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An analysis has been performed to study magneto-hydrodynamic (MHD) squeeze flow between
two parallel infinite disks where one disk is impermeable and the other is porous with either
suction or injection of the fluid. We investigate the combined effect of inertia, electromagnetic
forces, and suction or injection. With the introduction of a similarity transformation, the continuity
and momentum equations governing the squeeze flow are reduced to a single, nonlinear, ordinary
differential equation. An approximate solution of the equation subject to the appropriate boundary
conditions is derived using the homotopy perturbation method (HPM) and compared with the
direct numerical solution (NS). Results showing the effect of squeeze Reynolds number, Hartmann
number and the suction/injection parameter on the axial and radial velocity distributions are
presented and discussed. The approximate solution is found to be highly accurate for the ranges
of parameters investigated. Because of its simplicity, versatility and high accuracy, the method can
be applied to study linear and nonlinear boundary value problems arising in other engineering
applications.
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1. Introduction

This paper deals with the study of magneto-hydrodynamic (MHD) squeeze flow of an
electrically conducting fluid between two infinite, parallel disks. The lower disk is stationary
and permeable with (suction or injection). The upper disk is impermeable and moves
toward the lower disk with a specified time dependent velocity. The use of a MHD fluid
in lubrication prevents the adverse impact of temperature on the fluid viscosity when the
system operates under extreme conditions. The problem considered is of general interest in
the theory of magneto-hydrodynamic lubrication and other related applications. In particular,
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Figure 1: Variation of axial velocity for M = 0, S = 0.01, A = −1.
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Figure 2: Variation of axial velocity for M = 0, S = 0.01, A = 0.

the results of the present investigation are directly applicable to the hydrodynamics of
high temperature bearings lubricated with liquid metals. A number of theoretical and
experimental investigations into magneto-hydrodynamic effects in lubrication have been
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Figure 3: M = 0, S = 1, A = −1.

0

0.1

0.2

0.3

0.4

0.5

f
(η
)

0 0.2 0.4 0.6 0.8 1

η

NS
HPM

Figure 4: M = 0, S = 1, A = 0.

reported. These include among other works of Hughes and Elco [1], Kuzma et al. [2] and
Krieger et al. [3]. These authors considered the electromagnetic force term in the Navier-
Stokes equations but neglected some or all the inertia terms. When low viscosity lubricants
are used to reduce energy losses in lubrication devices, inertial effects become important and
must be included especially if the squeeze Reynolds number is not small.
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Figure 5: Variation of axial velocity for M = 5, S = 0.01, A = −1.
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Figure 6: Variation of axial velocity for M = 5, S = 0.01, A = 0.

In the present work we investigate the combined effect of inertia, electromagnetic
forces, and surface suction or injection in a squeeze film between two parallel disks. This
combination of effects in squeezing flow has not been studied previously. The plates are
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Figure 7: Variation of axial velocity for M = 5, S = 1, A = −1.
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Figure 8: Variation of axial velocity for M = 5, S = 1, A = 0.

made of a nonconducting material. There is no externally applied electric field and the
induced electric field is negligible. Since the problem defies an exact analytical solution,
special techniques must be used to derive approximate analytical solution.
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Figure 9: Variation of axial velocity for M = 0, S = 0.01, A = 1.
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Figure 10: Variation of axial velocity for M = 0, S = 1, A = 1.

One such technique is the homotopy perturbation method (HPM) proposed and
applied by He [4–6]. His pioneering work has prompted many authors [7–20] to apply
HPM to solve a wide variety of homogeneous and nonhomogeneous linear and nonlinear
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Figure 11: Variation of axial velocity for M = 5, S = 0.01, A = 1.
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Figure 12: Variation of axial velocity for M = 5, S = 1, A = 1.

problems. Over the past several years the accuracy of HPM has been repeatedly verified. In
view of the success of HPM reported by many researchers, we were tempted to adopt this
method to solve the present problem.
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Figure 13: Variation of radial velocity for M = 0, S = 0.01, A = −1.
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Figure 14: Variation of radial velocity for M = 0, S = 0.01, A = 0.

2. The Homotopy Perturbation Method

The basic idea embodied in the HPM and a brief summary of the method can be found in
[4–6]. The convergence and stability of this method have been established in [10]. The latest
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Figure 15: Variation of radial velocity for M = 0, S = 1, A = −1.
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Figure 16: Variation of radial velocity for M = 0, S = 1, A = 0.

developments of the method can be found in a series of papers by pioneering researchers such
as He [21–23] and Yıldırım [24–30]. Other papers that bear close relevance to the present
work are those of Mahmood et al. [31], Mehmood and Ali [32], and Z. Z. Ganji and D. D.
Ganji [33].
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Figure 17: Variation of radial velocity for M = 5, S = 0.01, A = −1.
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Figure 18: Variation of radial velocity for M = 5, S = 0.01, A = 0.

3. Solution Procedure

We consider axisymmetric incompressible flow between two parallel infinite disks, which
at time t∗, are spaced a distance H(1 − at∗)1/2 apart and a magnetic field proportional to



Mathematical Problems in Engineering 11

0

0.5

1

1.5

2

f
′ (
η
)

0 0.2 0.4 0.6 0.8 1

η

NS
HPM

Figure 19: Variation of radial velocity for M = 5, S = 1, A = −1.
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Figure 20: Variation of radial velocity for M = 5, S = 1, A = 0.

B0(1 − αt∗)−1/2 is applied perpendicular to the disks. The upper disk at z = H(1 − αt∗)1/2 is
moving with velocity −αH(1 − αt∗)−1/2/2 toward the stationary lower disk at z = 0. The
axial coordinate is denoted by z∗ and the radial coordinate by r∗. With the axial and radial
velocities denoted by w∗and u∗, respectively, we introduce the following quantities:
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Figure 21: Variation of radial velocity for M = 0, S = 0.01, A = 1.
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Figure 22: Variation of radial velocity for M = 0, S = 1, A = 1.

u∗ =
αr∗

2(1 − αt∗)
f

′(
η
)
, w∗ = − αH√

1 − αt∗
f
(
η
)
, B =

B0√
1 − αt∗

η =
z∗

H
√

1 − αt∗
, r = r∗, t = t∗

(3.1)
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into the continuity and momentum equations governing the flow. The continuity equation is
automatically satisfied and the momentum equation is reduced to the following fourth-order,
nonlinear, ordinary differential equation:

f
′′′′(

η
)
− S

(
ηf

′′′(
η
)
+ 3f

′′(
η
)
− 2f

(
η
)
f

′′′(
η
))

−M2f
′′(
η
)
= 0, (3.2)

where primes denote differentiation with respect to the similarity variable η, (1/r)(∂p∗/∂r) =
p1(t), S = (ρH2)/2ν and M = σB2

0/μ. Here ρ denotes the density, μ is the absolute viscosity,
ν is kinematic viscosity, σ is the fluid electrical conductivity, B0 is the magnetic field acting
normal to the plates, H is the distance separating the plates at time t = t∗ = 0 and α a constant
and has the units of s−1.

The boundary conditions are given by

f(0) = A, f
′
(0) = 0, f(1) =

1
2
, f

′
(1) = 0, (3.3)

where A is a constant such that A > 0 corresponds to suction and A < 0 to injection at the
lower stationary disk.

According to the HPM, we can construct a homotopy of (3.2) as follows:

H
(
f, p

)
=
(
1 − p

)(
f

′′′′ − f
′′′′

0

)
+ p

(
f

′′′′ − S
(
ηf

′′′
+ 3f

′′ − 2ff
′′′
)
−M2f

′′
)
, (3.4)

where primes denote differentiation with respect to η and asterisks have been omitted for
convenience.

We consider a three term-solution for f as follows:

f = f0 + pf1 + p2f2. (3.5)

Assuming f
′′′′

0 = 0 and substituting f from (3.5) into (3.4) and after some algebraic
manipulation, we obtain the following set of equations:

p0 :f
′′′′

0 = 0,

f0(0) = A, f
′

0(0) = 0, f0(1) = 0.5, f
′

0(1) = 0

p1 : − Sηf
′′′

0 + f
′′′′

1 − 3Sf
′′

0 + 2Sf0f
′′′

0 −M2f
′′

0 = 0,

f1(0) = 0, f
′

1(0) = 0, f1(1) = 0, f
′

1(1) = 0.

p2 : −M2f
′′

1 − Sηf
′′′

1 − 3Sf
′′

1 + 2Sf1f
′′′

0 + f
′′′′

2 + 2Sf0f
′′′

1 = 0,

f2(0) = 0, f
′

2(0) = 0, f2(1) = 0, f
′

2(1) = 0.

(3.6)
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We utilized the symbolic algebra package Maple 11 to solve (3.6) with the appropriate
boundary conditions and obtained the following analytical solutions

f0
(
η
)
=

1
6
(−6 + 12A)η3 +

(
1
2
(3 − 6A)η2 +A

)
,

f1
(
η
)
= −3(−1 + 2A)

(
1
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Sη7A − 1

30
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1
6
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1
24

M2η4
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8
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η
)
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1
70
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(

1
7920

(
1728S2A2 − 1728S2A + 432S2
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+
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Figure 23: Variation of radial velocity for M = 5, S = 0.01, A = 1.

Once f(η) is known in an analytical form, the definition of u∗ in (3.1) can be used to
calculate the axial component of the velocity, u∗. By differentiating f(η) with respect to η,
which is straightforward and can be easily performed by Maple 11, we use the definition of
w∗in (3.1) to compute the radial component of the velocity.

The axial and radial velocities are each functions of parameters S, M and A. Since the
axial and radial velocities are proportional to fand f

′
, respectively, they suffices to present

the results for f . These results are displayed in Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12
for twelve different combinations of parameters S, M, and A. Figures 1–8 show that for both
the cases of no injection (A = 0) and injection (A < 0), the axial component of the velocity
increases monotonically as η increases. The velocity profile is not significantly affected by the
increase in the fluid electrical conductivity and/or the magnetic field, that is, the increase in
M from 0 to 5. A careful examination of Figures 1–8 also reveals that the effect of squeeze
Reynolds number S on the axial velocity profiles is minimal.

Figures 9–12 show the effect of suction (A > 0) on the axial velocity distributions. In
each case, the axial velocity decreases monotonically as η increases. Siddiqui et al. [20] have
observed the same pattern for the axial (normal in their case) velocity in the study of two-
dimensional MHD squeeze flow between parallel plates without injection or suction. As in
the case for injection (Figures 1–8), the velocity patterns are only minimally influenced by the
changes in parameters M and S.

The results for f
′

which represents the radial component of the velocity appear in
Figures 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, and 24. Figures 13–20 show the results for
the radial velocity with no injection (A = 0) and injection (A < 0) for different combination
values of M and S. In each case, the radial velocity increases as η increases, reaches a peak
value in the neighborhood of η =0.5 and then decays to zero around η = 1. For the case of
suction (A > 0), which is illustrated in Figures 21–24, the radial velocity becomes negative



16 Mathematical Problems in Engineering

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

f
′ (
η
)

0 0.2 0.4 0.6 0.8 1

η

NS
HPM

Figure 24: Variation of radial velocity for M = 5, S = 1, A = 1.
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Figure 25: Variation of radial velocity with M and A for S = 1.

and decreases as η increases. The trough in radial velocity is attained in the neighborhood of
η = 0.5. After that the velocity increases and reaches the zero value around η = 1.

Figure 25 has been prepared to illustrate the effect of varying the imposed magnetic
field (Hartmann number M) on the radial distribution of velocity for suction (A = 1)
and injection (A = −1). As the strength of the magnetic field is increased, that is, as the
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Figure 26: Variation of radial velocity with S and A for M = 5.

Hartmann number increases, the impact is felt most on the maximum radial velocity, more so
for injection than for suction. The effect of squeeze Reynolds number S on the radial velocity
distribution is shown in Figure 26 for a fixed value of M = 5. It can be seen that even with a
hundred-fold increase in S, the radial velocity profile is not affected significantly.

For every case investigated (Figures 1–26), the HPM predictions have been compared
with the corresponding direct numerical solutions (NSs) obtained by using Maple 11
software. This software uses a Fehlberg fourth-fifth order Runge-Kutta finite-difference
method for the numerical solution of the boundary value problem [34]. In each case, the
HPM and NS are found to be consistently close. This consistent closeness strongly vouches
for the accuracy of HPM. Equation (3.7) therefore provides simple and highly accurate
analytical solutions for the problem studied in this paper and is useful for rapid engineering
calculations.

4. Conclusions

He’s homotopy perturbation method (HPM) has been utilized to derive approximate
analytical solutions for the radial and axial velocity distributions in magneto-hydrodynamic
(MHD) squeeze flow between two parallel infinite disks where one disk is impermeable and
the other is porous with either suction or injection of the fluid. The approximate solutions
have been compared with the direct numerical solutions generated by the symbolic algebra
package Maple 11 which uses a Fehlberg fourth-fifth order Runge-Kutta finite-difference
method for solving nonlinear boundary value problems. The comparison showed that the
HPM solutions are highly accurate and provide a rapid means of computing the flow
velocities between the plates.

For both the cases of no injection and injection, the axial component of the velocity
increases monotonically as the similarity variable increases. The velocity profiles are not
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significantly affected by the increase in the fluid electrical conductivity and/or the magnetic
field. Similarly, the effect of squeeze Reynolds number S on the axial velocity profiles is
minimal. The effect of imposed magnetic field on the maximum radial velocity is more
pronounced for injection than for suction.
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