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Given a positive function 𝐹 on S𝑛 which satisfies a convexity condition, for 1 ≤ 𝑟 ≤ 𝑛, we define for hypersurfaces in R𝑛+1 the
𝑟th anisotropic mean curvature function 𝐻

𝑟;𝐹
, a generalization of the usual 𝑟th mean curvature function. We call a hypersurface

anisotropic minimal if 𝐻
𝐹

= 𝐻
1;𝐹

= 0, and anisotropic 𝑟-minimal if 𝐻
𝑟+1;𝐹

= 0. Let 𝑊 be the set of points which are omitted by
the hyperplanes tangent to𝑀. We will prove that if an oriented hypersurface𝑀 is anisotropic minimal, and the set𝑊 is open and
nonempty, then 𝑥(𝑀) is a part of a hyperplane ofR𝑛+1. We also prove that if an oriented hypersurface𝑀 is anisotropic 𝑟-minimal
and its 𝑟th anisotropic mean curvature 𝐻

𝑟;𝐹
is nonzero everywhere, and the set 𝑊 is open and nonempty, then 𝑀 has anisotropic

relative nullity 𝑛 − 𝑟.

1. Introduction

Let 𝐹 : S𝑛 → R+ be a smooth function which satisfies the
following convexity condition:

(𝐷
2

𝐹 + 𝐹𝐼)
𝑥

> 0, ∀𝑥 ∈ S
𝑛

, (1)

whereS𝑛 is the standard unit sphere inR𝑛+1,𝐷2𝐹 denotes the
intrinsic Hessian of 𝐹 on S𝑛, 𝐼 denotes the identity on 𝑇

𝑥
S𝑛,

and>0means that thematrix is positive definite.We consider
the map

𝜙 : S
𝑛

󳨀→ R
𝑛+1

,

𝑥 󳨀→ 𝐹 (𝑥) 𝑥 + (gradS𝑛𝐹)𝑥;
(2)

its image 𝑊
𝐹

= 𝜙(S𝑛) is a smooth, convex hypersurface in
R𝑛+1 called theWulff shape of 𝐹 (see [1–9]). When 𝐹 ≡ 1, the
Wulff shape𝑊

𝐹
is just S𝑛.

Now let 𝑥 : 𝑀 → R𝑛+1 be a smooth immersion of an
oriented hypersurface. Let 𝑁 : 𝑀 → S𝑛 denote its Gauss
map.The map ] = 𝜙 ∘𝑁 : 𝑀 → 𝑊

𝐹
is called the anisotropic

Gauss map of 𝑥.

Let 𝑆
𝐹

= −d]. 𝑆
𝐹
is called the 𝐹-Weingarten operator,

and the eigenvalues of 𝑆
𝐹
are called anisotropic principal

curvatures. Let 𝜎
𝑟
be the elementary symmetric functions of

the anisotropic principal curvatures 𝜅
1
, 𝜅
2
, . . . , 𝜅

𝑛
:

𝜎
𝑟
= ∑

𝑖
1
<⋅⋅⋅<𝑖
𝑟

𝜅
𝑖
1

⋅ ⋅ ⋅ 𝜅
𝑖
𝑟

(1 ≤ 𝑟 ≤ 𝑛) . (3)

We set 𝜎
0

= 1. The 𝑟th anisotropic mean curvature 𝐻
𝑟;𝐹

is
defined by 𝐻

𝑟;𝐹
= 𝜎
𝑟
/𝐶
𝑟

𝑛
, also see Reilly [10]. 𝐻

𝐹
:= 𝐻
1;𝐹

is called the anisotropic mean curvature. When 𝐹 ≡ 1, 𝑆
𝐹
is

just theWeingarten operator of hypersurfaces, and𝐻
𝑟;𝐹

is just
the 𝑟th mean curvature 𝐻

𝑟
of hypersurfaces which has been

studied by many authors (see [11–14]). Thus, the 𝑟th aniso-
tropic mean curvature 𝐻

𝑟;𝐹
generalizes the 𝑟th mean curva-

ture𝐻
𝑟
of hypersurfaces in the (𝑛+1)-dimensional Euclidean

space R𝑛+1.
We say that 𝑥 : 𝑀 → R𝑛+1 is anisotropic 𝑟-minimal if

𝐻
𝑟+1;𝐹

= 0.
For 𝑝 ∈ 𝑀, we define V(𝑝) = dim ker(𝑆

𝐹
). We call V =

min
𝑝∈𝑀

V(𝑝) the anisotropic relative nullity; it generalized the
usual relative nullity.



2 Geometry

For a smooth immersion 𝑥 : 𝑀 → Q𝑛+1
𝑐

of a hyper-
surface into an (𝑛 + 1)-dimensional space form with constant
sectional curvature 𝑐, we denote by

𝑊 = Q
𝑛+1

𝑐
− ⋃

𝑝∈𝑀

(Q
𝑛

𝑐
)
𝑝
, (4)

where for every 𝑝 ∈ 𝑀, (Q𝑛
𝑐
)
𝑝
is the totally geodesic hyper-

surface ofQ𝑛+1
𝑐

tangent to 𝑥(𝑀) at 𝑥(𝑝). So, in the case of 𝑐 =

0,𝑊 is the set of points which are omitted by the hyperplanes
tangent to 𝑥(𝑀).

Wewill study immersionwith𝑊 nonempty. In this direc-
tion, Hasanis and Koutroufiotis (see [15]) proved the follow-
ing.

Theorem 1. Let 𝑥 : 𝑀 → Q3
𝑐
be a complete minimal

immersion with 𝑐 ≥ 0. If 𝑊 is nonempty, then 𝑥 is totally geo-
desic.

Later, in [16], Alencar and Frensel extended the result
above assuming an extra condition. They proved the follow-
ing.

Theorem 2. Let 𝑥 : 𝑀 → Q𝑛+1
𝑐

be an oriented, minimally
immersed hypersurface. If 𝑊 is open and nonempty, then 𝑥 is
totally geodesic.

In [17], Alencar and Batista studied hypersurfaces with
null higher order mean curvature; they proved the following.

Theorem 3. Let 𝑀 be a complete and orientable Riemannian
manifold and let 𝑥 : 𝑀 → Q𝑛+1

𝑐
be an isometric immersion

with𝐻
𝑟+1

= 0 and𝐻
𝑟

̸= 0 everywhere, 𝑟 ≥ 1. If 𝑊 is open and
nonempty, then the relative nullity V = 𝑛 − 𝑟.

We note that, Alencar in [18] provides examples of
nontotally geodesic minimal hypersurfaces in R2𝑛, 𝑛 ≥ 4,
with nonempty 𝑊; in [17], Alencar and Batista provides
examples of 1-minimal hypersurfaces with𝐻

1
̸= 0 everywhere

inR2𝑛, 𝑛 ≥ 5, with nonempty𝑊 but V ̸= 𝑛−1.These examples
show that it is necessary to add an extra hypothesis.

In this paper, we prove the anisotropic version of Theo-
rems 2 and 3 for an immersion 𝑥 : 𝑀 → R𝑛+1. Explicitly, we
prove the following two theorems.

Theorem 4. Let 𝑥 : 𝑀 → R𝑛+1 be an oriented, anisotropic
minimally immersed hypersurface. If 𝑊 is open and nonempty,
then 𝑥(𝑀) is a part of a hyperplane of R𝑛+1.

Theorem 5. Let 𝑥 : 𝑀 → R𝑛+1 be an oriented immersed
hypersurface with 𝐻

𝑟+1;𝐹
= 0 and 𝐻

𝑟;𝐹
̸= 0 everywhere, 𝑟 ≥ 1.

If𝑊 is open and nonempty, then the anisotropic relative nullity
V = 𝑛 − 𝑟.

2. Preliminaries

In this paper, we use the summation convention of Einstein
and the following convention of index ranges unless other-
wise stated:

1 ≤ 𝑖, 𝑗, . . . ≤ 𝑛; 1 ≤ 𝛼, 𝛽, . . . ≤ 𝑛 + 1. (5)

We define 𝐹
∗

: R𝑛+1 → R to be

𝐹
∗

(𝑦) = sup{
⟨𝑦, 𝑧⟩

𝐹 (𝑧)
| 𝑧 ∈ R

𝑛+1

\ {0}} ; (6)

then 𝐹
∗ is a Minkowski norm on R𝑛+1. In fact, as proved in

[19], 𝐹∗ : R𝑛+1 \ {0} → R is smooth and we have the fol-
lowing.

Proposition 6. (1) 𝐹
∗

(𝑦) > 0, for all 𝑦 ∈ R𝑛+1 \ {0};
(2) 𝐹
∗

(𝑡𝑦) = 𝑡𝐹
∗

(𝑦), for all 𝑦 ∈ R𝑛+1, 𝑡 > 0;
(3) 𝐹
∗

(𝑦+𝑧) ≤ 𝐹
∗

(𝑦) +𝐹
∗

(𝑧), for all 𝑦, 𝑧 ∈ R𝑛+1, and the
equality holds if and only if 𝑦 = 0, or 𝑧 = 0 or 𝑦 = 𝑘𝑧 for some
𝑘 > 0.

(4) 𝑊
𝐹
= {𝑦 ∈ R𝑛+1 | 𝐹∗(𝑦) = 1}.

We define

𝑔
𝛼𝛽

(𝑦) =
1

2

𝜕
2

(𝐹
∗

)
2

𝜕𝑦𝛼𝜕𝑦𝛽
(𝑦) ,

𝑔
𝑦
(𝑋, 𝑌) = 𝑔

𝛼𝛽
(𝑦)𝑋

𝛼

𝑌
𝛽

,

(7)

where 𝑦 ∈ R𝑛+1 \ {0} and 𝑋 = (𝑋
1

, 𝑋
2

, . . . , 𝑋
𝑛+1

), 𝑌 =

(𝑌
1

, 𝑌
2

, . . . , 𝑌
𝑛+1

) ∈ 𝑇
𝑦
R𝑛+1 ≅ R𝑛+1.

From the Euler’s theorem for homogeneous functions, we
have

𝜕𝑔
𝛼𝛽

𝜕𝑦𝛾
(𝑧) 𝑧
𝛽

=
1

2

𝜕
3

(𝐹
∗

)
2

𝜕𝑦𝛼𝜕𝑦𝛽𝜕𝑦𝛾
(𝑧) 𝑧
𝛽

= 0, (8)

where 𝑧 = (𝑧
1

, 𝑧
2

, . . . , 𝑧
𝑛+1

) ∈ R𝑛+1 \ {0}. Thus,

𝜕𝑔
𝑧
(𝑋, 𝑧)

𝜕𝑦𝛾
= 𝑔
𝛼𝛽

(𝑧)
𝜕𝑋
𝛼

𝜕𝑦𝛾
𝑧
𝛽

+ 𝑔
𝛼𝛾

(𝑧)𝑋
𝛼
𝜕𝑧
𝛽

𝜕𝑦𝛾
, (9)

where 𝑧 = (𝑧
1

, 𝑧
2

, . . . , 𝑧
𝑛+1

) ∈ 𝑇R𝑛+1 is nonzero everywhere
and𝑋 = (𝑋

1

, 𝑋
2

, . . . , 𝑋
𝑛+1

) ∈ 𝑇R𝑛+1.
As𝐹∗ is aMinkowski normonR𝑛+1, the following lemma

holds (see [20, 21]).

Lemma 7. For any 𝑦 ∈ R𝑛+1 \ {0} and 𝑢 ∈ R𝑛+1 one has

𝑔
𝑦
(𝑦, 𝑧) ≤ 𝐹

∗

(𝑦) 𝐹
∗

(𝑧) , (10)

and the equality holds if and only if there exists 𝑡 ≥ 0 such that
𝑧 = 𝑡𝑦.

Let 𝑥 : 𝑀 → R𝑛+1 be an oriented hypersurface in the
Euclidean space R𝑛+1. Let ] : 𝑀 → 𝑊

𝐹
denote its aniso-

tropic Gauss map.Then for any 𝑝 ∈ 𝑀, ](𝑝) is perpendicular
to 𝑥
∗
(𝑇
𝑝
𝑀) with respect to the inner product 𝑔](𝑝) and

𝐹
∗

(](𝑝)) = 1. Thus, we call ](𝑝) an anisotropic unit normal
vector of 𝑇

𝑝
𝑀.

3. A Connection on Hypersurfaces of
Minkowski Space

Let𝑥 : 𝑀 → R𝑛+1 be an oriented hypersurface in the Euclid-
ean space R𝑛+1 and denote ] : 𝑀 → 𝑊

𝐹
its anisotropic

Gauss map.



Geometry 3

Let ∇ be the standard connection on the (𝑛 + 1)-dimen-
sional Euclidean space R𝑛+1. For vector fields 𝑋,𝑌 on 𝑀, we
decompose ∇

𝑋
𝑌 as the tangent part ∇

𝑋
𝑌 and the anisotropic

normal part II (𝑋, 𝑌)] with respect to the inner product 𝑔].
That is,

∇
𝑋
𝑌 = ∇

𝑋
𝑌 + II (𝑋, 𝑌) ], (11)

where 𝑔](∇𝑋𝑌, ]) = 0.
We also have the Weingarten formula:

∇
𝑋
] = −𝑆

𝐹
𝑋,

𝑔] (𝑆𝐹𝑋,𝑌) = II (𝑋, 𝑌) ,

(12)

where we have used (9).
It is easy to verify that ∇ is a torsion free connection on

𝑀 and II is a symmetric second order covariant tensor field
on𝑀. We call II the anisotropic second fundamental form.

Let {𝑒
𝑖
}
𝑛

𝑖=1
be a local frame of𝑀 and {𝜔

𝑖

}
𝑛

𝑖=1
its dual frame.

Let 𝑔
𝑖𝑗

= 𝑔](𝑒𝑖, 𝑒𝑗), ∇𝑒
𝑖
= 𝜔
𝑗

𝑖
⊗ 𝑒
𝑗
, II(𝑒
𝑖
, 𝑒
𝑗
) = ℎ
𝑖𝑗
, ℎ𝑗
𝑖
= 𝑔
𝑗𝑘

ℎ
𝑘𝑖
,

where (𝑔
𝑖𝑗

) is the inverse matrix of (𝑔
𝑖𝑗
). Then we have

𝑑𝑥 = 𝜔
𝑖

𝑒
𝑖
, (13)

𝑑𝑒
𝑖
= 𝜔
𝑗

𝑖
𝑒
𝑗
+ ℎ
𝑖𝑗
𝜔
𝑗

], (14)

𝑑] = −ℎ
𝑗

𝑖
𝜔
𝑖

𝑒
𝑗
. (15)

Differentiating (13) and using (14), we get

𝑑𝜔
𝑖

= 𝜔
𝑗

∧ 𝜔
𝑖

𝑗
,

ℎ
𝑖𝑗
= ℎ
𝑗𝑖
.

(16)

Differentiating (14) and using (14)-(15), we get

ℎ
𝑖𝑗𝑘

= ℎ
𝑖𝑘𝑗

,

𝑑𝜔
𝑗

𝑖
− 𝜔
𝑘

𝑖
∧ 𝜔
𝑗

𝑘
= −

1

2
𝑅
𝑗

𝑖 𝑘𝑙
𝜔
𝑘

∧ 𝜔
𝑙

,

(17)

where

𝑑ℎ
𝑖𝑗
− ℎ
𝑖𝑘
𝜔
𝑘

𝑗
− ℎ
𝑘𝑗
𝜔
𝑘

𝑖
= ℎ
𝑖𝑗𝑘

𝜔
𝑘

, (18)

and 𝑅
𝑗

𝑖 𝑘𝑙
= −𝑅

𝑗

𝑖 𝑙𝑘
= ℎ
𝑖𝑘
ℎ
𝑗

𝑙
− ℎ
𝑖𝑙
ℎ
𝑗

𝑘
.

Differentiating (15) and using (14), we get

ℎ
𝑗

𝑖 𝑘
= ℎ
𝑗

𝑘 𝑖
, (19)

where

𝑑ℎ
𝑗

𝑖
+ ℎ
𝑘

𝑖
𝜔
𝑗

𝑘
− ℎ
𝑗

𝑘
𝜔
𝑘

𝑖
= ℎ
𝑗

𝑖𝑘
𝜔
𝑘

. (20)

Note (ℎ
𝑗

𝑖
) is the matrix of the 𝐹-Weingarten operator

𝑆
𝐹
= −𝑑], its eigenvalues are called the anisotropic principal

curvatures, and we denote them by 𝜅
1
, . . . , 𝜅

𝑛
.

We have 𝑛 invariants, the elementary symmetric function
𝜎
𝑟
of the anisotropic principal curvatures:

𝜎
𝑟
= ∑

𝑖
1
<⋅⋅⋅𝑖
𝑟

𝜅
𝑖
1

⋅ ⋅ ⋅ 𝜅
𝑖
𝑛

(1 ≤ 𝑟 ≤ 𝑛) . (21)

For convenience, we set𝜎
0
= 1.The 𝑟th anisotropicmean cur-

vature𝐻
𝑟;𝐹

is defined by

𝐻
𝑟;𝐹

=
𝜎
𝑟

𝐶𝑟
𝑛

, 𝐶
𝑟

𝑛
=

𝑛!

𝑟! (𝑛 − 𝑟)!
. (22)

Using the characteristic polynomial of 𝑆
𝐹
, 𝜎
𝑟
is defined by

det (𝑡𝐼 − 𝑆
𝐹
) =

𝑛

∑

𝑟=0

(−1)
𝑟

𝜎
𝑟
𝑡
𝑛−𝑟

. (23)

So, we have

𝜎
𝑟
=

1

𝑟!
∑

𝑖
1
,...,𝑖
𝑟
;𝑗
1
,...,𝑗
𝑟

𝛿
𝑗
1
⋅⋅⋅𝑗
𝑟

𝑖
1
⋅⋅⋅𝑖
𝑟

ℎ
𝑖
1

𝑗
1

⋅ ⋅ ⋅ ℎ
𝑖
𝑟

𝑗
𝑟

, (24)

where 𝛿
𝑗
1
⋅⋅⋅𝑗
𝑟

𝑖
1
⋅⋅⋅𝑖
𝑟

is the usual generalized Kronecker symbol; that
is, 𝛿
𝑗
1
⋅⋅⋅𝑗
𝑟

𝑖
1
⋅⋅⋅𝑖
𝑟

equals +1 (resp., −1) if 𝑖
1
⋅ ⋅ ⋅ 𝑖
𝑟
are distinct and

(𝑗
1
⋅ ⋅ ⋅ 𝑗
𝑟
) is an even (resp., odd) permutation of (𝑖

1
⋅ ⋅ ⋅ 𝑖
𝑟
) and

in other cases it equals zero.

Definition 8. Let 𝑓 : 𝑀 → R be a smooth function. One
defines the gradient (with respect to the induced metric 𝑔]

on𝑀) grad𝑓 of the function 𝑓 by

𝑔] (grad𝑓,𝑋) = 𝑋 (𝑓) , (25)

where𝑋 is any smooth vector field on 𝑀.
Define 𝑓

𝑖
by 𝑑𝑓 = 𝑓

𝑖
𝜔
𝑖; then

grad𝑓 = 𝑔
𝑖𝑗

𝑓
𝑗
𝑒
𝑖
. (26)

We define

𝑑𝑉 =
󵄨󵄨󵄨󵄨𝑒1, . . . , 𝑒𝑛, ]

󵄨󵄨󵄨󵄨 𝜔
1

∧ ⋅ ⋅ ⋅ ∧ 𝜔
𝑛

, (27)

where |𝑒
1
, . . . , 𝑒

𝑛
, ]| is the determinant of the matrix (𝑒

1
,

. . . , 𝑒
𝑛
, ]). Then 𝑑𝑉 is a volume element on 𝑀.

Definition 9. Let 𝑋 be a smooth vector field on 𝑀. One
defines the divergence (with respect to the volume element
𝑑𝑉) div𝑋 by 𝑑{𝑖(𝑋)𝑑𝑉} = (div𝑋)𝑑𝑉, where

(𝑖 (𝑋) 𝑑𝑉) (𝑌
1
, . . . , 𝑌

𝑛−1
) ≡ 𝑑𝑉 (𝑋, 𝑌

1
, . . . , 𝑌

𝑛−1
) ,

∀𝑌
1
, . . . , 𝑌

𝑛−1
∈ X (𝑀) .

(28)

Lemma 10. Let 𝑋 = 𝑋
𝑖

𝑒
𝑖
; then div𝑋 = 𝑋

𝑖

𝑖
, where

𝑑𝑋
𝑖

+ 𝑋
𝑗

𝜔
𝑖

𝑗
= 𝑋
𝑖

𝑗
𝜔
𝑗

. (29)

Proof. By (14), (15), we get

𝑑
󵄨󵄨󵄨󵄨𝑒1, . . . , 𝑒𝑛, ]

󵄨󵄨󵄨󵄨 = 𝜔
𝑖

𝑖

󵄨󵄨󵄨󵄨𝑒1, . . . , 𝑒𝑛, ]
󵄨󵄨󵄨󵄨 .

(30)

From the definition of 𝑖(𝑋), we have

𝑖 (𝑋) 𝑑𝑉 = ∑

𝑖

(−1)
𝑖+1

𝑋
𝑖 󵄨󵄨󵄨󵄨𝑒1, . . . , 𝑒𝑛, ]

󵄨󵄨󵄨󵄨 𝜔
1

∧ ⋅ ⋅ ⋅ ∧ 𝜔̂
𝑖

∧ ⋅ ⋅ ⋅ ∧ 𝜔
𝑛

.

(31)
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So,

𝑑 {𝑖 (𝑋) 𝑑𝑉} = ∑

𝑖

(−1)
𝑖+1

(𝑑𝑋
𝑖

) ∧
󵄨󵄨󵄨󵄨𝑒1, . . . , 𝑒𝑛, ]

󵄨󵄨󵄨󵄨 𝜔
1

∧ ⋅ ⋅ ⋅ ∧ 𝜔̂
𝑖

∧ ⋅ ⋅ ⋅ ∧ 𝜔
𝑛

+ ∑

𝑖

(−1)
𝑖+1

𝑋
𝑖

(𝑑
󵄨󵄨󵄨󵄨𝑒1, . . . , 𝑒𝑛, ]

󵄨󵄨󵄨󵄨)

∧ 𝜔
1

∧ ⋅ ⋅ ⋅ ∧ 𝜔̂
𝑖

∧ ⋅ ⋅ ⋅ ∧ 𝜔
𝑛

+ ∑

𝑗<𝑖

(−1)
𝑖+𝑗

𝑋
𝑖 󵄨󵄨󵄨󵄨𝑒1, . . . , 𝑒𝑛, ]

󵄨󵄨󵄨󵄨 𝑑𝜔
𝑗

∧ 𝜔
1

∧ ⋅ ⋅ ⋅ ∧ 𝜔̂
𝑗

∧ ⋅ ⋅ ⋅ ∧ 𝜔̂
𝑖

∧ ⋅ ⋅ ⋅ ∧ 𝜔
𝑛

+ ∑

𝑗>𝑖

(−1)
𝑖+𝑗+1

𝑋
𝑖 󵄨󵄨󵄨󵄨𝑒1, . . . , 𝑒𝑛, ]

󵄨󵄨󵄨󵄨 𝑑𝜔
𝑗

∧ 𝜔
1

∧ ⋅ ⋅ ⋅ ∧ 𝜔̂
𝑖

∧ ⋅ ⋅ ⋅ ∧ 𝜔̂
𝑗

∧ ⋅ ⋅ ⋅ ∧ 𝜔
𝑛

= 𝑋
𝑖

𝑖
𝑑𝑉.

(32)

4. 𝐿
𝑟;𝐹

Operator for Hypersurfaces

We introduce the Newton transformation defined by

𝑃
𝑟
= 𝜎
𝑟
𝐼 − 𝜎
𝑟−1

𝑆
𝐹
+ ⋅ ⋅ ⋅ + (−1)

𝑟

𝑆
𝑟

𝐹
, 𝑟 = 0, . . . , 𝑛; (33)

then

𝑃
0
= 𝐼, 𝑃

𝑛
= 0, 𝑃

𝑟
= 𝜎
𝑟
𝐼 − 𝑃
𝑟−1

𝑆
𝐹
. (34)

Lemma 11. The matrix of 𝑃
𝑟
is given by:

(𝑃
𝑟
)
𝑗

𝑖
=

1

𝑟!
𝛿
𝑗
1
⋅⋅⋅𝑗
𝑟
𝑗

𝑖
1
⋅⋅⋅𝑖
𝑟
𝑖
ℎ
𝑖
1

𝑗
1

⋅ ⋅ ⋅ ℎ
𝑖
𝑟

𝑗
𝑟

. (35)

Proof. We prove Lemma 11 inductively. For 𝑟 = 0, it is easy to
check that (35) is true.

We can check directly

𝛿
𝑗
1
⋅⋅⋅𝑗
𝑞

𝑖
1
⋅⋅⋅𝑖
𝑞

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛿
𝑗
1

𝑖
1

𝛿
𝑗
2

𝑖
1

⋅ ⋅ ⋅ 𝛿
𝑗
𝑞−1

𝑖
1

𝛿
𝑗
𝑞

𝑖
1

𝛿
𝑗
1

𝑖
2

𝛿
𝑗
2

𝑖
2

⋅ ⋅ ⋅ 𝛿
𝑗
𝑞−1

𝑖
2

𝛿
𝑗
𝑞

𝑖
2

...
... d

...
...

𝛿
𝑗
1

𝑖
𝑞−1

𝛿
𝑗
2

𝑖
𝑞−1

⋅ ⋅ ⋅ 𝛿
𝑗
𝑞−1

𝑖
𝑞−1

𝛿
𝑗
𝑞

𝑖
𝑞−1

𝛿
𝑗
1

𝑖
𝑞

𝛿
𝑗
2

𝑖
𝑞

⋅ ⋅ ⋅ 𝛿
𝑗
𝑞−1

𝑖
𝑞

𝛿
𝑗
𝑞

𝑖
𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (36)

Assume that (35) is true for 𝑟 = 𝑘, we only need to show
that it is also true for 𝑟 = 𝑘 + 1. For 𝑟 = 𝑘 + 1, using (24) and
(36), we have
RHS of (35)

=
1

(𝑘 + 1)!
∑

𝑖
1
,...,𝑖
𝑘+1
;𝑗
1
,...,𝑗
𝑘+1

𝛿
𝑗
1
⋅⋅⋅𝑗
𝑘+1
𝑗

𝑖
1
⋅⋅⋅𝑖
𝑘+1
𝑖
ℎ
𝑗
1

𝑖
1

⋅ ⋅ ⋅ ℎ
𝑗
𝑘+1

𝑖
𝑘+1

=
1

(𝑘 + 1)!
∑

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛿
𝑗
1

𝑖
1

𝛿
𝑗
2

𝑖
1

⋅ ⋅ ⋅ 𝛿
𝑗
𝑘+1

𝑖
1

𝛿
𝑗

𝑖
1

𝛿
𝑗
1

𝑖
2

𝛿
𝑗
2

𝑖
2

⋅ ⋅ ⋅ 𝛿
𝑗
𝑘+1

𝑖
2

𝛿
𝑗

𝑖
2

...
... d

...
...

𝛿
𝑗
1

𝑖
𝑘+1

𝛿
𝑗
2

𝑖
𝑘+1

⋅ ⋅ ⋅ 𝛿
𝑗
𝑘+1

𝑖
𝑘+1

𝛿
𝑗

𝑖
𝑘+1

𝛿
𝑗
1

𝑖
𝛿
𝑗
2

𝑖
⋅ ⋅ ⋅ 𝛿
𝑗
𝑘+1

𝑖
𝛿
𝑗

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
𝑗
1

𝑖
1

⋅ ⋅ ⋅ ℎ
𝑗
𝑘+1

𝑖
𝑘+1

=
1

(𝑘 + 1)!
∑(𝛿
𝑗

𝑖
𝛿
𝑗
1
⋅⋅⋅𝑗
𝑘+1

𝑖
1
⋅⋅⋅𝑖
𝑘+1

− 𝛿
𝑗
𝑘+1

𝑖
𝛿
𝑗
1
⋅⋅⋅𝑗
𝑘
𝑗

𝑖
1
⋅⋅⋅𝑖
𝑘
𝑖
𝑘+1

+ ⋅ ⋅ ⋅ ) ℎ
𝑗
1

𝑖
1

⋅ ⋅ ⋅ ℎ
𝑗
𝑘+1

𝑖
𝑘+1

= 𝜎
𝑘+1

𝛿
𝑗

𝑖
−

1

(𝑘 + 1)!
∑𝛿
𝑗
𝑘+1

𝑖
𝛿
𝑗
1
⋅⋅⋅𝑗
𝑘
𝑗

𝑖
1
⋅⋅⋅𝑖
𝑘
𝑖
𝑘+1

ℎ
𝑗
1

𝑖
1

⋅ ⋅ ⋅ ℎ
𝑗
𝑘+1

𝑖
𝑘+1

+ ⋅ ⋅ ⋅

= 𝜎
𝑘+1

𝛿
𝑗

𝑖
− ∑(𝑃

𝑘
)
𝑖
𝑘+1

𝑖
ℎ
𝑗

𝑖
𝑘+1

= (𝑃
𝑘+1

)
𝑗

𝑖
.

(37)

Lemma 12. For each 𝑟, one has
(a) (𝑃

𝑟
)
𝑗

𝑖 𝑗
= 0;

(b) Trace(𝑃
𝑟
𝑆
𝐹
) = (𝑟 + 1)𝜎

𝑟+1
;

(c) Trace(𝑃
𝑟
) = (𝑛 − 𝑟)𝜎

𝑟
;

(d) Trace(𝑃
𝑟
𝑆
2

𝐹
) = 𝜎
1
𝜎
𝑟+1

− (𝑟 + 2)𝜎
𝑟+2

.

Proof. (a) Noting (𝑗, 𝑗
𝑟
) is skew symmetric in 𝛿

𝑗
1
⋅⋅⋅𝑗
𝑟
𝑗

𝑖
1
⋅⋅⋅𝑖
𝑟
𝑖
and

(𝑗, 𝑗
𝑟
) is symmetric in ℎ

𝑖
1

𝑗
1

⋅ ⋅ ⋅ ℎ
𝑗
𝑟

𝑖
𝑟

𝑗

(from (19), we have

∑

𝑗

(𝑃
𝑟
)
𝑗

𝑖 𝑗
=

1

(𝑟 − 1)!
∑

𝑖
1
,...,𝑖
𝑟
;𝑗
1
,...,𝑗
𝑟
;𝑗

𝛿
𝑗
1
⋅⋅⋅𝑗
𝑟
𝑗

𝑖
1
⋅⋅⋅𝑖
𝑟
𝑖
ℎ
𝑖
1

𝑗
1

⋅ ⋅ ⋅ ℎ
𝑗
𝑟

𝑖
𝑟

𝑗

= 0. (38)

(b) Using (35) and (24), we have

Trace (𝑃
𝑟
𝑆
𝐹
) = ∑

𝑖𝑗

(𝑃
𝑟
)
𝑗

𝑖
ℎ
𝑖

𝑗

=
1

𝑟!
∑

𝑖
1
,...,𝑖
𝑟
;𝑗
1
,...,𝑗
𝑟
;𝑖,𝑗

𝛿
𝑗
1
⋅⋅⋅𝑗
𝑟
𝑗

𝑖
1
⋅⋅⋅𝑖
𝑟
𝑖
ℎ
𝑖
1

𝑗
1

⋅ ⋅ ⋅ ℎ
𝑖
𝑟

𝑗
𝑟

ℎ
𝑖

𝑗

= (𝑟 + 1) 𝜎
𝑟+1

.

(39)

(c) Using (b) and the definition of 𝑃
𝑟
, we have

Trace (𝑃
𝑟
) = tr (𝜎

𝑟
𝐼) − tr (𝑃

𝑟−1
𝑆
𝐹
) = 𝑛𝜎

𝑟
− 𝑟𝜎
𝑟
= (𝑛 − 𝑟) 𝜎

𝑟
.

(40)
(d) Using (b) and the definition of 𝑃

𝑟+1
, we have

Trace (𝑃
𝑟
𝑆
2

𝐹
) = Trace (𝜎

𝑟+1
𝑆
𝐹
) − Trace (𝑃

𝑟+1
𝑆
𝐹
)

= 𝜎
1
𝜎
𝑟+1

− (𝑟 + 2) 𝜎
𝑟+2

.

(41)
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Remark 13. When 𝐹 = 1, Lemma 12 was a well-known result
(e.g., see Barbosa and Colares [22], or Reilly [23]).

Lemma 14. One has

(𝜎
𝑟
)
𝑘
= ∑

𝑖,𝑗

(𝑃
𝑟−1

)
𝑗

𝑖
ℎ
𝑗

𝑖

𝑘

. (42)

Proof. From the definition of 𝜎
𝑟
, we have the following

calculation:

(𝜎
𝑟
)
𝑘
=

1

𝑟!
∑

𝑖
1
,...,𝑖
𝑟
;𝑗
1
,...,𝑗
𝑟

𝛿
𝑗
1
⋅⋅⋅𝑗
𝑟

𝑖
1
⋅⋅⋅𝑖
𝑟

(ℎ
𝑗
1

𝑖
1

⋅ ⋅ ⋅ ℎ
𝑗
𝑟

𝑖
𝑟

)
𝑘

=
1

(𝑟 − 1)!
∑

𝑖
1
,...,𝑖
𝑟
;𝑗
1
,...,𝑗
𝑟

𝛿
𝑗
1
⋅⋅⋅𝑗
𝑟

𝑖
1
⋅⋅⋅𝑖
𝑟

ℎ
𝑗
1

𝑖
1

⋅ ⋅ ⋅ ℎ
𝑖
𝑟

𝑗
𝑟

𝑘

= ∑

𝑖
𝑟
,𝑗
𝑟

(𝑃
𝑟−1

)
𝑗
𝑟

𝑖
𝑟

ℎ
𝑗
𝑟

𝑖
𝑟
𝑘
= ∑

𝑖,𝑗

(𝑃
𝑟−1

)
𝑗

𝑖
ℎ
𝑗

𝑖 𝑘
.

(43)

We define an operator 𝐿
𝑟;𝐹

: 𝐶
∞

(𝑀) → 𝐶
∞

(𝑀) by

𝐿
𝑟;𝐹

(𝑓) = div (𝑃
𝑟
∇𝑓) . (44)

In the sequel, we will need the following lemma. Item (a)
is essentially the content of Lemma 1.1 and Equation (1.3) in
[24], while item (b) is quoted as Proposition 1.5 in [25].

Lemma 15. Let 𝑥 : 𝑀 → R𝑛+1 be an oriented hypersurface,
and 0 ≤ 𝑟 ≤ 𝑛 − 1, 𝑝 ∈ 𝑀.

(a) If 𝜎
𝑟+1

(𝑝) = 0, then 𝑃
𝑟
is semidefinite at 𝑝;

(b) if 𝜎
𝑟+1

(𝑝) = 0 and 𝜎
𝑟+2

(𝑝) ̸= 0, then 𝑃
𝑟
is definite at 𝑝.

Another important result is as follows (see [26]).

Lemma 16. Let 𝑥 : 𝑀 → R𝑛+1 be an oriented hypersurface,
and 𝑝 ∈ 𝑀.

(a) For 1 ≤ 𝑟 ≤ 𝑛, one has 𝐻2
𝑟;𝐹

≥ 𝐻
𝑟−1;𝐹

𝐻
𝑟+1;𝐹

. Moreover,
if equality happens for 𝑟 = 1 or for some 1 < 𝑟 < 𝑛,
with 𝐻

𝑟+1;𝐹
̸= 0 in this case, then 𝑝 is an anisotropic

umbilical point (i.e. 𝜅
1
(𝑝) = 𝜅

2
(𝑝) = ⋅ ⋅ ⋅ = 𝜅

𝑛
(𝑝));

(b) if, for some 1 ≤ 𝑟 < 𝑛, one has 𝐻
𝑟;𝐹

= 𝐻
𝑟+1;𝐹

= 0, then
𝐻
𝑗;𝐹

= 0 for all 𝑟 ≤ 𝑗 ≤ 𝑛. In particular, at most 𝑟−1 of
the anisotropic principal curvatures are different from
zero.

The result below is standard, so we omit the proof.

Lemma 17. Let 𝑥 : 𝑀 → R𝑛+1 be an oriented hypersurface.
The operator 𝐿

𝑟;𝐹
associated to the immersion 𝑥 is elliptic if and

only if 𝑃
𝑟
is positive definite.

Definition 18. Let 𝑓 : 𝑀 → R be a smooth function. The
Laplacian Δ𝑓 is defined by Δ𝑓 := 𝐿

0;𝐹
𝑓 = div(grad𝑓).

It is easy to see that Δ is an elliptic differential operator.

Definition 19. Let 𝑥 : 𝑀 → R𝑛+1 be an immersed hypersur-
face and ] its anisotropic unit normal vector field. The
function 𝑢 := 𝑔](𝑥, ]) is called the support function of the
immersion 𝑥.

Next, we compute 𝐿
𝑟;𝐹

𝑢 for the support function 𝑢 =

𝑔](𝑥, ]).
Differentiating the decomposition

𝑥 = 𝑔
𝑖𝑗

𝑔] (𝑥, 𝑒𝑖) 𝑒𝑗 + 𝑢], (45)

we obtain
𝑑𝑥 = {𝑑 (𝑔

𝑖𝑗

𝑔] (𝑥, 𝑒𝑗))} 𝑒𝑖 + 𝑔
𝑖𝑗

𝑔] (𝑥, 𝑒𝑗) 𝑑𝑒
𝑖

+ (𝑑𝑢) ] + 𝑢𝑑].
(46)

So, from (13), (14), and (15) we have

𝜔
𝑖

𝑒
𝑖
= {𝑑 (𝑔

𝑖𝑗

𝑔] (𝑥, 𝑒𝑗)) + 𝑔
𝑘𝑗

𝑔] (𝑥, 𝑒𝑗) 𝜔
𝑖

𝑘
− 𝑢ℎ
𝑖

𝑗
𝜔
𝑗

} 𝑒
𝑖

+ (𝑑𝑢 + 𝑔
𝑗𝑘

𝑔] (𝑥, 𝑒𝑗) ℎ
𝑖𝑘
𝜔
𝑖

) ].

(47)

Thus, we get

𝑑𝑢 = −𝑔
𝑗𝑘

𝑔] (𝑥, 𝑒𝑗) ℎ
𝑖𝑘
𝜔
𝑖

,

𝑑 (𝑔
𝑖𝑗

𝑔] (𝑥, 𝑒𝑗)) + 𝑔
𝑘𝑗

𝑔] (𝑥, 𝑒𝑗) 𝜔
𝑖

𝑘
− 𝑢ℎ
𝑖

𝑗
𝜔
𝑗

= 𝜔
𝑖

.

(48)

Denote 𝑢
𝑖, (𝑔𝑖𝑗𝑔](𝑥, 𝑒𝑗))𝑘, 𝑢

𝑖

𝑗
by

grad 𝑢 = 𝑢
𝑖

𝑒
𝑖
,

(𝑔
𝑖𝑗

𝑔] (𝑥, 𝑒𝑗))
𝑘

𝜔
𝑘

= 𝑑 (𝑔
𝑖𝑗

𝑔] (𝑥, 𝑒𝑗)) + (𝑔
𝑘𝑗

𝑔] (𝑥, 𝑒𝑗)) 𝜔
𝑖

𝑘
,

𝑢
𝑖

𝑗
𝜔
𝑗

= 𝑑𝑢
𝑖

+ 𝑢
𝑗

𝜔
𝑖

𝑗
,

(49)

respectively. Then we have (using (19) the following

𝑢
𝑖

= −𝑔
𝑖𝑙

ℎ
𝑘𝑙
𝑔
𝑗𝑘

𝑔] (𝑥, 𝑒𝑗) = −ℎ
𝑖

𝑘
𝑔
𝑘𝑙

𝑔] (𝑥, 𝑒𝑙) ,

(𝑔
𝑖𝑘

𝑔] (𝑥, 𝑒𝑘))
𝑗

= 𝛿
𝑖

𝑗
+ ℎ
𝑖

𝑗
𝑔] (𝑥, ]) ,

𝑢
𝑖

𝑗
= −ℎ
𝑖

𝑘 𝑗
𝑔
𝑘𝑙

𝑔] (𝑥, 𝑒𝑙) − ℎ
𝑖

𝑘
(𝑔
𝑘𝑙

𝑔] (𝑥, 𝑒𝑙))
𝑗

= −ℎ
𝑗

𝑖

𝑘

𝑔
𝑘𝑙

𝑔] (𝑥, 𝑒𝑙) − ℎ
𝑖

𝑗
− ℎ
𝑖

𝑘
ℎ
𝑘

𝑗
𝑢.

(50)

By using Lemmas 12 and 14, we get

𝐿
𝑟;𝐹

𝑢 = (𝑃
𝑟
)
𝑗

𝑖
𝑢
𝑖

𝑗

= − (𝑃
𝑟
)
𝑗

𝑖
ℎ
𝑗

𝑖

𝑘

𝑔
𝑘𝑙

𝑔] (𝑥, 𝑒𝑙)

− (𝑃
𝑟
)
𝑗

𝑖
ℎ
𝑖

𝑗
− (𝑃
𝑟
)
𝑗

𝑖
ℎ
𝑖

𝑘
ℎ
𝑘

𝑗
𝑢

= − (𝜎
𝑟+1

)
𝑘
𝑔
𝑘𝑙

𝑔] (𝑥, 𝑒𝑙) − (𝑃
𝑟
)
𝑗

𝑖
ℎ
𝑖

𝑗
− (𝑃
𝑟
)
𝑗

𝑖
ℎ
𝑖

𝑘
ℎ
𝑘

𝑗
𝑢

= − 𝑔] (∇𝜎
𝑟+1

, 𝑥) − (𝑟 + 1) 𝜎
𝑟+1

− (𝜎
1
𝜎
𝑟+1

− (𝑟 + 2) 𝜎
𝑟+2

) 𝑢.

(51)

Thus, we proved the following lemma.
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Lemma 20. For 0 ≤ 𝑟 ≤ 𝑛 − 1, one has the following
𝐿
𝑟;𝐹

𝑢 = − 𝑔] (∇𝜎
𝑟+1

, 𝑥) − (𝑟 + 1) 𝜎
𝑟+1

− (𝜎
1
𝜎
𝑟+1

− (𝑟 + 2) 𝜎
𝑟+2

) 𝑢.

(52)

Remark 21. Recall 𝜎
1
= 𝑛𝐻
𝐹
and |II|2 = 𝜎

2

1
− 2𝜎
2
; let 𝑟 = 0 in

(52); we get

Δ𝑢 = −𝑛 (𝐻
𝐹
+ 𝑔] (grad𝐻

𝐹
, 𝑥)) − |II|2𝑢. (53)

5. Proof of Theorems 4 and 5

We fix a point 𝑜 ∈ 𝑊 as the origin of R𝑛+1. Without loss of
generality, we assume, for each 𝑝 ∈ 𝑀, ](𝑝) is the anisotro-
pic unit normal vector of 𝑥(𝑀) at 𝑥(𝑝) such that
⟨𝑥(𝑝), ](𝑝)⟩](𝑝) > 0 (otherwise we consider the function
−𝑢 instead). This gives an orientation to 𝑀; indeed, the
component of the position vector 𝑥 perpendicular (with
respect to the inner product 𝑔]) to 𝑀 defines a never zero,
anisotropic normal, vector field on 𝑀, such that the support
function 𝑢 = ⟨𝑥(𝑝), ](𝑝)⟩](𝑝) is positive on𝑀.

5.1. Proof of Theorem 4. Since 𝑥 is anisotropic minimal, from
(53) we get

Δ𝑢 = −|II|2𝑢 ≤ 0, on 𝑀. (54)
Let 𝑢
∗

= inf
𝑀

𝑢. We claim that 𝑢
∗
is attained at some point

𝑥
0
∈ 𝑀. Consider a sequence {𝑥

𝑘
} ⊂ 𝑀 such that 𝑢(𝑥

𝑘
) →

𝑢
∗
as 𝑘 → +∞. To each 𝑥

𝑘
we associate 𝑦

𝑘
= 𝑢(𝑥

𝑘
)](𝑥
𝑘
);

then 𝑦
𝑘

∈ 𝑇
𝑥
𝑘

𝑀. Since ‖𝑦
𝑘
‖R𝑛+1 = 𝑢(𝑥

𝑘
)‖](𝑥
𝑘
)‖R𝑛+1 is

bounded, there exists a subsequence, which againwe call {𝑦
𝑘
},

such that 𝑦
𝑘

→ 𝑦
0
for some 𝑦

0
∈ R𝑛+1. Since ⋃

𝑝∈𝑀
𝑇
𝑝
𝑀 is

closed and {𝑦
𝑘
}⊂
𝑝∈𝑀

𝑇
𝑝
𝑀wededuce that𝑦

0
∈ 𝑇
𝑥
0

𝑀 for some
𝑥
0
∈ 𝑀. Thus, by the continuity of 𝐹∗ and Lemma 7,

𝑢
∗
= lim
𝑘→+∞

𝑢 (𝑥
𝑘
) = lim
𝑘→+∞

𝐹
∗

(𝑦
𝑘
)

= 𝐹
∗

(𝑦
0
) ≥ 𝑔](𝑥

0
)
(𝑦
0
, ] (𝑥
0
)) = 𝑢 (𝑥

0
) ,

(55)

so 𝑢
∗

= 𝑢(𝑥
0
) as needed. Now, from the usual maximum

principle 𝑢 is constant, 𝑢 = 𝑢
∗

= 𝑢(𝑥
0
) > 0. From (54) we

then have II ≡ 0 and 𝑥 is totally geodesic.

5.2. Proof ofTheorem 5. Since𝐻
𝑟+1;𝐹

= 0, from Lemma 20we
get

𝐿
𝑟;𝐹

𝑢 = (𝑟 + 2) 𝜎
𝑟+2

𝑢. (56)
Using Lemma 15(a) we have that𝑃

𝑟
is semidefinite. Since𝐻

𝑟;𝐹

does not vanish, we have that 𝐻
𝑟;𝐹

is positive or negative,
because 𝑐(𝑟)𝐻

𝑟;𝐹
= Trace(𝑃

𝑟
), where 𝑐(𝑟) = (𝑛 − 𝑟)𝐶

𝑟

𝑛
. Now

we use Lemma 16 and obtain the following:

0 = 𝐻
2

𝑟+1;𝐹
≥ 𝐻
𝑟;𝐹

𝐻
𝑟+2;𝐹

. (57)
Using the information above, we claim that𝐻

𝑟+2;𝐹
≡ 0.

Case (i) (𝐻
𝑟;𝐹

> 0). In this case,𝑃
𝑟
is positive definite, and𝐿

𝑟;𝐹

is elliptic by Lemma 17. Using (57) we conclude that𝐻
𝑟+2;𝐹

≤

0. Whereas from (56) we have
𝐿
𝑟;𝐹

𝑢 ≤ 0. (58)

Following exactly the proof as inTheorem 4,we conclude that
𝑢 is constant, 𝑢 = 𝑢

∗
= 𝑢(𝑥

0
) > 0. From (56) we then have

𝐻
𝑟+2;𝐹

≡ 0.

Case (ii) (𝐻
𝑟;𝐹

< 0). In this case, 𝑃
𝑟
is negative definite, and

−𝐿
𝑟;𝐹

is elliptic by Lemma 17. Using (57) we conclude that
𝐻
𝑟+2;𝐹

≥ 0. Whereas from (56) we have

−𝐿
𝑟;𝐹

𝑢 ≤ 0. (59)

Now, following exactly the proof as in Theorem 4, we
conclude that 𝑢 is constant, 𝑢 = 𝑢

∗
= 𝑢(𝑥

0
) > 0. From (56)

we then have𝐻
𝑟+2;𝐹

≡ 0.
Thus we conclude that 𝐻

𝑟+2;𝐹
≡ 0. Now, we use Lemma

16(b) to conclude that 𝐻
𝑗;𝐹

= 0 for 𝑗 ≥ 𝑟 + 1 and so that V ≥

𝑛 − 𝑟. Since𝐻
𝑟;𝐹

does not change sign we have that V = 𝑛 − 𝑟.
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