
Research Article
A Test Data Compression Scheme Based on
Irrational Numbers Stored Coding

Hai-feng Wu,1 Yu-sheng Cheng,1 Wen-fa Zhan,2 Yi-fei Cheng,1

Qiong Wu,2 and Shi-juan Zhu1

1 School of Computer and Information, Anqing Normal University, Anqing 246011, China
2Department of Science Research, Anqing Normal University, Anqing 246011, China

Correspondence should be addressed to Hai-feng Wu; hfeng wu@163.com

Received 27 June 2014; Revised 2 August 2014; Accepted 2 August 2014; Published 28 August 2014

Academic Editor: Yunqiang Yin

Copyright © 2014 Hai-feng Wu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Test question has already become an important factor to restrict the development of integrated circuit industry. A new test data
compression scheme, namely irrational numbers stored (INS), is presented. To achieve the goal of compress test data efficiently, test
data is converted into floating-point numbers, stored in the form of irrational numbers.The algorithm of converting floating-point
number to irrational number precisely is given. Experimental results for some ISCAS 89 benchmarks show that the compression
effect of proposed scheme is better than the coding methods such as FDR, AARLC, INDC, FAVLC, and VRL.

1. Introduction

According to Moore’s law, the integration level of the
microchips doubles every 18 to 24 months. As a result, the
volume of test data increased dramatically; the test costs
become higher; the contradictions between test efficiency
and test quality are sharpening. The test data compression
technology comes into being to solve the above problems.

Coding compression technology has been widely used
because it has such advantages as simple encoding and
decompression structure which is independent of the tested
chip. A certain encoding scheme is used to encode the
original test set. The length of the encoded data is less than
the original test set, so as to reduce the test data.

The test set is divided into the sequences of specific law,
which can be replaced with new codeword generated by
some kinds of coding method. According to the change rule
of the length from the original sequence to the codeword,
coding methods can be divided into four categories. The first
category is fixed-to-fixed coding method, such as dictionary
code [1]. The second category is fixed-to-variable coding
method, such as Huffman code [2], 9C code [3]. The third
category is variable-to-fixed encoding method, such as run-
length code [4]. The fourth category is variable-to-variable

coding method, such as Golomb code [5], FDR code [6],
EFDR code [7], and alternation and run-length code [8].

Among them, the compression method of the first cate-
gory is themost simple one, but it has the lowest compression
efficiency.The compression efficiency of the fourth category is
high, but its hardware overhead is larger.The second and third
categories have good applicability, which are between the
first and fourth categories in terms of compression method,
compression efficiency, hardware overhead, and so forth.

It is a new original method to use irrational number
to compress test data. It is creative. A scheme of test data
compression based on irrational number dictionary code [9]
is presented. The encoding rule of this scheme is simple, and
the do not-care bit need not be assigned, but it takes extra
storage space to store the data dictionary additionally.

A new test data compression scheme based on irrational
numbers stored (INS) is presented. It is a fixed-to-variable
coding method, which has simple encoding rule and can
obtain good compression effect. In this scheme, the test set
is converted into floating-point numbers firstly, and then
the floating-point numbers are converted into irrational
numbers in form of 𝑟√𝑥 (where the numbers 𝑥 and 𝑟 are
integers) by the successive approximation method. So the
storage of the test set can be translated into the storage of

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 982728, 7 pages
http://dx.doi.org/10.1155/2014/982728

2 The Scientific World Journal

radicand (integer) and root number (integer). The minimum
of corresponding radicand and root number can be found
with faster convergence speed. Better compression effect can
be obtained when using the INS coding scheme.

The organization of the paper is as follows. Section 2
explains the algorithm of the proposed scheme and gives
an example. Section 3 proves the feasibility of the algo-
rithm of the proposed scheme theoretically. The structure
of decompressor is presented in Section 4. Section 5 reports
the experimental results and analyzes the compression ratio
theoretically. Finally Section 6 concludes the paper.

2. INS Coding

In this section, the algorithm of INS coding is described
firstly. Then, the flowchart of the scheme is given. Lastly, an
example is provided.

2.1. Encoding Rule. The concrete steps of INS coding are as
follows.

(1) At first, generate the determinate complete test set
named 𝑇 by automatic test pattern generation tools.

(2) Then cascade the entire test vector, and connect
the head of a vector to the tail of previous vector,
remembered as 𝑆.

(3) Take the first 𝑁 bits of the test set, and then convert
them into a hexadecimal number every four bits a
group according to the rules shown in Table 1. Add
a decimal point after the first digit, and a hexadecimal
floating-point number named 𝑓 is formed.

(4) Calculate the value of 𝑥 and 𝑟 in the formula 𝑟√𝑥 = 𝑓,
by dichotomy to successive approximate 𝑓. In this
scheme, if the first several bits of 𝑓 and the root of
𝑟√𝑥 are exactly the same, that is to say, the two are
approximately equal to, then consider the following.
(I) Calculate 𝑓2 first; set bot = ⌊𝑓2⌋, top = bot + 1,
𝑟 = 2. (II) Calculate 𝑟√bot, if its value is equal to 𝑓,
note 𝑥 = bot, 𝑟, and then go to step (5). Otherwise,
calculate 𝑟√top, if its value is equal to 𝑓, note 𝑥 = top,
𝑟, and then go to step (5). (III) Considerbot = ⌊bot ∗
𝑟√bot⌋, top = ⌈top ∗ 𝑟√top⌉, and 𝑟 = 𝑟 + 1. (IV) Set
mid = ⌊(bot + top)/2⌋, calculate 𝑟√mid, if its value is
equal to 𝑓, note 𝑥 = mid, 𝑟, and then go to step (5). If
its value is greater than 𝑓, top = mid − 1. If its value
is less than 𝑓, bot = mid + 1. Repeat step (IV) until
bot > top, and then go to step (V). (V) If top is less
than mid, set bot = top, top = mid. Otherwise, set
top = bot, bot = mid. Repeat step (4) until 𝑟√𝑥 = 𝑓 is
valid and go to step (5). In this step, the median (mid)
is always integer in operation process.That can reduce
the computation complexity, save the running time,
and accelerate the operation process.

(5) Encode 𝑥 and 𝑟 in the form of CEBM [10]. Remove
the first𝑁 bits of 𝑆 and repeat steps (3) and (4), until
𝑆 is empty.

Figure 1 shows the detailed flowchart of the scheme.
CEBM is shown in Table 2. Because 𝑥 ≥ 2, 𝑟 ≥ 2, the run-

length starts from 2.The first column is the length of runs and
the second column is the number of group.The third column
is odd bits of the codeword and the fourth column is even bits.
The last column is the corresponding codeword. As can be
seen, CEBM has the following characteristics. (1) The length
of the odd bits and the even bits is equal to every codeword.
(2)The odd bits show the run-length. Add data “1” before the
odd bits; the new odd bits are just the corresponding binary
number of the run-length. The even bits show the end of the
codeword. The codeword continues if the even bit is 0 and
finishes if it is 1. (3) The length of codeword increases by two
bits from group 𝐴

𝑖
to group 𝐴

𝑖+1
; both the odd bits and the

even bits increase one bit. (4) Group𝐴
𝑖
contains 2𝑖 elements.

(5)The corresponding relationship between the run-length 𝐿
and group 𝐴

𝑖
is like 𝑖 = ⌈Log

2
(𝐿 + 1) − 1⌉.

For an example, the codeword of 9 is 000011. The odd
bits are 001 and the even bits are 001. The even bit needs to
be monitored when decoding. If the even bit is 0, it means
that codeword continues. If the even bit is 1, it means that
codeword finishes. Add data “1” before the odd bits (001); we
can get the data 1001, whose corresponding decimal value is 9.
CEBM is widely used because of decoding simply and small
hardware overhead.

Through the analysis, the scheme has the following three
characteristics. (1) The root number is calculated from 2
and increases successively. It can guarantee that the radicand
and root number found are minimum. (2) The lower bound
and upper bound of the radicand’s interval positioned are
relatively accurate. At the same time, the binary search
method can reduce the time complexity. (3) In the binary
search, the medians of the operation process are all integers.
It can reduce the computation complexity, save the running
time, and accelerate the process of operation.

2.2. Encoding Example. An example is provided to make
the scheme clear. Without loss of generality, set the original
test set 𝑇 = {00011010, 11101000, 10011111, 10011001, 01011010,
11010011, 11101001, . . .}. Cascade all the test vector, and
then divide it into sequences of 48 bits. The data flow is
000110101110100010011111100110010101101011010011 11101001
. . . . Its first 48 bits can convert into a hexadecimal
floating-point 𝑓 = 1.AE89F995AD3. (I) Calculate
𝑓2 = 2.D413CCCFE7551FCA6F09E9, bot = ⌊𝑓2⌋ = 2,
top = bot + 1 = 3, 𝑟 = 2. (II) Calculate
𝑟√top = 2√3 = 1.BB67AE8584C, and go to step (III)
because its value is not equal to 𝑓. (III) Consider
bot = ⌊bot ∗ 𝑟√bot⌋ = ⌊2 ∗

2√2⌋ = ⌊2.D413CCCFE76⌋ = 2,
top = ⌈top ∗ 𝑟√top⌉ = ⌈3 ∗ 2√3⌉ = ⌈5.32370B908E4⌉ = 6,
𝑟 = 𝑟 + 1 = 3. (IV) Set mid = ⌊(bot + top)/2⌋, and calculate
𝑟√mid. If its value is equal to𝑓, note 𝑥 = mid, 𝑟, and go to step
of encoding. If its value is greater than 𝑓, set top = mid − 1.
If its value is less than 𝑓, set bot = mid + 1. Repeat step
(IV) until bot > top (bot = 5, top = 4), and go to step
(V). (V) If top is less than mid, set bot = top, top = mid.
Otherwise, set top = bot, bot = mid. Then bot = 4, top = 5.
Repeat steps (III), (IV), and (V) and we can get the results

The Scientific World Journal 3

Begin

Generate the test set named T, cascade
all the vector, remember as S

Take the first N bits, convert
into a floating point named f

No

Yes

No

Yes

No

Yes

Yes

No

No

Yes

Yes

No

Encode x and r, remove the
first N bits of S

Yes

No

End

S is not
empty

Yes

No

𝑟√bot = f

𝑟√top = f

𝑟√mid = f

𝑟√mid > f

Flag = 0

Top= mid − 1 Bot = mid + 1

Top< mid

Flag = 0 and

Flag = 1, x = bot

Flag = 1, x = top

Flag = 1, x = mid

Set bot = ⌊f2⌋, top = bot + 1, r = 2, flag = 0

Set mid = ⌊(bot + top)/2⌋

Bot = ⌊bot∗ 𝑟√bot⌋, top =
⌊top∗ 𝑟√top⌋, r = r + 1

Bot ≤ top

Bot = top, top = mid Top = bot, bot = mid

Figure 1: Flowchart of INS coding.

4 The Scientific World Journal

Table 1: Test data transformation rules.

Test data Hexadecimal
number Test data Hexadecimal

number Test data Hexadecimal
number Test data Hexadecimal

number
0000 0 0100 4 1000 8 1100 C
0001 1 0101 5 1001 9 1101 D
0010 2 0110 6 1010 A 1110 E
0011 3 0111 7 1011 B 1111 F

Table 2: CEBM.

Run-length Group Odd bits Even bits Codeword
2

𝐴
1

0 1 01
3 1 1 11
4

𝐴
2

00 01 00 01
5 01 01 00 11
6 10 01 10 01
7 11 01 10 11
8

𝐴
3

000 001 00 00 01
9 001 001 00 00 11
...

...
...

...
14 110 001 10 10 01
15 111 001 10 10 11
...

...
...

...
...

𝑟 = 4, 𝑥 = 8, which make 4√8 = 1.AE89F995AD3.
So the storage of the first 48 bits of the data flow
00011010111010001001111110011001010110101101001111101001. . .
can be converted into the storage of the radicand (8) and the
root number (4).The CEBM of 8 and 4 is 000001 0001, a total
of 10 bits, reducing 38 bits.

3. Theoretical Analysis

In this section, the theoretical analysis of the algorithm is
given.

For any floating-point number 𝑓, there exist positive
integers 𝑥, 𝑟, which make the first several bits of 𝑓 and the
root of 𝑟√𝑥 to be exactly the same; that is to say, the two are
approximately equal.

The process of proof is as follows.
From the encoding rule of Section 2.1, 𝑓 is positioned in

the interval [𝑟√bot, 𝑟√top] through binary search each time in
the process of successive approximation, where

bot = ⌊𝑓𝑟⌋,

top = bot + 1 = ⌊𝑓𝑟⌋ + 1.
(1)

Out
T

FSM counterrs
Shift

Even bits

en
clk

CPU

Odd bitsBit in

k + 1 bits

x, r

Figure 2: Structure of decompressor.

Therefore, we only need to prove that 𝑟√bot is infinitely
close to 𝑟√top when 𝑟 → ∞. That is to prove

lim
𝑟→∞

𝑟√⌊𝑓𝑟⌋ + 1

𝑟√⌊𝑓𝑟⌋
= 1

lim
𝑟→∞

𝑟√⌊𝑓𝑟⌋ + 1

𝑟√⌊𝑓𝑟⌋
= lim
𝑟→∞

𝑒
ln((𝑟√⌊𝑓𝑟⌋+1)/ 𝑟√⌊𝑓𝑟⌋)

= lim
𝑟→∞

𝑒
ln ((⌊𝑓𝑟⌋+1)/⌊𝑓𝑟⌋)1/𝑟

= lim
𝑟→∞

𝑒
(1/𝑟) ln((⌊𝑓𝑟⌋+1)/⌊𝑓𝑟⌋)

lim
𝑟→∞

1

𝑟
ln(

⌊𝑓𝑟⌋ + 1

⌊𝑓𝑟⌋
) = lim
𝑟→∞

ln (1 + 1/ ⌊𝑓𝑟⌋)
𝑟

= 0

lim
𝑟→∞

𝑟√⌊𝑓𝑟⌋ + 1

𝑟√⌊𝑓𝑟⌋
= lim
𝑟→∞

𝑒
0
= 1.

(2)

That is to say, we can always find positive integers 𝑥 and
𝑟 to make 𝑟√𝑥 and 𝑓 to be approximately equal when 𝑟 is
increasing.

4. Structure of Decompressor

In this section, the structure and basic operation principle of
the decompressor for the INS coding scheme are illustrated.

Figure 2 shows the structure of decompressor, which
contains a finite statemachine, a T flip-flop, a special 𝑘+1 bits
counter and some combinational logic, and the CPUmodule
on SoC chip.

The Scientific World Journal 5

This special 𝑘 + 1 bits counter is unique. Set its lowest
bit as 1; move this bit to high with other data when the data
needed to be decoded is moved to the counter. The function
can be realized by a combination of some simple circuit, and
the hardware overhead will not increase significantly. In the
𝑘 + 1 bits counter, the value of 𝑘 is decided by the maximum
of the radicand and the boot number (named as 𝐿max) in
compression result, 𝑘 = ⌈log

2
(𝐿max + 1)⌉ − 1.

The root operation can be realized by the CPU module
on SoC chip as long as the floating-point processing unit ×87
FPU integrated in CPU. ×87 FPU has its own instruction
system, including the commonly used instruction types:
floating-point move instructions, floating-point arithmetic
operation instructions, floating-point transcendental func-
tion instructions, floating-point comparison instructions,
and FPU control instructions [11]. Floating-point transcen-
dental function instructions can realize exponent operation
(F2XM1 instruction) and logarithmic operation (FYL2X
instruction). 𝑟√𝑥 can be converted into 2(log2𝑥)/𝑟, which can be
calculated by exponent operation instruction and logarithmic
operation instruction.

Decompressor works as follows. (1) First, the FSMmakes
an enable signal named en into high level, and the encoded
data named bit in is split into two parts: odd bits and even
bits by the position of data.That is implemented by the T flip-
flop. Odd bits are directly shifted into the 𝑘 + 1 bits counter,
and even bits are shifted into FSM. (2) Then, FSM repeats
to read the encoded data until the value of even bit equals
1. Meanwhile, the odd bit is shifted into the 𝑘+ 1 bits counter.
(3) The data (named 𝑥) of the 𝑘 + 1 bits counter is shifted
into CPU after all odd bits of data are received in the special
𝑘 + 1 bits counter. Repeat step (2); the data of the 𝑘 + 1 bits
counter (named 𝑟) is shifted into CPU. (4) 𝑟√𝑥 is calculated by
floating-point processing unit ×87 FPU in CPU, and the first
𝑁 bits of its binary form are outputted.

5. Experimental Results

In this section, the effectiveness of the INS coding scheme is
verified by using experimental results.

INS coding is applied to theMinTest test sets of the largest
ISCAS 89 benchmark circuits. The experimental results are
shown in Table 3. The first column shows the circuit name,
the second column shows the total number of the data in the
original test sets, the third column shows the total number
of the compressed data, and the fourth column shows the
compression ratio.

In order to verify the validity of this scheme, compare
with the similar algorithm, as shown in Table 4. Among
them, the first column shows the circuit name, the second
to sixth columns, respectively, show the compression effect
of FDR code [6], INDC code [9], AARLC code [8], FAVLC
code [12], and VRL code [13], and the seventh column
shows compression effect of the scheme presented. Data from
Table 3 shows this scheme besides lower compression ratio
in the fifth circuit, and the rest of the circuit has higher
compression ratio. And this scheme has a good compression
effect on the whole. The average compression ratio reaches

Table 3: Compression effect of scheme presented.

Circuit Size of TD bit Scheme presented
Size/bit 𝛼%

S5378 23754 9868 58.46
S9234 39273 16157 58.86
S13207 165200 24998 84.87
S15850 76986 22555 70.70
S38417 164736 81611 50.46
S38584 199104 56981 71.38
Avg. 65.79

Table 4: Comparison with other algorithms.

Circuit FDR AARLC INDC FAVLC VRL Scheme
presented

S5378 48.02 45.12 45.05 52.15 52.14 58.46
S9234 43.59 42.79 47.08 45.82 50.17 58.86
S13207 81.30 80.43 85.27 81.58 83.29 84.87
S15850 66.22 65.13 67.24 67.70 69.78 70.70
S38417 43.26 56.52 47.61 43.06 62.84 50.46
S38584 60.91 60.57 66.02 72.29 65.42 71.38
Avg. 45.33 58.43 59.71 60.43 63.94 65.79

65.79%, which is 20.46%, 9.42%, 7.36%, 5.36%, and 1.85%
higher than those of FDR, RLR, AARLC, FAVLC, and VRL.

In order to further demonstrate the effectiveness, the
results of proposed scheme are compared with other schemes
under the same circumstances by the hard fault set of
some ISCAS 89 benchmark circuits. The results as shown
in Table 5. As can be seen from Table 4, the overall effect of
proposed scheme is better. The average compression ratio of
the proposed scheme is 3.87%, 3.82%, and 3.31% higher than
those of FDR, AR [14], and ARL [15]. These data show the
effectiveness of INS Code.

The experimental results indicate the following. (1)
Regardless of the fact that the determined bit of the test data
is 0 or 1, it has a little effect on compression ratio in the
process of finding the irrational number. (2) Do not-care bit
can accelerate the search speed of irrational number, reduce
the value of irrational number used to store the test data, and
improve the compression ratio.

The influence of the do not-care bit probability on
compression is explored.The length of the test data fragment
is set to be 𝐾, and the probability of do not-care bit is set
to be 𝜌. Their relationship can be expressed in the following
formula:

𝑟√𝑥 − 𝑓
𝑖
< 10
−(𝐾/4)+1

, 𝑖 = 1, 2, . . . , 2
𝐾⋅𝜌
, (3)

where, 𝑥, 𝑟, and 𝐾 are integers and 𝑓
𝑖
is a floating-point

number.
The compression gain can be calculated by the following

formula:

𝛽 =
𝐾

(1 + log
2
(𝑥 + 1) + log

2
(𝑟 + 1) + log

2
(𝐾 + 1))

. (4)

6 The Scientific World Journal

Table 5: Comparison with other algorithms (the hard fault set).

Circuit Size of TD bit FDR AR ARL Scheme presented
Size/bit 𝛼%

S5378 5992 1110 1160 1091 710 88.15
S9234 73112 22038 21222 20429 11982 83.61
S13207 220500 14080 15534 15061 7500 96.60
S15850 163748 14370 13286 12861 15183 90.73
S38417 2201472 103760 94682 90397 103779 95.29
S38584 456768 13840 15696 15083 12551 97.25

10

9

8

7

6

5

4

3

2

1

0

0 20 40 60 80 100

Compression gain 𝛽

Probability of do not-care bit 𝜌 (%)

Figure 3: Relationship between 𝛽 and 𝜌.

By analyzing the experimental data, the relationship
between the compression gain 𝛽 and the probability of not-
care bit 𝜌 can be concluded as shown in Figure 3.

From Figure 3, as can be seen, the proposed compression
scheme can obtain better compression effect in a higher
probability of do not-care bit.

6. Conclusion

INS coding is presented, which uses the floating-point num-
ber unfolded by irrational number to store the test set. It
is creative. Using the successive approximation method can
accelerate the convergence speed in the process of searching
the irrational number.The experimental results show that the
compression effect of the scheme is better. It provides a new
choice to solve the problem of test data compression.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors sincerely thank the anonymous reviewers for
their valuable and constructive comments. This research is
supported in part by theNatural Science Foundation of China
(no. 61306046) and Scientific Research Foundation of High
Institutions in Anhui Province (no. KJ2012B082).

References

[1] L. Li, K. Chakrabarty, S. Kajihara, and S. Swaminathan, “Effi-
cient space/time compression to reduce test data volume and
testing time for IP cores,” in Proceedings of the 18th International
Conference on VLSI Design, pp. 53–58, January 2005.

[2] A. Jas, J. Ghosh-Dastidar, M. Ng, and N. A. Touba, “An efficient
test vector compression scheme using selective huffman cod-
ing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 22, no. 6, pp. 797–806, 2003.

[3] M. Tehranipoor, M. Nourani, and K. Chakrabarty, “Nine-
coded compression technique for testing embedded cores in
SoCs,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 13, no. 6, pp. 719–731, 2005.

[4] A. Jas and N. A. Touba, “Test vector decompression via cyclical
scan chains and its application to testing core-based designs,” in
Proceedings of the IEEE International Test Conference, pp. 458–
464, Washington, DC, USA, October 1998.

[5] A. Chandra and K. Chakrabarty, “System-on-a-chip test-
data compression and decompression architectures based on
Golomb codes,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 20, no. 3, pp. 355–368,
2001.

[6] A. Chandra and K. Chakrabarty, “Frequency-directed run-
length (FDR) codes with application to system-on-a-chip test
data compression,” in Proceedings of the 19th IEEE VLSI Test
Symposium, pp. 42–47, Marina Del Rey, Calif, USA, May 2001.

[7] A. H. El-Maleh, “Test data compression for system-on-a-
chip using extended frequency-directed run-length code,” IET
Computers and Digital Techniques, vol. 2, no. 3, pp. 155–163,
2008.

[8] H. G. Liang and C. Y. Jiang, “Efficient test data compression
and decompression based on alternation and run length codes,”
Chinese Journal of Computers, vol. 27, no. 4, pp. 548–554, 2004.

[9] W. Haifeng, Z. Wenfa, and C. Yifei, “Scheme of test data
compression based on irrational number dictionary code,”
Computer Engineering and Applications, vol. 50, no. 7, pp. 235–
237, 2014.

[10] W. Zhan, H. Liang, C. Jiang, Z. Huang, and A. El-Maleh, “A
scheme of test data compression based on coding of even bits

The Scientific World Journal 7

marking and selective output inversion,”Computers & Electrical
Engineering, vol. 36, no. 5, pp. 969–977, 2010.

[11] X.-J. Qian, 32-Bits Assembly Language Programming, China
Machine Press, Beijing, China, 2011.

[12] W.-F. Zhan, H.-G. Liang, F. Shi, and Z.-F. Huang, “Test data
compression scheme based on mixed fixed and variable length
coding,” Chinese Journal of Computers, vol. 31, no. 10, pp. 1826–
1834, 2008.

[13] X.-Y. Peng and Y. Yu, “A test set compression algorithm based
on Variable-Run-Length code,” Acta Electronica Sinica, vol. 35,
no. 2, pp. 197–201, 2007.

[14] A. Chandra and K. Chakrabarty, “Reduction of SOC test
data volume, scan power and testing time using alternating
run-length codes,” in Proceedings of the 39th Annual Design
Automation Conference (DAC ’02), pp. 673–678, June 2002.

[15] S. Hellebrand and A. Wurternberger, “Alternating run-length
coding—a technique for improved test data compression,”
in Proceedings of the 3rd IEEE International Workshop on
Test Tesource Partitioning (TRP ’02), IEEE Computer Society,
Baltimore, Md, USA, October 2002.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

