
according to its corresponding key element. It is called a key
value pair sorting. The sorting algorithm of CUDPP only
supports a key value pair sorting, but we have two values
to one key consisting of the attribute value field and rid and
class label. Based on the above arguments, we modified the
CUDPP sorting algorithm into one key of two values. In
order to get the best performance, we modified the sorting
algorithm from the CTA level to public interface level [24].

3.3.4. Classifier Builder. There are two important functions
provided by the building classifier. The first one is “finding
split point” which performs tasks of finding the candidate
split point and attribute. The second one is “split attribute
lists” which would be executed after finding a valid spit point.

Split point finder and the attribute list splitter components
are the most important functions in the CUDT system, and
there will be algorithms of more details shown in the next
section.

3.3.5. Classification. The tree is stored in host memory. The
reason of constructing the classifier in host is the consider-
ation of scalability. If the size of a tree is greater than the
memory size of device, there are no ideals to maintain the
tree in device memory. Our algorithm is designed for general
cases. The system should be easy to scale in bigger data set.
That is why we choose the policy. Since the tree is stored in
host memory, the classification is processed in host side. All
data are tested in sequence.

3.4. Algorithms of Finding Split Points. While scaling up
a decision tree, the goal at each node is to find the best
attribute and split point to divide the training data into
several subsets. The value of a split point depends on how
well it separates the class distributions. There are many split

criteria that have been proposed in the past. For better system
performance considerations, we adopt the Gini index [25]
as the splitting criteria for the CUDT system. Firstly, let us
consider how it works for sequential algorithms. For the
sequential version, the process needs to scan an attribute list
to a class distribution table. After finishing filling the table,
the process has all information to calculate the Gini index
and find the best split point of this attribute. However, it only
processes one attribute at a time. We need to calculate all
attribute lists and find the best among them at one pass.

In the CUDT system, firstly, the system needs to record
the class distribution into below table and save the number of
total positive classes. For continuous attribute, the candidate
split points are midpoints between every two consecutive
attribute values. It is obvious that there are many redundant
elements of the below table, so the system needs to remove
unnecessary data from the histogram.The procedure is called
compact. Algorithm 2 shows the algorithm of compact. The
compact needs a flag array and other arrays as input. The
value of flag element is “0” or “1.” “0” means that the
correlative payloads are true elements. True elements should
be reserved in final output. The algorithm first scans the
flag array to get the positions of true elements. After getting
the position, the threads with true elements would put the
elements into their positions. Each thread loops several times
to put all payloads into correct address. Figure 9 is an example
of compact. After getting valid split points of all attributes,
the system will calculate the splitting criteria of all possible
split points. Since the class distribution table has all class
information of the data segment, we can calculate the Gini
index of all possible split points.

The final step of this algorithm is to find the best point
from the possible splitting points.There is a parallel primitive
called “reduction.” A brief description of reduction is that
many parallel threads generate a single result. Figure 10 shows
how to reduce an array to find a minimum value. We use
the CUDPP prefix-sum library of CTA level to implement
the reduction. The algorithm of reduction is described in
detail in Algorithm 3. After finding the best split point whose
algorithm is shown in Algorithm 4, devices will upload the
information to hosts. After getting the data, hosts can set up
the information of children of this node and split the attribute
lists.



The Scientific World Journal 7

Algorithm Reduce
Input: An evaluated array 𝐸
Output: Theminimum value of 𝐸
(1) Declare 𝑛 = sizeof(𝐸)
(2) Declare buffer[]
(3) Declare Min
(4) While (𝑛 > 1)
(5) For each segment 𝐸

𝑖
of 𝐸 do in parallel

(6) buffer[𝑖] = FindMinOf(𝐸
𝑖
)

(7) 𝑛 = sizeof(buffer)
(8) 𝐸 = buffer
(9) Min = 𝐸[0]
(10) ReturnMin

Algorithm 3: Algorithm of reduce function.

Algorithm Finding Split Points
Input: A Set of attribute lists 𝐴 which comprised by rid, value, label
Output: A winning attribute𝑊

Index of split point𝑋
(1) For each attribute list 𝐴

𝑖
do in parallel

(2) Ci← Scan(𝐴
𝑖
.𝑙𝑎𝑏𝑒𝑙)

(3) For each data of 𝐴
𝑖
do in parallel

(4) IsSplitPointFlag
𝑖
[𝑗] = (𝐴

𝑖
.V𝑎𝑙𝑢𝑒

𝑗
!= 𝐴
𝑖
.V𝑎𝑙𝑢𝑒

𝑗+1
) ? 1 : 0

(5) Addr
𝑖
← Scan(IsSplitPointFlag

𝑖
)

(6) Compact(𝐶
𝑖
, IsSplitPointFlag

𝑖
, Addr

𝑖
)

(7) value
𝑖
← SplitCriteria(𝐶

𝑖
)

(8) Reduce(value)
(9) Return 𝑊,𝑋

Algorithm 4: Algorithm of finding split point function.

Flag array

Attribute value

Attribute value

Record ID

Record ID

Class label

Below table

Below table

0.5 0.5 0.50.1

0.1

0.2

0.2

0.2 0.4

0.4

0.5

0.5

T T T T FFFF

0

0

0 0

0

0

0

0

11

1

1

2

2

2

2

4

4

0

00

0

0

0 1

1

3

3

3

5 6 7

Figure 9: Example of compact function.

3.5. Algorithms of Splitting Attribute List. In traditional algo-
rithms of building decision tree, the split attribute lists do not
need extra work since all data are stored in order. They label
the split points of the data segment of this node.However, this
would not work in the CUDT system since we partition an
attribute as a single list. The different lists may have different
data in the same position. Hence, we need an extra operation
to split attribute lists. Although the system needs some extra

0

0

0

0

1

1

1

24 5

5

67 3

3

Figure 10: Example of Reduce Function.

executing time in splitting attribute lists, CUDA architecture
is suitable for binary split operations. It reduces the overhead
caused by data splitting.

Algorithm 5 shows the algorithm of splitting the attribute
lists function. Partitioning the attribute list of the winning
attribute is trivial. It just sets the split index of winning
split point of this attribute to node. Handling the winning
attribute is easy; however, we still need a mapping table for
rid and subtrees. The CUDT system uses a table to store



8 The Scientific World Journal

Table 1: Test data set.

Spambase Magic Gamma Telescope MiniBooNE particle identification
Number of attributes 58 11 51
Number of data 4601 19020 130065
Attribute type Continuous Continuous Continuous
Number of classes 2 2 2
Source UCI UCI UCI

Algorithm Split attribute lists
Input: Wining attribute𝑊

An index of split point𝑋
A Set of attribute lists 𝐴

(1) For each data 𝑑
𝑗
in𝑊 doin parallel

(2) Flag[𝑗] = (index(𝑑
𝑗
) > 𝑋 ) ? 0 : 1

(3) For each attribute list 𝐴
𝑖
do in parallel

(4) if (𝐴
𝑖
!=𝑊)

(5) Partition(𝐴
𝑖
, Flag)

(6) Return

Algorithm 5: Algorithm of split attribute lists.

these mapping relationships. A record is assigned to the left
partition if its value is smaller than the split point or it will
be assigned to the right partition. After finishing splitting the
winning attributes, the algorithm will keep work in the other
attributes by picking another element from the mapping
table. Similar to the process of finding a split point, the system
splits all attributes in one pass. A thread handles a record of
an attribute list, finds the location of the record, and stores the
result into a side array.We recall aCUDPPparallel prefix-sum
to calculate the side array, thenmoving all data of the segment
into a buffer and performing a partition function. Figure 11
shows an example of splitting attribute lists.

The basic ideal of partition is partitioning an array into
two disjoint subspaces. Algorithm 6 shows partition algo-
rithm in detail. The algorithm will partition the input data
into two subspaces according to the flag array. The element
will be assigned to left group if its flag is 0 or it would be
assigned to right group.The algorithm first complements flag
array and prefix-sum to get a false array. The total number of
the false elements is recorded. The next step of the algorithm
is calculating the index of each element after partitioning.The
index of an element is calculated if it is a false element. If it
is a true element, the index will equal “the original index −
above index + total number of false elements.” The final step
is moving the elements to this position of the partition.

4. System Evaluation

Our goal of the design of CUDT system is to propose a high-
performance decision tree algorithm. Although the results
show that the CUDT is also an accuracy-acceptable sys-
tem, we focus our experimental evaluation on performance
issues. For comparison purpose, we leverage the open source

Weka (http://www.cs.waikato.ac.nz/ml/weka/) to be one of
the target platforms for performance evaluations. Another
benchmark we compared it with is the sequential SPRINT.
Because the CUDT is also a type of SPRINT running onGPU,
we also evaluate all components for CUDT and SPRINT.

4.1. Evaluation Environments. We adopt Intel Core 2 Quad
Q6600 and Geforce 9800GT as our computation platform.
The configuration information is described as follows. Our
host is Intel Core 2 Quad Q6600 with 4 cores. Each core has
a clock rate with 2.4GHz. Our device is GeForce 9800GT
which has 14multiprocessors which are calledMPs. AMPhas
8 CUDA cores.There are 112 CUDA cores in total.TheCUDA
version is the version of the device driver.There aremany new
features in the newer version.The newest version of CUDA is
4.0RC. However, the features of CUDA 4.0 only impact the
recent generation of the GPU. There is no influence of our
device. The compute capability means difference generation
of CUDA GPUs [18, 19]. Although our device is not as good
as CPU, our system shows a good speedup on 9800GT.

Table 1 shows the details of test data set. There are three
data sets in our evaluation environment. The spambase is a
collection of mail data which has 58 continuous attributes of
features of spam mails. A categorical attribute denotes spam
and nonspam. The number of data is 4601. The second data
set is Magic Gamma Telescope. It is physical data of high
energy gamma particles. There are 19020 data of this data set.
It has 11 continuous attributes of each record. A categorical
attribute denotes the data into two classes. The final data
is also physical data. It has 51 attributes and 130065 data
numbers.

4.2. Evaluation Analysis. Tables 2, 3, and 4 show the result
of three algorithms. The tables include total cost time of
building classifier, the accuracy of the classifier, and the size
of classifier. We use cross-validation to evaluate the accuracy
of our system. It means that we use all training data as the
test data. It shows that the accuracy of our system is very
close toWeka-j48 and the execution time is shorter than both
Weka and SPRINT algorithms. The tree sizes are the same of
SPRINT and CUDT since we use the same criteria for data
splitting. Figure 14 is the speedup of the classifier builder step
in CUDT system.

In order to evaluate the speedup of all components of
CUDT, we compare it with SPRINT in detail in Table 5 which
shows the execution time of each component of CUDT and
SPRINT. Figure 12 shows the speedup of each component.
The time of building a tree is the sum of finding split point



The Scientific World Journal 9

Algorithm Partition
Input: Target array 𝐴

A flag array with 0, 1 Flag
A Set of attribute lists 𝐴

(1) Declaremax = sizeof(𝐴)
(2) Declare buffer[max]
(3) Declare FalseArray[max]
(4) Declare TotalFalse
(5) Declare Address[max]
(6) For each element 𝑖 in Flag[] do in parallel
(7) buffer[𝑖] = !Flag[𝑖]
(8) FalseArray[] ← Scan(buffer[])
(9) TotalFalse = InverFlag[max] + FalseArray[max]
(10) For each element 𝑖 in buffer[] do in parallel
(11) buffer[𝑖] = 𝑖 − FalseArray[𝑖] + TotalFalse
(12) Address[𝑖] = (Flag[𝑖] == 0) ? FalseArray[𝑖]: buffer[𝑖]
(13) For each element 𝑖 in 𝐴[] do in parallel
(14) buffer[𝑖] = 𝐴[𝑖]
(15) 𝐴[Address[𝑖]] = buffer[𝑖]

Algorithm 6: Algorithm of partition.

Flag array

Attribute value

Record ID

Class label

0.5

0.5 0.5 0.5

0.5 0.50.1

0.1

0.2

0.2

0.2

0.2

0.4

0.4

0.5

0.5

T T T T FFFF

0

0 0

0

0

0 11

1 1

2

2

4

4

000 1

1

0

1

3

3

5 6 7

001

5 6 7

Figure 11: Example of split attribute lists.

Table 2: Results of spambase.

Spambase Weka-j48 SPRINT CUDT
Time 715ms 1861.55ms 124.78ms
Accuracy 98.32% 97.82% 97.82%
Tree size 379 385 385
Leaf node size 190 193 193

Table 3: Results of Magic04.

Magic04 Weka-j48 SPRINT CUDT
Time 135ms 409.78ms 257.72ms
Accuracy 90.6% 93.54% 93.54%
Tree size 707 1579 1579
Leaf node size 354 790 790

and splitting the attribute lists. Since the speedup of creating
attribute lists is much higher than other components, we
show it separately on Figure 13. Total time is the sum of

0
1
2
3
4
5
6
7
8
9

Finding split point Split attribute list Building phase

Sp
ee

du
p

Speedup (1) 

Spambase
Magic04
MiniBooNE

Figure 12: Speedup of each component (1).

Sp
ee

du
p

Spambase
Magic04
MiniBooNE

0
20
40
60
80

100
120
140
160

Create attribute list Building phase Total time

Speed up (2)

Figure 13: Speedup of each component (2).



10 The Scientific World Journal

0

10

20

30

40

50

60

Spambase Magic04 MiniBooNE

Sp
ee

du
p

Speedup of total time 

SPRINT/CUDT
Weka/CUDT

Figure 14: Speedup of classifier builder.

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Ex
ec

ut
io

n 
tim

e (
m

s)

Level

Spambase 

SPRINT
CUDT

Figure 15: Execution time of each level on spambase.

0

2

4

6

8
Spambase 

Speedup

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Level

Figure 16: Speedup of level of spambase.

0
10
20
30
40

Ex
ec

ut
io

n 
tim

e (
m

s) Magic04

SPRINT
CUDT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Level

Figure 17: Execution time of each level on Magic04.

0
2
4
6
8

10
12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Level

Magic04 

Speedup

Figure 18: Speedup of level of Magic04.

0
200
400
600
800

1000
1200
1400
1600
1800

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
Ex

ec
ut

io
n 

tim
e (

m
s)

Level

MiniBooNE

SPRINT
CUDT

Figure 19: Execution time of each Level on MiniBooNE.

Table 4: Results of MiniBooNE.

MiniBooNE Weka-j48 SPRINT CUDT
Time 141000ms 47391ms 2451.85ms
Accuracy 98.52% 98.31% 98.31%
Tree size 6441 8127 8172
Leaf node size 3221 4064 4064

building phase and creating attribute lists.We can see that the
CUDT system performs very well for large data set.

The performance of creating attribute lists is also very
good. It can achieve 14x times faster than SPRINT. However,
the other components of CUDT are not as good as creating
attribute lists. Because both the execution and communica-
tion time are correlated to the size of tree size, the perfor-
mance downgrades slightly when the tree size increased. The
CUDT system generates too many nodes that increase the
execution time when building a decision tree. The second
cause of CUDT performance downgrading is the size of data.
The larger the size of data, themore the time consumption for
data value calculation. The last reason is that the increasing
of nodes per level will cause the data swap between CPU and
GPU which takes much instruction execution time. We will
also discuss those issues in the following sections.

4.3. Evaluation for Difference Levels. In this section, we will
evaluate each level of decision tree building. Since create
attribute lists component performs very well, we focus the
discussion on the tree building phase. Figures 15, 16, and
17 show the execution time of each level of CUDT and



The Scientific World Journal 11

Table 5: Comparison of SPRINT and CUDT.

Data Sets Spambase Magic04 MiniBooNE
Algorithm SPRINT CUDT SPRINT CUDT SPRINT CUDT
(1) Initiate device — 1761.4 — 1686.25 — 2106.58
(2) Create attribute lists 1719.71 37.27 57.33 9.4 29270.56 192.45
(3) Finding split point 56.75 58.91 275.06 191.40 11022.46 1479.01
(4) Split attribute lists 93.02 29.02 69.89 63.23 2973.29 726.78
(5) Building phase (3 + 4) 141.83 87.51 352.45 248.31 18120.47 2349.40
(6) Total time (2 + 3 + 4) 1861.55 124.78 409.78 257.72 47391.04 2541.86

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Level

MiniBooNE 

Speedup

Figure 20: Speedup of level of MiniBooNE.

0
10
20
30
40
50
60

0
1000
2000
3000
4000
5000

1 2 3 4 5 6 7 8 9 10111213141516171819202122

N
od

e s
iz

e

D
at

a s
iz

e

Level

Spambase 

Active data size
Node size

Figure 21: Active data size versus node size on spambase.

SPRINT. Figures 18, 19, and 20 show the speedup of each
level. The best speedup is always on the first level. There are
two reasons for the observations. The first one reason is that
the active data size is always large on the first level. A GPU
device is composed of many weak cores. Large data can exert
the computation power of GPU. This is why CUDT always
performs better than SPRINT on the first level. The second
one reason is that the increased node numbers on each level
also cost additional communication efforts betweenCPU and
GPU. Since we only parallelize the computation of creating
a single node, the building phase makes a tree iteratively.
Besides, we need to upload some data fromGPU toCPU after
finding the split points. The increasing of tree nodes will also
increase the data movements between CPU and GPU. Due to
the same reason, the following level’s performance is not as
good as the first level.

Similar to the above reasons, the upper levels have better
speedup than the lower levels.There is a performance turning
point between CPU and GPU. Figures 21, 22, and 23 show

0
50
100
150
200
250

0

5000

10000

15000

20000

2 4 6 8 10 12 14 16 18 20 22

N
od

e s
iz

e

D
at

a s
iz

e
Level

Magic04 

Active data size
Node size

Figure 22: Active data size versus node size on Magic04.

0
200
400
600
800
1000
1200

0

50000

100000

150000

2 4 6 8 10 12 14 16 18 20 22 24

N
od

e s
iz

e

D
at

a s
iz

e

Level

MiniBooNE 

Active data size
Node size

Figure 23: Active data size versus node size on MiniBooNE.

the relationship between node size and active data size. The
blue line presents active data size. The red one is the size of
nodes on the level.We can see that the trend of execution time
of CUDT is very close to the size of node on each level. It
shows that theCUDT system ismore sensitivewith node sizes
prior to the data size.

5. Conclusions and Future Works

Using GPU for solving problems with high density computa-
tion normally brings remarkable improving of performance.
Of course, the precondition is that these problems should
be able to be solved in parallel. Many machine learning
algorithms have been developed on CUDA GPUs. They also
show performance improvement comparing to the imple-
mentation of CPU. In this paper, we studied the background
of existing decision tree algorithm and CUDA programming



12 The Scientific World Journal

model. Based on the knowledge, we proposed a new parallel
decision tree algorithm base on CUDA. By leveraging the
existing CUDA components, such as prefix-sum and parallel
sorting, our proposed CUDT system performs well and gets
major performance improvement than sequential decision
tree algorithms. Comparing to the famous Java open source
project Weka, the CUDT has 5∼55 times faster than Weka in
similar data accuracy level. Comparing to the best optimized
SPRINT, CUDT has maximum 18 times faster than SPRINT.
The experiment result shows that CUDT gets remarkable
performance improvement than other decision tree imple-
mentations.

Themajor problem of CUDT algorithm is that redundant
nodes not only hurt performance of building phase but also
reduce the accuracy of results. The further studies of this
system have to focus on the issue of tree size.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Science Council
of Taiwan, China, under Grant no. 102-2511-S-009-006-MY3.
The authors also would like to express their deep appreciation
to all anonymous reviewers for their kind comments.

References

[1] D. Reed, J. Larus, and D. Gannon, “Imagining the future:
thoughts on computing,” Computer, vol. 45, no. 1, pp. 25–30,
2012.

[2] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a
service and big data,” in Proceedings of the International Con-
ference on Advances in Cloud Computing (ACC ’12), Bangalore,
India, July 2012.

[3] T. Sharp, “Implementing decision trees and forests on a GPU,”
in Computer Vision—ECCV 2008, vol. 5305 of Lecture Notes in
Computer Science, pp. 595–608, Springer, 2008.

[4] G.-H. Luo, S.-K. Huang, Y.-S. Chang, and S.-M. Yuan, “A
parallel Bees Algorithm implementation on GPU,” Journal of
System Architecture, vol. 60, no. 3, pp. 271–279, 2014.

[5] Y. Chang, R. Sheu, S. Yuan, and J. Hsu, “Scaling database
performance on GPUs,” Information Systems Frontiers, vol. 14,
no. 4, pp. 909–924, 2012.

[6] L. Rokach and O. Maimon, Data Mining with Decision Trees:
Theory and Applications, World Scientific Publisher, 2008.

[7] R. Shuai and S. Z. Huang, “Data mining algorithm based on
decision tree application and research,” Energy Procedia, vol. 11,
pp. 120–127, 2011.

[8] J. J. Jung, “Semantic preprocessing for mining sensor streams
from heterogeneous environments,” Expert Systems with Appli-
cations, vol. 38, no. 5, pp. 6107–6111, 2011.

[9] J. J. Jung, “Constraint graph-based frequent pattern updating
from temporal databases,” Expert Systems with Applications, vol.
39, no. 3, pp. 3169–3173, 2012.

[10] D.-S. Liu and S.-J. Fan, “A modified decision tree algorithm
based on genetic algorithm for mobile user classification prob-
lem,”The Scientific World Journal, vol. 2014, Article ID 468324,
11 pages, 2014.

[11] C. E. Brodley and M. A. Friedl, “Decision tree classification
of land cover from remotely sensed data,” Remote Sensing of
Environment, vol. 61, no. 3, pp. 399–409, 1997.

[12] P.-L. Tu and J.-Y. Chung, “A new decision-tree classification
algorithm for machine learning,” in Proceedings of the 4th
International Conference on Tools with Artificial Intelligence, pp.
370–377, 1992.

[13] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: a fast scalable
classifier for datamining,” in Proceedings of the 5th International
Conference on Extending Database Technology (EDBT ’96),
Avigon , France, March 1996.

[14] J. C. Shafer, R. Agrawal, and M. Mehta, “SPRINT: a scalable
parallel classifier for data mining,” in Proceedings of the 22nd
International Conference on Very Large Databases (VLDB ’96),
pp. 544–555, 1996.

[15] V. Satuluri, “A survey of parallel algorithms for classification,”
2007, http://www.cse.ohio-state.edu/∼satuluri/721report.pdf.

[16] A. Srivastava, E. Han, V. Kumar, and V. Singh, “Parallel formu-
lations of decision-tree classification algorithms,” Data Mining
and Knowledge Discovery, vol. 3, no. 3, pp. 237–261, 1999.

[17] L. O. Hall, N. Chawla, and K. W. Bowyer, “Decision tree
learning on very large data sets,” in Proceedings of the 1998 IEEE
International Conference on Systems, Man, and Cybernetics, vol.
3, pp. 2579–2584, San Diego, Calif, USA, October 1998.

[18] “NVIDIA CUDA Programming Guild, 3.2 edition,” NVIDIA
Corporation, 2010.

[19] NVIDIA Corporation, NVIDIA CUDA Best Practices Guild, 3.2
Version, NVIDIA Corporation, 2010.

[20] M. Harris, “Optimizing Parallel Reduction in CUDA,”
NVIDIA Corporation, http://developer.download.nvidia.com/
compute/cuda/1 1/Website/projects/reduction/doc/reduction
.pdf.

[21] S. Fei, Q. Wen, and Z. Jin, “Analysis and improvement of
SPRINT algorithm based onHadoop,” inComputer Engineering
and Networking, vol. 277 of Lecture Notes in Electrical Engineer-
ing, pp. 209–217, Springer, 2014.

[22] M. Harris, “Parallel Prefix Sum (Scan) with CUDA,” April 2007,
http://beowulf.lcs.mit.edu/18.337-2008/lectslides/scan.pdf.

[23] G. E. Blelloch, “Prefix sums and their applications,” Tech. Rep.
CMU-CS-90-190, 1990.

[24] M. Harris, “CUDPP: CUDA Data-Parallel Primitives Library
1.1.1,” NIVIDA, UCDAVIS, April 2010, http://code.google.com/
p/cudpp/.

[25] L. Breimain, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, Wadsworth, Belmont, Calif,
USA, 1984.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


