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The epigenome consists of chemical changes in DNA and chromatin that without modifying the DNA sequence modulate gene
expression and cellular phenotype. The epigenome is highly plastic and reacts to changing external conditions with modifications
that can be inherited to daughter cells and across generations. Whereas this innate plasticity allows for adaptation to a changing
environment, it also implies the potential of epigenetic derailment leading to so-called epimutations. DNA methylation is the
most studied epigenetic mark. DNA methylation changes have been associated with cancer, infertility, cardiovascular, respiratory,
metabolic, immunologic, and neurodegenerative pathologies. Experiments in rodents demonstrate that exposure to a variety of
chemical stressors, occurring during the prenatal or the adult life, may induce DNA methylation changes in germ cells, which may
be transmitted across generations with phenotypic consequences. An increasing number of human biomonitoring studies show
environmentally related DNA methylation changes mainly in blood leukocytes, whereas very few data have been so far collected
on possible epigenetic changes induced in the germline, even by the analysis of easily accessible sperm. In this paper, we review the
state of the art on factors impinging on DNA methylation in the germline, highlight gaps of knowledge, and propose priorities for
future studies.

1. Introduction

Epigenetics formally refers to heritable changes in gene
expression and in phenotype occurring without changes
in the underlying DNA sequence. Alterations in epigenetic
marks have been involved in the etiology of complex syn-
dromes and diseases, including cancer, infertility, cardiovas-
cular, respiratory, metabolic, immunologic, and neurodegen-
erative pathologies [1-3]. The main epigenetic mechanisms
responsible for these alterations are represented by DNA
methylation, posttranslational histone modifications, and
regulation by noncoding microRNAs [4]. In particular, DNA
methylation, the most studied epigenetic mark so far, involves
the enzymatically mediated covalent addition of a methyl
group to the C5 position of cytosine, forming 5-methyl
cytosine (5-mC). Cytosine methylation primarily happens
in CpG dinucleotides in CpG-rich sequences, dubbed as
CpG islands, often occurring near or in the gene promoter

regions. DNA methylation, operated by a family of DNA
methyltransferases [5], is implicated in many life-essential
cellular and developmental processes, such as embryonic
reprogramming, cellular differentiation, silencing of genes
and transposons, parental imprinting, X chromosome inac-
tivation, and genomic stability [6-8].

It is largely accepted that exposure to a variety of environ-
mental toxicants has a negative impact on human health and
contributes to the development of a large array of diseases.
The epigenome is more plastic and flexible than the genome.
Changes of epigenetic marks, such as DNA methylation,
can affect the chromatin structure and modify binding of
transcription factors and gene expression. The theoretical
framework of a changing environment and a modifiable
epigenome might offer unexplored and unsuspected ways to
understand gene-environment interactions and potentially
mitigate the impact of environmental toxicants on human
health [9, 10].
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A rapidly growing number of epidemiological studies
have been carried out throughout the world, in which
environmental exposure and lifestyle (an umbrella term
including diet, behavior, stress, physical activity, working
habits, voluntary alcohol and tobacco consumption, etc.),
meshed with the genetic background, have been associated
with epigenetic changes, mostly DNA methylation (reviewed
in [11-18]). The trend in the field appears to shift from
the introduction of a novel “proof-of-principle” approach in
toxicology to a more systematic scientific specialty [19, 20].

Environmental epidemiology research is addressing epi-
genetic mechanisms as mediators of environmental exposure
on disease risk or just as biosensors of exposure even if
not mechanistically relevant. Because stable methylation
marks at differentially methylated regions (DMRs) regulating
imprinted genes are acquired before gastrulation, they may
serve as archives of early exposure with the potential to
improve our understanding of developmental origin of adult
diseases.

DNA methylation has been by far the most extensively
measured epigenetic mark because of its obviously funda-
mental biological interest, its mitotic stability, the availability
of methods for its quantification, globally or in targeted
regions, its stability during the DNA extraction and purifi-
cation procedures, and its durability in archival biological
materials. By and large, the strategy consists of comparatively
assessing the methylation differences at CpG islands in gene
promoters or DMRs, between control and exposed groups.

The information on DNA methylation status and changes
in association with environmental exposure and lifestyle
has been mostly collected from peripheral blood leukocytes
(PBL), which can be sampled by a minimally invasive
approach. However, tissue specificity, together with purity
of cells for DNA methylation determination, represents a
relevant issue in epigenetic studies as each tissue and, within a
tissue, probably each cell type have its own epigenetic profile.

During our lifetime, the genome undergoes two main
epigenomic reprogramming periods, each of which involves
waves of DNA demethylation and de novo methylation. These
precise and coordinated genome-wide reprogramming steps
are associated with pivotal developmental stages like the
establishment of cell totipotency and the differentiation of the
germ cell lineages [21, 22]. The first wave occurs, with notable
differences between sexes, in all cells of the preimplantation
embryo. The second wave occurs in primordial germ cells
(PGCs) only; this time the demethylation events are more
radical and involve imprinted genes whose allelic-specific
methylation is first erased and then reset according to the
sex of the germline [23]. Conceivably, these phases of mam-
malian development are especially sensitive to environmental
stressors, which can impact epigenetic plasticity with poten-
tial enduring effects on metabolic pathways and disease sus-
ceptibility. Indeed, such scenario would be in agreement with
the theory of the fetal basis of adult onset disease [24-26].

The early fetal period of life is particularly critical
for gonadal development, and many common reproductive
disorders of the adult male, such as infertility and testis
cancer, have been proposed to have a fetal origin [27]. In
addition, prenatal exposure to environmental contaminants,
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especially those belonging to the variegated and heteroge-
neous class of compounds collectively defined as endocrine
disruptors (EDs), has been linked to the increased incidence
of male reproductive pathologies [28-32]. The interference
with developmental epigenetic processes has been evoked as
one of the potential mechanisms of EDs action affecting the
integrity of the male reproductive system [33]. Recent evi-
dence that unbalanced one carbon metabolism may impact
male reproductive health [34] and that a variety of epigenetic
markers, including global or gene-specific DNA methylation,
can be altered in infertility patients [35, 36] is in agreement
with this hypothesis.

In spite of the extensive DNA demethylation occurring
in preimplantation embryonic cells, there are sequences,
corresponding primarily, but not exclusively, to parentally
imprinted genes that escape global demethylation [37, 38].
This means that changes of DNA methylation induced by
environmental stressors in germ cells could not only have
consequences for the reproductive health of the exposed
individual but also might be potentially heritable from one
generation to another and might cause transgenerational
adverse effects by a nongenetic mechanism of inheritance.

Notwithstanding the knowledge about epigenetic reg-
ulation of gonadal development and the evidence about
epigenetic changes induced in rodent germline by several
chemicals or dietary conditions, the number of studies aimed
at testing possible effects of lifestyle or chemical exposure
on human sperm DNA methylation is extremely limited in
comparison to the number of studies carried out on blood
cells. Sperm can be obtained by a similarly noninvasive
procedure; they represent the target cell for male reproductive
effects and not merely a surrogate of it; their ultimate DNA
methylation pattern is acquired by a multistep process started
in PGCs and completed during the spermatogonia and
spermatocyte differentiation phases [39, 40], which might
therefore be repeatedly exposed to environmental insults.
For all these reasons it would be very valuable to extend
the analysis of sperm epigenetics beyond infertility clinical
investigation to environmental biomonitoring studies.

Focus of this literature review will be on data linking
various exogenous factors, from specific chemical exposure
to psychological stress, to DNA methylation changes in
the germline and their consequences in the offspring. We
have taken into consideration both experimental rodent and
human studies. In addition, due to the very limited amount
of data from human biomonitoring investigations, we have
decided to include a survey of papers reporting human popu-
lation studies which have shown an environmental impact on
DNA methylation of somatic cells, to highlight those sources
of exposure that would be worth further germline-oriented
investigations, and the present gaps of knowledge.

2. Human Studies on Environmentally
Linked DNA Methylation Changes in
Somatic and Germ Cells

Several recent and excellent reviews [12, 13, 15, 17, 41, 42]
have been published on this subject. Here, we try to offer an
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original aggregation pattern of the data, which are mostly
very recent but often incomplete and methodologically
heterogeneous, to highlight research trends and gaps of
knowledge, also in relation to experimental rodent studies.
The epidemiological studies specifically reporting the effects
of environmental chemicals on DNA methylation are
summarized in Table 1.

2.1. Metals: Arsenic, Chromium, Cadmium, Lead, Mercury,
and Selenium. Environmental toxic metals have been asso-
ciated with important human pathologies like cancer, cardio-
vascular and autoimmune diseases, and neurological disor-
ders and, recently, their impact on the epigenome has started
to be explored [43].

Inorganic arsenic is a carcinogenic metal. Several mil-
lions of people around the world are exposed to arsenic
concentrations in their drinking water that exceed the World
Health Organization’s recommended limit of 10 ppb. The
mechanism(s) of arsenic toxicity and carcinogenicity are
not fully clarified; recently, epigenetic alterations have been
proposed to play a role and have been explored in cohort and
case-control studies, especially in Asian populations living in
highly contaminated areas (reviewed in [44]). Exposure, gen-
erally assessed by the metal concentration in drinking water
and/or in biological fluids or tissues, has been associated
with dose-dependent global DNA hypermethylation [45-47]
and with hypermethylation of specific oncosuppressor genes
[48-52]. Genome-wide comparisons of DNA methylation
patterns from people who developed skin lesion and a control
group in Bangladesh have evidenced 6 CpG sites with greatest
changes of DNA methylation among cases, one of which
belongs to the RHBDFI gene, previously reported to be
hypermethylated in arsenic-exposed cases [53]. Similarly, by
using high throughput approaches, specific DNA methylation
changes in particular genes were detected between arsenic-
induced and non-arsenic-induced urothelial carcinomas in
Taiwan [54].

The epigenetic effects of in utero arsenic exposure were
investigated in umbilical cord blood to find out a mechanistic
basis for possible arsenic-induced alterations of fetal develop-
mental programming. Hypermethylation of the transposonic
repeat LINE-1, pI6 promoter, and other specific sequences was
associated with arsenic concentration in maternal drinking
water [55, 56]. Other studies also showed some effects of
arsenic maternal exposure on cord blood DNA methylation
[57, 58], although the involved sequences were not always
consistent.

The newborn blood DNA methylation pattern seems to
be affected also by in utero exposure to low concentrations,
as shown by the results of a prospective American birth
cohort study using high throughput arrays [59]. In another
large Mexican cohort, a total of 2,705 genes in cord blood
leukocytes showed differences in DNA methylation that were
associated with maternal exposure to arsenic in drinking
water. The gene set was highly enriched in binding sites of
the early growth response and CTCF transcription factors.
Furthermore, DNA methylation levels of seven of these genes
were associated with differences in birth outcomes including
gestational age, placental weight, and head circumference

[60]. These results strongly point to the need for long-term
follow-ups to determine whether the observed DNA methyla-
tion changes may be associated with specific health outcomes.

Chromium VI [61], mercury [62, 63], lead [64, 65],
cadmium [62, 66], and selenium [67] are other metals for
which association studies between human exposure and
DNA methylation changes, mainly in peripheral blood cells,
have been conducted. Cadmium can cross the placental
barrier and its potential as a developmental toxicant has been
studied in an American survey by comparing maternal blood
cadmium levels during pregnancy and genome-wide DNA
methylation in leukocyte DNA collected from cord blood
cells [68]. A variety of genes showed methylation changes
associated with maternal cadmium concentrations. The set
was enriched in genes involved in transcriptional regulation
control and apoptosis. Conserved DNA motifs with sequence
similarity to specific transcription factor binding sites were
identified within the CpG islands of the gene set. Altogether
the results pointed to a possible functional impact of cad-
mium on fetal DNA methylation.

Overall, the number of studies on the epigenetic impact of
environmental metal exposure is limited. The study designs,
the number of people enrolled, the genomic sequences inves-
tigated, and the methods used to assess methylation changes
(locus-specific, global locus-independent, epigenome-wide)
are quite heterogeneous. Widely different exposure levels
have been evaluated in occupational studies and in studies
on the general population. Therefore, any attempt to draw
general conclusions is still premature. However, the expected
decrease of costs of epigenome-wide analytical methods will
likely allow acquiring a wealth of data in the near future.
In addition to such unsupervised studies, more focused
investigations on global hypomethylation and downregu-
lation of the methylation machinery, hypomethylation in
regions controlling transposons or oncogene expression, or
hypermethylation at oncosuppressor genes could offer the
best contribution to unravel epigenetic mechanisms under-
lying environmental cancer and to develop novel predictive
biomarkers.

2.2. Air Pollution (Particulate Matter, Polycyclic Aromatic
Hydrocarbons, Benzene, and Volatile Organic Compounds).
Exposure to air pollution is a side-product of urbaniza-
tion and industrialization representing a dramatic health
problem, associated with childhood asthma, wheeze, and
increased cardiovascular morbidity and mortality. It is gen-
erally assessed by measuring the levels of particulate matter
with aerodynamic diameter <2.5 (PM2.5) or <10 ym (PM10)
together with the levels of other air pollutants like black
carbon, ozone, polycyclic aromatic hydrocarbons (PAHs),
sulfur, and nitrogen dioxide. There have been several studies
carried out across the globe, which have considered possible
impacts of air pollution on DNA methylation with sometime
contrasting results [69].

In a recent European study on a cohort of young non-
smoking subjects, the exposure to ambient concentrations
of NO,, PM10, PM2.5, and O; and traffic parameters were
associated with a decreased global DNA methylation level in
blood cells [70].
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Numerous studies focused on the vulnerable subpopula-
tion of elderly people [71-74]. Hypomethylation of repeated
sequences (LINE-1 and, in some cases, also Alu) was reported
to be associated with increased pollutant concentrations.
In addition, methylation changes of specific genes involved
in inflammatory and immune response pathways were
observed, which were regarded as modifiers of the association
between air pollutants and reduced lung function [74].

Other studies investigated effects of air pollution on DNA
methylation in children, showing changes in genes involved
in asthma morbidity [75] or nitric oxide metabolism in
airways [76, 77].

Lower global DNA methylation [78] and hypermethyla-
tion of specific genes [79, 80] in umbilical cord white blood
cells were shown to be associated with maternal exposure to
airborne PAHs, pointing to a possible prenatal environmental
epigenetic origin of childhood diseases.

Workers of different job sectors, exposed to particulate
matter, PAHs, and benzene, have been also monitored for
possible DNA methylation changes in peripheral blood cells
[81-91]. In general, DNA repetitive elements, such as LINE-
1, Alu, and HERV, have been analyzed, in addition to
specific genes including p53, pI5, p16, APC, RASSFIA, HICI,
iNOS, hTERT, and IL-6. Each specific gene and subfamily of
repetitive sequences seem to respond independently to the
exposure and no set of sequences has yet emerged as an ideal
reporting system of epigenetic effects. In addition, exposure
conditions and methods of assessment were quite heteroge-
neous making any overall conclusion impossible. These stud-
ies support the notion that epigenetic biomonitoring is still a
new area of environmental health studies that necessitates of
international coordination, methodological harmonization,
and mechanistically sound interpretation of results.

2.3. Persistent Organic Pollutants (POPs) and Endocrine
Disruptors (EDs). This heterogeneous class of chemicals is
strongly suspected to interfere with the human hormonal
homeostasis and to hamper reproductive integrity, especially
when exposure occurs during the pre- and perinatal
life stages. In a cohort of Greenland Inuits, in DNA
extracted from blood samples, Alu sequences showed
significant hypomethylation as a function of increasing
blood concentration of p,p’-DDT [1,1,I-trichloro-2,2-bis(p-
chlorophenyl)ethane], its main metabolites p,p’-DDE
[1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene], B-HCH
(hexachlorocyclohexane), oxy- and a-chlordane, mirex, sum
of PCBs (polychlorinated biphenyls), and sum of POPs;
the methylation level of LINE-1 sequences showed a similar
inverse trend with the exposure, albeit not statistically
significant [92]. In agreement with these data, the blood
concentrations of various organochlorine pesticides in a
cohort of healthy Koreans were inversely associated with the
methylation level of Alu but not of LINE-1 sequences [93].
Another widely debated chemical is the ubiquitous
bisphenol A (BPA), a monomer used in epoxy resins
and polycarbonate plastics. Exposure to BPA and possi-
ble methylation alterations were studied with genome-wide
approaches. Significant hypomethylation of the TSP50 gene

promoter in blood cells was associated with BPA exposure
in a cohort of women undergoing in vitro fertilization
(IVF) [62]. In a survey of prepubescent Egyptian girls [94]
higher urinary BPA concentrations were associated with
lower genomic methylation and, interestingly, many affected
genes were among those whose expression changes had been
previously associated with BPA exposure.

Another class of emerging POPs is represented by per-
fluoroalkyl substances (PFASs), which include a variety of
compounds widely used in many industrial processes and
products. Cross-sectional associations between serum PFASs
and LINE-1 DNA methylation were evaluated in an American
population highly exposed via contaminated drinking water
[95]. A significant association was found for some but not
all specific PFASs. To explore the possible effects on male
reproduction, global methylation and LINE-1, Alu, and Satx
methylation levels were directly assessed in sperm DNA
from fertile men from Greenland, Poland, and Ukraine
characterized by a wide contrast to PFASs plasma levels. No
strong consistent associations between PFASs exposure and
any of the sperm methylation biomarkers could be detected
[96].

Three studies explored the influence of maternal POPs
serum concentrations on DNA methylation of umbilical cord
blood cells. Global DNA hypomethylation appeared to be
associated with the serum level of specific PFASs [97]. Inter-
estingly, two studies examining the effects on various families
of repeated DNA sequences [98, 99] showed that the asso-
ciation between serum xenoestrogen contamination and Alu
hypomethylation in cord blood was influenced by the baby
gender, in agreement with the hypothesis of a differential,
gender-dependent, susceptibility to prenatal EDs exposure.

2.4. Antibiotics. Low birth weight (LBW) has been associated
with common adult-onset chronic diseases. Its etiology is
multifactorial and exposure to antibiotics has been reported
to increase LBW risk. Among possible mechanisms underly-
ing this association, epigenetic changes have been proposed.

In the US Newborn Epigenetics Study (NEST), the
methylation status of the DMRs of a variety of growth reg-
ulatory imprinted genes (IGF2, H19, MEST, PEG3, PLAGLI,
SGCE/PEGI0, NNAT, and MEG3) was analyzed, in umbilical
cord blood cells, in relation to the infant birth weight and
maternal (self-reported) antibiotic use. Methylation at IGF2,
HI9, PLAGLI, MEG3, and PEG3 was associated with maternal
antibiotic use, although only methylation at the PLAGLI
DMR was also associated with birth weight [100].

2.5. Tobacco Smoke. The potential epigenetic links between
current and prenatal smoking and smoking-related diseases
are extensively discussed in recent review papers [101, 102].
Smokers and nonsmokers have been compared by high
throughput methods in several cohorts of adult and young
people, with some consistent alterations detected involving
DNA methylation differences at specific positions in the
F2RL3 [103-107], in the AHRR [108-112], and in GPRI5
genes [112], which emerged as strong candidates to pre-
dict smoking-related negative health outcomes. Epigenetic



changes in the offspring of mothers smoking during preg-
nancy have been characterized by genome wide approaches,
to contribute unraveling the mechanistic pathways of some,
well-known, prenatal smoking-related adverse effects. Accu-
mulating data indicate that prenatal exposure to tobacco
smoke is associated with reproducible epigenetic changes at a
global and gene-specific level that persist well in childhood
and adolescence [97, 113-122]. Changes have been found,
among others, in genes involved in transcription, in oxidative
stress and detoxification pathways, and in repetitive elements,
even though the biological significance of a variety of altered
loci remains to be understood.

2.6. Parental Influence

2.6.1. Paternal Effects. In humans, there is sparse evidence
linking lifestyle paternal factors with the offspring epigenome
[123]. Paternal obesity has been associated with hypomethy-
lation at the IGF2 [124] and MEST, PEG3 and NNAT [125]
DMRs in the offspring cord blood cells, independently of
maternal obesity and other potential confounders.

It is noteworthy that global sperm DNA methylation
has been shown to increase, on average, by 1.76% per year
[126], and an in-depth analysis of the methylome in two
sperm samples collected 9-19 years apart from 17 fertile
American men has shown several age-related changes [127].
One hundred and thirty-nine regions were significantly and
consistently hypomethylated and 8 regions were significantly
hypermethylated with age; 117 genes were associated with
these regions of methylation alterations (promoter or gene
body), with a portion of them surprisingly located at genes
previously associated with schizophrenia and bipolar disor-
der. In the same samples, LINE-I showed global hyperme-
thylation with age, while another study, aimed at relating
numerous variables with sperm DNA methylation [128],
did not show age-dependent changes in LINE-I, Alu, and
Satec methylation level, probably because of the narrow age
contrast of studied populations. In the latter study, personal
characteristics and habits, body mass index (BMI), semen
quality parameters, sperm chromatin integrity, biomarkers of
accessory gland function, and the plasma concentration of
reproductive hormones were related to sperm DNA methy-
lation in a cohort of 224 men of proven fertility, living in
three European regions, Greenland, Warsaw, and Kharkiv.
The geographical location emerged as the main determinant
of the methylation level in repetitive sequences and no other
consistent associations between methylation markers and the
assessed variables were identified across countries [128].

Until now, only three human biomonitoring studies
addressed the impact of environmental factors on sperm
DNA methylation. One is the already cited investigation on
the possible effects of PFASs exposure on LINE-1, Alu, and
Satec methylation level [96], which did not show consistent
PFASs-associated alterations. The other two studies
focused on occupational radiation exposure and alcohol
consumption. An increase of hypermethylated spermatozoa
was shown in radiation-exposed workers [129]. Some years
ago, alcohol had been shown to reduce the methyltransferase
mRNA levels in sperm of chronically treated rats with
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potential consequences on paternal imprinting [130].
Notably, a trend of increased demethylation with alcohol
consumption was shown, in sperm of male volunteers, at the
HI9 and IG DMRs, with a significant difference observed at
the IG-DMR between the nondrinkers and heavy alcohol
consumers [131].

2.6.2. Maternal Effects. Newborn methylomes contain mole-
cular memory of the individual in utero experience [132].
In the above chapters we have discussed various examples
linking maternal environmental exposure to newborn DNA
methylation, as assessed through cord blood cell analysis.
However, the maternal impact appears to extend beyond that
of specific chemical contaminants, as also metabolism, nutri-
tion, and stress seem to influence the offspring methylome.

In an American black mother-child cohort study,
genome-wide analysis of cord blood cells showed that about
20 CpG sites in cancer and cardiovascular disease relevant
genes were highly significantly associated with maternal BMI
[133].

The epigenetic consequences of prenatal famine and
caloric restriction have been evaluated in a cohort of people
conceived in the winter 1944-45 during a severe famine at the
end of World War IT (Dutch Hunger Winter Families Study).
These people appear to bear the consequences of prenatal
stress later in life, including an adverse metabolic profile
(suboptimal glucose handling, higher BMI, and elevated
total and low-density lipoprotein cholesterol) and increased
risk of schizophrenia. While the overall global methylation
levels in their blood cells appear to be unaffected [134],
significant DNA methylation changes have been shown, at
several specific loci corresponding to imprinted genes or to
genes implicated in growth and metabolic diseases, including
IGF2, IL-10, LER, ABCAl, GNASAS, and MEG3 [135-139].
A genome-scale analysis has demonstrated that differential
DNA methylation preferentially occurs at regulatory regions
and maps to genes enriched for differential expression during
early development [140]. Changes have been also shown
to depend on the sex of the exposed individual and the
gestational timing of the exposure [137].

Folate plays an essential role in one-carbon metabolism
involving remethylation of homocysteine to methionine,
which is a precursor of S-adenosylmethionine, the primary
methyl group donor for most biological methylations, includ-
ing DNA methylation. A few pilot studies considered possible
effects of maternal intake of methyl-donor compounds on
their infant DNA methylation. Compared to infants born
to women reporting no folic acid intake before or during
pregnancy, methylation levels at the H19 DMR in umbilical
cord blood leukocytes decreased with increasing folic acid
intake, the decrease most pronounced in the male offspring
[141]. In another study [142], increased methylation at the
maternally IGF2 imprinted gene and decreased methylation
at the maternally imprinted gene PEG3 and at the repetitive
transposonic sequence LINE-1 were associated with folic acid
supplementation after the 12th week of gestation but not
during the first trimester or before conception. Finally, a third
study [143] did not detect any major association between
intake of methyl donor nutrients (vitamin B12, betaine,
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choline, folate, Cd, Zn, and Fe) during pregnancy and LINE-1
DNA methylation.

The results of a human epidemiological study, conducted
in rural populations in Gambia experiencing pronounced
seasonal fluctuations in nutritional status and diet, support
a role for periconceptional maternal plasma concentration
of key micronutrients involved in one-carbon metabolism
on infant DNA methylation [144, 145]. The study focused
on the analysis of human candidate metastable epiallelic loci
[25, 146]. Metastable epialleles are genomic regions where
epigenetic patterning occurs before gastrulation in a stochas-
tic fashion leading to systematic interindividual variation
within one species. Their existence is well documented in
the mouse since the pioneering studies on the agouti viable
yellow (A") locus, and, in this model, maternal diet has been
shown to modulate the establishment of the epigenetic marks
(reviewed in [38]). The human survey has shown that DNA
methylation at metastable epialleles in lymphocytes and hair
follicle cells of infants conceived during the rainy (“hungry”)
season is significantly different from that of infants conceived
in the dry (“harvest”) season, providing first evidences of a
lasting and systemic effect of periconceptional environment
on human epigenotype.

Maternal depression has been associated with a higher
risk of LBW and hypermethylation at the MEG3 DMR of
infants [147]. Furthermore, LBW infants had lower methy-
lation at the IGF2 DMR, while high birth weight infants
had higher methylation at the PLAGLI DMR compared
with normal birth weight infants. Thus, imprinted gene
plasticity may play a role in the observed association between
depressive mood in pregnancy and LBW.

Preliminary human studies are providing first evidence
supporting the conclusion that traumatic experiences can
result in lasting, broad, and functionally organized DNA
methylation signature in several tissues in offspring. A
Canadian study (Project Ice Storm) was set up some months
after the 1998 Quebec ice storm by recruiting women who
had been pregnant during the disaster, scoring their degrees
of objective hardship and subjective distress. Thirteen years
later, genome-wide DNA methylation profiling in T cells
obtained from 36 of the children was assessed. Prenatal
maternal objective hardship (but not maternal subjective
distress) was correlated with DNA methylation levels in
1675 CpGs affiliated with 957 genes predominantly related to
immune function [148].

3. Rodent Experimental Studies on
the Induction of Epigenetic Changes
in the Germline

In the last few years, experiments in rodents started to test
the hypothesis that exogenous exposure to some measur-
able factor, during a controlled time window, could induce
epigenetic changes in the germline. The large majority of
these experiments investigated changes of DNA methylation
at a global, gene-specific, or genome-wide level and will be
discussed in this section. A few considered also other types
of epigenetic changes such as the sperm microRNA content

[149-151], but, due to their still very small number, they will
not be further addressed.

These studies were prompted by the observations of heri-
table traits unexplained by Mendelian inheritance. However,
only a subset of studies showing epigenetic transgenera-
tional effects also provided evidence of potentially heritable
epigenetic changes in the exposed gametes. In this review,
only those studies that analysed possible DNA methylation
changes in the male or female germline of exposed animals
have been considered.

Opverall, 24 papers were reviewed, 19 reporting studies
in mice and 5 in rats. Studies on the possible induction of
epigenetic alterations in germ cells were grouped according
to the exposure time window: either prenatally, during the
critical period of germline differentiation (10 studies), or
postnatally, in prepuberal or adult male (12 studies) or female
(5 studies) animals. One of the 5 studies on exposure of the
female germline was carried out in vitro (Table 2).

From the emerging overview, the research objectives
still appear rather sparse: a group of studies evaluated the
impact of metabolic changes, due to undernourishment [152],
low-protein [153], folate-deficient [154], zinc-deficient [155],
obesogenic, and/or diabetogenic diets [149, 156-158]. Other
studies investigated the effects of specific compounds, many
of which belong to the class of so-called endocrine disrupters,
including vinclozolin [159-161], methoxychlor [162], dioxin
[163], and bisphenol A [164-166]. The remaining studies
deal with a heterogeneous group of potentially epigenetics
disrupting agents: particulate air pollution [167], ethanol
[168, 169], tamoxifen [170, 171], fenvalerate [172], and sodium
fluoride [173].

Regarding the genomic targets, several studies focused
on a few loci, either maternally (Mest, Snrpn, Igf2r, and
Peg3) or paternally (HI9, Meg3, and Rasgrfl) imprinted
(methylated). Other studies evaluated changes of methyla-
tion in metabolism-related genes, such as the LPLase, the
Ppara, or the Lep gene. One paper included the analysis of
methylation of Line-1 repeated sequences [173]. A few studies
assessed possible changes of total DNA methylation, whereas
the most recent papers report analyses at a genome-wide
level. With a few exceptions [153, 160, 163, 170, 173], the
studies showed some kind of exposure-related effect. Both
increase and decrease of methylation levels were reported.
As pointed out before, the studies are too scattered and too
heterogeneous in the analytical methods to allow drawing
general conclusions; however, some hints are emerging, like
increased methylation of maternally imprinted and decreased
methylation of paternally imprinted genes in the exposed
male germline. Interestingly, the few studies on oocyte
exposure show an opposite effect of treatment on the same
maternally imprinted genes, which seem to respond with a
decreased methylation level.

In some studies the impact of exposure on germ cells has
been compared with the impact on somatic cells. Depending
on the type and time of exposure, some studies showed that
the methylation control mechanisms were more robust in
the somatic than in the germ cells, as in the case of prenatal
treatment with ethanol [168] or methoxychlor [162], but
a reversed sensitivity was also observed, as in the case of
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prenatal exposure to dioxin [163]. It is conceivable that each
tissue might respond accordingly to its specific developmen-
tal program; therefore, studies of exposure during the period
of prenatal germline differentiation are especially important
for assessing any environmental epigenetic impact on the
germline.

The evaluation of an epigenetic impact of exogenous
factors on the germline is still in its infancy. A critical issue
that has not yet been thoroughly addressed is if and how
much the DNA methylation changes have a functional impact
on the gene expression level and have any causal role on the
male germ cell toxicity that is sometimes induced, as after
prenatal vinclozolin [161] or ethanol [168] exposure.

A group of studies aimed mainly to evaluate possible
transgenerational consequences of epigenetic alterations in
the germline. The simplest hypothesis was that methylation
changes in gametes could resist zygotic reprogramming
and have functional consequences in the offspring sired by
exposed animals.

Indeed, in mice, ethanol exposure in utero was shown to
induce HI9 demethylation in sperm of adults, as well as in
the brain cells of their offspring, with a good concordance
between the CpG demethylation patterns across cell types
and generations [168]. In another study testing possible
transgenerational effects of tamoxifen in rats [171, 174], the
offspring sired by tamoxifen-treated animals showed an
increased incidence of embryonic resorptions, and resorbed
embryos (but not normal ones) carried methylation errors
similar to those detected in the sperm of exposed fathers.
In male mice a prediabetic condition closely resembling
the metabolic abnormalities of human prediabetes can be
induced by high-fat diet and chemical treatment; these mice
transmit to their offspring glucose intolerance and insulin
resistance [156]. Epigenomic profiling in offspring pancreatic
islets identified changes in cytosine methylation at several
insulin signaling genes, and these changes correlated with the
expression of these genes. The analysis of cytosine methyla-
tion profiles in sperm of prediabetic fathers showed several
alterations and a large proportion of differentially methylated
genes overlapped with that of the offspring pancreatic islets.
Bisulfite sequencing of some of these genes in blastocysts
showed that they resisted global postfertilization demethyla-
tion and largely inherited cytosine methylation from sperm,
suggesting that there might be intergenerational transmission
of methylation profiles.

However, other studies demonstrated that epigenetic
inheritance via the gametes can be more complex than the
direct transmission of DNA methylation alterations, and a
crosstalk might exist between different levels of epigenetic
regulation across generations.

A genome-wide analysis of methylation changes in sperm
of mice exposed to a folate-deficient diet showed altered
methylation profiles in genes implicated in development,
chronic diseases such as cancer, diabetes, autism, and
schizophrenia [154]. In the same study, a twofold greater
resorption rate and an increased frequency of developmental
abnormalities were observed in pregnancies sired by exposed
males. Moreover, significant changes in the expression of over
300 genes were detected in the placenta of exposed-animals
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sired offspring. However, differentially expressed genes in
the placenta did not match differentially methylated genes in
sperm, suggesting that mechanisms other than DNA methy-
lation might be involved in the transgenerational transmis-
sion of epigenetic messages, like sperm histone modifications.

Similarly, in utero undernourishment induced hypome-
thylation of several genes in sperm, as well as changes of
expression of metabolic genes in the brain and liver of late
gestation fetuses sired by the exposed animals; interestingly,
the genes whose expression was altered in the fetuses mapped
close to differentially methylated regions in sperm, although
differential methylation was not transgenerationally retained
[152]. The authors concluded that ... it is unlikely that
these expression changes are directly mediated by altered
methylation; rather, the cumulative effects of dysregulated
epigenetic patterns earlier in development may yield sus-
tained alterations in chromatin architecture, transcriptional
regulatory networks, cell type, or tissue structure”

Postweaning growth delay and decreased methylation
at the HI9 ICR CTCF binding sites were observed in the
offspring of adult mice treated with ethanol, although no
decrease of HI9 DNA methylation was detectable in the
sperm DNA [169]. Methylation was significantly increased
in Peg3 and significantly decreased in HI9 8-cell embryos
sired by male mice treated with sodium fluoride, while no
change of methylation was detected in sperm [173]. Increased
methylation of a number of imprinted genes, associated with
downregulation of transcription, was detected in the resorb-
ing embryos sired by tamoxifen-treated male rats, in spite
of the fact that their sperm did not show DNA methylation
changes in any of the 9 analyzed imprinted genes [170].

The complexity of the interplay between environmen-
tally sensitive epigenetic markers in sperm and epigenetic
modulation of development in the following generation is
further illustrated by a recently published report on the
transgenerational consequence of paternal exposure to a
conditioning olfactory experience [175]. The F1 progeny of
conditioned mice reacted just like the fathers with enhanced
response, in spite of never being conditioned themselves.
The F1 neuroanatomy was also affected. Behavioral sensitivity
and neuroanatomical alterations in the nervous system were
present also in the IVF-derived F1 generation and persisted
until at least the F2 generation. Hypomethylation in specific
CpG islands of the OIfr151 gene encoding for the specific odor
receptor was detected in sperm of exposed mice. These find-
ings led the authors “to hypothesize that relative hypomethy-
lation of Olfrl51 in FO sperm may lead to inheritance of
the hypomethylated Olfr151 in F1 Main Olfactory Epithelium
(MOE) and F1 sperm, creating an inheritance cascade”
However, the epigenetic mark was found in the sperm but not
in the MOE of F1 mice. Noting that DNA methylation and
histone modifications are known to be dependent on each
other, the authors suggested that changes in the methylation
pattern in sperm DNA might have resulted in histone
modifications around the olfactory gene in MOE DNA.

The literature on effects of experimental exposure upon
DNA methylation in rodent oocytes is less abundant com-
pared with that on effects induced in sperm. Two papers
report undermethylation of maternally imprinted genes in
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oocytes exposed to bisphenol-A either in vivo [164] or in
culture [165]. In addition to the challenge posed by working
with a little number of cells, experimental studies on female-
mediated epigenetic inheritance also face the difficulty of
strictly distinguishing a mechanism of epigenetic inheritance
via the gametes from other mechanisms of epigenetic inheri-
tance, such as those based on adverse uterine environment or
lactation-mediated effects. This issue emerged, for example,
in a recent paper [158] showing functional alterations of
methylation patterns in the Lep and Ppara metabolic genes
in oocytes of mice treated for 12 weeks with a high-fat diet, as
well as in the liver cells of their offspring.

4. Discussion

DNA methylation is a life-essential process that modulates
gene expression and drives cell differentiation in multicellular
organisms. Synergistically with other epigenetic mechanisms,
it allows cells and organisms to adapt to external changes, in a
timely way that mutational mechanisms could never meet. As
such, DNA methylation is unsurprisingly sensitive to external
stimuli. At the same time and in contrast to mutations,
DNA methylation changes are reversible. This duality poses
a challenge to researchers who aim to establish possible links
between environmental exposure and epigenetic changes that
may have a long-lasting impact on cell function and ulti-
mately on health. Cancer, in all its forms, is the most typical
example of a disease associated with aberrant epigenetics,
which may be triggered by environmental exposure [2, 176],
but ample evidence exists where erroneous epigenetic marks
also play prominent roles in neurological disorders such as
Alzheimer’s disease, autoimmune diseases such as rheuma-
toid arthritis, and cardiovascular diseases, among others [2].
The path of environmental epigenetics will necessarily have to
move from initially sparse association studies towards causal
relationships supported by biological plausibility.

The plasticity of the human epigenome and the difficulty
to sort out major environmental effects from “background
noise” can be appreciated from the studies showing a sea-
sonality and weather influence on some DNA methylation
biomarkers analyzed in recent human biomonitoring studies
(177, 178] or the findings of genome-wide analyses that
showed an influence of long-term shiftwork on DNA methy-
lation at several loci [179-182]. These latter studies, prompted
by the evidence of an association between exposure to light
at night, circadian rhythms, and cancer risk, demonstrated
indeed methylation changes in many cancer-relevant genes
and pathways, but they need to be confirmed by independent
replication in larger samples and supported by fundamental
mechanistic research, before any firm conclusion can be
drawn.

In addition, the fact that interindividual variation in
methylation may also be a consequence of DNA sequence
polymorphisms that result in methylation quantitative trait
loci should not be overlooked. Teh and coworkers [183]
have investigated the genotypes and DNA methylomes of
237 neonates and found some 1500 punctuate regions of
the methylome highly variable across individuals, termed
variably methylated regions (VMRs), against a homogeneous
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background. The best explanation for 75% of VMRs was the
interaction of genotype with different in utero environments,
including maternal smoking, maternal depression, maternal
BM]I, infant birth weight, gestational age, and birth order.
A prevalence of genetic over environmental determinants
of interindividual variation of CpGs methylation has been
recently reported in large Scottish and Australian cohorts
(184].

Finally, age is expected to be a major variable affecting the
DNA methylation profiles in different tissues. In fact, recent
studies aimed at exploring the importance of epigenetic
changes to the ageing process highlighted age-signatures of
DNA methylation [185-187].

One of the problems in drawing an overall pattern
from published literature on environmental epigenetic effects
is due to the heterogeneity of detection methods and
approaches. Several different methods have been developed
for DNA methylation analysis and their advantages and draw-
backs are discussed in excellent, recent reviews [188-191]. We
have witnessed in a short time the passage from the analysis
restricted to single specific regions to a global and genome-
wide scale. Even if, on purely theoretical considerations, the
ideal choice would point at a technique able to measure
the entire methylome at a single-base-pair resolution in a
particular cell system, researchers have to face other issues
related to time- and cost-effectiveness and make reasonable
compromises with their own scientific questions and the
technology available. By and large, cost-affordable technolo-
gies are limited in their sensitivity to DNA methylation
detection, like those relying on the global immunostaining
of the 5-mCs or like pyrosequencing that analyzes only a
limited amount of informative cytosines [192, 193]. On the
other hand, technologies based on high-resolution methy-
lation arrays [194] are able to measure countless sequences
across the genome but are costly and demand sophisticated
bioinformatics. The methylation analysis at targeted genes,
like those imprinted, involved in some metabolic pathway,
or supposedly metastable, and/or in repetitive elements
(transposonic or not) is a frequently used approach in
environmental epigenetics. Interestingly, it is emerging that
repetitive elements, such as Alu and LINE-I, which were
initially chosen simply as a proxy of the global methylation
level due to their abundance throughout the genome, respond
to environmental stress in a sequence-specific manner and
have to be considered as separate entities [96, 98, 120,
195]. An international methodological standardization and
harmonization effort would contribute to reaching more
solid evidence on the epigenetic impact of environmental
stressors. It certainly represents a Herculean task as the
human haploid DNA methylome contains approximately 30
million CpGs that exist in a methylated, hydroxymethylated,
or unmethylated state.

Notwithstanding such difficulties, environmental epige-
netics may become a potent concept to fully assess the impact
of the exposome on human health [196]. In particular, the
notion that, in mammals, tissue differentiation is mainly
established during prenatal life, and fundamental DNA
methylation changes occur in preimplantation embryo and
during gonadal differentiation, may support the hypothesis
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of prenatal origin of adult-onset diseases. To push science
forward, epidemiological mother-child cohort studies and
maternal exposure assessment will be instrumental.

Also the bases of reproductive health are founded during
prenatal life, with primordial germ cell differentiation and
gonad development, although the process of gametogenesis
will only be completed after puberty. This means that multiple
exposure windows must be considered to assess possible
environmental effects on the gamete genetic and epigenetic
integrity.

The results of the studies in rodents that we have
described in the previous section show that DNA methylation
in germ cells can be altered by many different kinds of
exposure during the fetal as well as the adult life. Still, these
studies suffer of some limitations: more data are available on
the male than on the female germline, and only few of them
carried out the analyses at the most informative genome scale,
addressed the functional impact of epigenetic changes on the
gene expression level and related cell pathways, and took into
consideration dose-effect relationships. Nevertheless, their
results are very important because they establish proof of
principle demonstration that a variety of exogenous stressors
may alter DNA methylation at developmentally important
imprinted or metabolic genes.

As a target of environmental exposure, the germline
meets a double risk, of compromising the reproduction
capacity of the exposed individual and transmitting possible
damage to the following generation. Some of the studies in
rats and mice indeed showed that treatment induced not
only DNA methylation changes in sperm but also phenotype
alterations in the sired offspring. These observations are
consistent with the notion that DNA methylation profiles of
the gametes are not completely reset after fertilization but
can be partly transmitted across generations. Actually, few
experiments tested this notion in the specific conditions,
with some showing apparent inheritance of gamete methy-
lation [156, 168], while others not showing the same result
[152]. Nevertheless, several authors agree in pointing out
that direct transmission of methylation changes is not the
only mechanism through which altered sperm methylation
might affect the offspring phenotype and that sustained
alterations of transcriptional regulatory networks early in
development may likely result from a complex interplay
between DNA methylation changes, chromatin modifica-
tions, and other epigenetic mechanisms. One implication of
epigenetic inheritance systems is that they provide a potential
mechanism by which parents could transfer information to
their offspring about the environment they experienced. In
other words, mechanisms exist that could allow organisms
to “inform” their progeny about prevailing environmental
conditions.

In some of the experimental studies [162, 163, 168, 169],
changes of DNA methylation in the germline and somatic
cells of exposed animals were compared. On the basis of the
few available data, it is not possible to draw any general con-
clusion, but, much more than for induced genetic changes, it
is conceivable that each cell type, with its own transcriptional
program, would be specifically affected at an epigenetic level.
This consideration poses a problem when data on induced
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epigenetic changes in the germline of experimental rodents
want to be related with human biomonitoring data.

In fact, as previously shown, whereas the database on
environmental factors impinging on DNA methylation in
human leukocytes is already abundant, very few data exist
on the variables affecting DNA methylation in human germ
cells, even in the most easily accessible sperm. Acknowl-
edging the limitation of a comparison between two large,
but independent, studies, carried out in different cohorts,
the increase of LINE-1 methylation reported in blood cells
in association with perfluorooctane sulfonate (PFOS) serum
level [95], and the lack of an association between PFOS serum
level and LINE-1 methylation in sperm [96] exemplifies the
difficulty of any extrapolation between somatic and germline
environmental epigenetics.

Much more fruitful has been until now the field of male
reproductive clinical epigenetics [35, 36]. The review of data
showing DNA methylation and other epigenetic changes
in the sperm of subfertile patients was out of the scope
of this paper. However, these data are important also for
reproductive environmental epigenetics because they seem
to indicate a functional significance of DNA methylation
changes in the male germline. At the same time, they evidence
the need to conduct specific epigenetic analyses on the
sperm of men exposed to reproductive toxicants, with the
awareness that their PBLs could not surrogate the relevant
target cells. Recently, the entire methylome of human sperm
has been analyzed at high resolution thanks to the most
advanced technologies [127, 197, 198]. While this dataset
will be consolidated by repeated analyses and the degree
of interindividual variation will be assessed, it will provide
an essential reference for future studies on the impact of
environmental stressors.

From an overall assessment of the current database on
human somatic environmental epigenetics, rodent germline
epigenetic toxicological studies, and the most environmen-
tally relevant human reprotoxic agents, a priority list of envi-
ronmental stressors on which directing future human sperm
epigenetic biomonitoring studies might be proposed: dys-
metabolism as a consequence of environmental and genetic
factors, including their possible interactions, endocrine dis-
rupting compounds, and major lifestyle toxicants like tobacco
smoke and alcohol. In addition, emphasis should be on
prenatal exposure, and mother child cohorts should be
studied more actively. Finally, prospective, long-term, multi-
generation follow-up surveys should be possibly set up to take
into account grandparental effects.

Abbreviations

ABCALl: ATP-binding cassette, subfamily A
(ABC1), member 1

ACE:  Angiotensin I-converting enzyme

ACSL3: Acyl-CoA synthetase long-chain family
member 3

AHRR: Aryl hydrocarbon receptor repressor

APC:  Adenomatous polyposis coli

ASCL2: Achaete-scute family bHLH
transcription factor 2



16

AXL:

BMI:
CDKNIC:
CNTNAP2:
COBRA:
COLI1A2:
CRAT:
CTCEF:
CTNNA2:
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Forkhead box transcription factor 3
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