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The main objective of the present paper is to define 𝑘-gamma and 𝑘-beta distributions and moments generating function for the
said distributions in terms of a new parameter 𝑘 > 0. Also, the authors prove some properties of these newly defined distributions.

1. Basic Definitions

In this section we give some definitions which provide a base
for our main results. The definitions (1.1–1.3) are given in
[1] while (1.4–1.6) are introduced in [2]. Also, we have taken
some statistics related definitions (1.7–1.11) from [3–5].

1.1. Pochhmmer Symbol. Thefactorial function is denoted and
defined by

(𝑎)
𝑛
= {

𝑎 (𝑎 + 1) (𝑎 + 2) ⋅ ⋅ ⋅ (𝑎 + 𝑛 − 1) ; for 𝑛 ≥ 1, 𝑎 ̸= 0,

1; if 𝑛 = 0.

(1)

The function (𝑎)
𝑛
defined in relation (1) is also known as

Pochhmmer symbol.

1.2. Gamma Function. Let 𝑧 ∈ C; the Euler gamma function
is defined by

Γ (𝑧) = lim
𝑛→∞

𝑛!𝑛
𝑧−1

(𝑧)
𝑛

(2)

and the integral form of gamma function is given by

Γ (𝑧) = ∫

∞

0

𝑡
𝑧−1

𝑒
−𝑡

𝑑𝑡, R (𝑧) > 0. (3)

From the relation (3), using integration by parts, we can easily
show that

Γ (𝑧 + 1) = 𝑧Γ (𝑧) . (4)
The relation between Pochhammer symbol and gamma
function is given by

(𝑧)
𝑛
=
Γ (𝑧 + 𝑛)

Γ (𝑧)
. (5)

1.3. Beta Function. The beta function of two variables is
defined as

𝐵 (𝑥, 𝑦) = ∫

1

0

𝑡
𝑥−1

(1 − 𝑡)
𝑦−1

𝑑𝑡, Re (𝑥) ,Re (𝑦) > 0 (6)

and, in terms of gamma function, it is written as

𝐵 (𝑥, 𝑦) =
Γ (𝑥) Γ (𝑦)

Γ (𝑥 + 𝑦)
. (7)

1.4. Pochhammer 𝑘-Symbol. For 𝑘 > 0, the Pochhammer 𝑘-
symbol is denoted and defined by

(𝑎)
𝑛,𝑘

= {
𝑎 (𝑎 + 𝑘) (𝑎 + 2𝑘) ⋅ ⋅ ⋅ (𝑎 + (𝑛 − 1) 𝑘) ; for 𝑛 ≥ 1, 𝑎 ̸= 0,

1; if 𝑛 = 0.

(8)
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1.5. 𝑘-Gamma Function. For 𝑘 > 0 and 𝑧 ∈ C, the 𝑘-gamma
function is defined as

Γ
𝑘
(𝑧) = lim

𝑛→∞

𝑛!𝑘
𝑛

(𝑛𝑘)
𝑧/𝑘−1

(𝑧)
𝑛,𝑘

(9)

and the integral representation of 𝑘-gamma function is

Γ
𝑘
(𝑧) = ∫

∞

0

𝑡
𝑧−1

𝑒
−𝑡
𝑘
/𝑘

𝑑𝑡. (10)

1.6. 𝑘-Beta Function. For Re(𝑥),Re(𝑦) > 0, the 𝑘-beta
function of two variables is defined by

𝐵
𝑘
(𝑥, 𝑦) =

1

𝑘
∫

∞

0

𝑡
𝑥/𝑘−1

(1 − 𝑡)
𝑦/𝑘−1

𝑑𝑡 (11)

and, in terms of 𝑘-gamma function, 𝑘-beta function is defined
as

𝐵
𝑘
(𝑥, 𝑦) =

Γ
𝑘
(𝑥) Γ
𝑘
(𝑦)

Γ
𝑘
(𝑥 + 𝑦)

. (12)

Also, the researchers [6–10] have worked on the gen-
eralized 𝑘-gamma and 𝑘-beta functions and discussed the
following properties:

Γ
𝑘
(𝑥 + 𝑘) = 𝑥Γ

𝑘
(𝑥) , (13)

(𝑥)
𝑛,𝑘

=
Γ
𝑘
(𝑥 + 𝑛𝑘)

Γ
𝑘
(𝑥)

, (14)

Γ
𝑘
(𝑘) = 1, 𝑘 > 0. (15)

Using the above relations, we see that, for 𝑥, 𝑦 > 0 and 𝑘 >

0, the following properties of 𝑘-beta function are satisfied by
authors (see [6, 7, 11]):

𝛽
𝑘
(𝑥 + 𝑘, 𝑦) =

𝑥

𝑥 + 𝑦
𝛽
𝑘
(𝑥, 𝑦) , (16)

𝛽
𝑘
(𝑥, 𝑦 + 𝑘) =

𝑦

𝑥 + 𝑦
𝛽
𝑘
(𝑥, 𝑦) , (17)

𝛽
𝑘
(𝑥𝑘, 𝑦𝑘) =

1

𝑘
𝛽 (𝑥, 𝑦) , (18)

𝛽
𝑘
(𝑥, 𝑘) =

1

𝑥
, 𝛽

𝑘
(𝑘, 𝑦) =

1

𝑦
. (19)

Note that when 𝑘 → 1, 𝛽
𝑘
(𝑥, 𝑦) → 𝛽(𝑥, 𝑦).

For more details about the theory of 𝑘-special functions
like 𝑘-gamma function, 𝑘-beta function, 𝑘-hypergeometric
functions, solutions of 𝑘-hypergeometric differential equa-
tions, contegious functions relations, inequalities with appli-
cations and integral representations with applications involv-
ing 𝑘-gamma and 𝑘-beta functions and so forth. (See [12–17].)

1.7. Probability Distribution and Expected Values. In a ran-
dom experiment with 𝑛 outcomes, suppose a variable 𝑋

assumes the values 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
with corresponding

probabilities 𝑃
1
, 𝑃
2
, 𝑃
3
, . . . , 𝑃

𝑛
; then this collection is called

probability distribution andΣ𝑝
𝑖
= 1 (in case of discrete distri-

butions). Also, if𝑓(𝑥) is a continuous probability distribution
function defined on an interval [𝑎, 𝑏], then ∫𝑏

𝑎

𝑓(𝑥)𝑑𝑥 = 1.
In statistics, there are three types of moments which are

(i) moments about any point 𝑥 = 𝑎, (ii) moments about
𝑥 = 0, and (iii) moments about mean position of the given
data. Also, expected value of the variate is defined as the first
moment of the probability distribution about 𝑥 = 0 and the
𝑟th moment about mean of the probability distribution is
defined as 𝐸(𝑥

𝑖
− 𝑥)
𝑟 where 𝑥 is the mean of the distribution.

Also, 𝐸(𝑥) shows the expected value of the variate 𝑥 and
is defined as the first moment of the probability distribution
about 𝑥 = 0; that is,

𝜇
󸀠

1
= 𝐸 (𝑥) = ∫

𝑏

𝑎

𝑥𝑓 (𝑥) 𝑑𝑥. (20)

1.8. GammaDistribution. A continuous random variable𝑍 is
said to have a gamma distribution with parameter 𝑚 > 0, if
its probability distribution function is defined by

𝑓 (𝑧) =
{

{

{

1

Γ (𝑚)
𝑧
𝑚−1

𝑒
−𝑧

, 0 ≦ 𝑧 < ∞,

0, elsewhere
(21)

and its distribution function 𝐹(𝑧) is defined by

𝐹 (𝑧) =

{{

{{

{

∫

𝑧

0

1

Γ (𝑚)
𝑧
𝑚−1

𝑒
−𝑧

𝑑𝑧, 𝑧 ≥ 0,

0, 𝑧 < 0,

(22)

which is also called the incomplete gamma function.

1.9. Moment Generating Function of Gamma Distribution.
Themoment generating function of 𝑍 is defined by

𝑀
0
(𝑡) = 𝐸 (𝑒

𝑡𝑍

) = ∫

∞

0

𝑒
𝑡𝑍

𝑓 (𝑧) 𝑑𝑧

= ∫

∞

0

1

Γ (𝑚)
𝑧
𝑚−1

𝑒
−𝑧(1−𝑡)

𝑑𝑧.

(23)

1.10. Beta Distribution of the First Kind. A continuous ran-
dom variable 𝑍 is said to have a beta distribution with two
parameters𝑚 and 𝑛, if its probability distribution function is
defined by

𝑓 (𝑧) =

{{

{{

{

1

𝐵 (𝑚, 𝑛)
𝑧
𝑚−1

(1 − 𝑧)
𝑛−1

, 0 ≦ 𝑧 ≦ 1; 𝑚, 𝑛 > 0

0, elsewhere.
(24)
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This distribution is known as a beta distribution of the first
kind and a beta variable of the first kind is referred to as
𝛽
1
(𝑚, 𝑛). Its distribution function 𝐹(𝑧) is given by

𝐹 (𝑧)

=

{{{{{

{{{{{

{

0, 𝑧 < 0,

∫

𝑧

0

1

𝐵 (𝑚, 𝑛)
𝑧
𝑚−1

(1 − 𝑧)
𝑛−1

𝑑𝑧, 0 ≦ 𝑧 ≦ 1; 𝑚, 𝑛 > 0,

0, 𝑧 > 1.

(25)

1.11. Beta Distribution of the Second Kind. A continuous
random variable 𝑍 is said to have a beta distribution of
the second kind with parameters 𝑚 and 𝑛, if its probability
distribution function is defined by

𝑓 (𝑧) =

{{

{{

{

1

𝛽 (𝑚, 𝑛)

𝑧
𝑚−1

(1 + 𝑧)
𝑚+𝑛

, 0 ≦ 𝑧 < ∞; 𝑚, 𝑛 > 0,

0, otherwise
(26)

and its probability distribution function is given by

𝐹 (𝑧) = ∫

∞

0

1

𝛽 (𝑚, 𝑛)

𝑧
𝑚−1

(1 + 𝑧)
𝑚+𝑛

𝑑𝑧, 0 ≦ 𝑧 < ∞; 𝑚, 𝑛 > 0.

(27)

2. Main Results: 𝑘-Gamma and
𝑘-Beta Distributions

In this section, we define gamma and beta distributions in
terms of a new parameter 𝑘 > 0 and discuss some properties
of these distributions in terms of 𝑘.

Definition 1. Let 𝑍 be a continuous random variable; then it
is said to have a 𝑘-gamma distributionwith parameters𝑚 > 0

and 𝑘 > 0, if its probability density function is defined by

𝑓
𝑘
(𝑧) =

{{

{{

{

1

Γ
𝑘
(𝑚)

𝑧
𝑚−1

𝑒
−𝑧
𝑘
/𝑘

, 0 ≦ 𝑧 < ∞, 𝑘 > 0,

0, elsewhere
(28)

and its distribution function 𝐹
𝑘
(𝑧) is defined by

𝐹
𝑘
(𝑧) =

{{

{{

{

∫

𝑧

0

1

Γ
𝑘
(𝑚)

𝑧
𝑚−1

𝑒
−𝑧
𝑘
/𝑘

𝑑𝑧, 𝑧 > 0,

0, 𝑧 < 0.

(29)

Proposition 2. The newly defined Γ
𝑘
(𝑚) distribution satisfies

the following properties.

(i) The 𝑘-gamma distribution is the probability distribu-
tion that is area under the curve is unity.

(ii) The mean of 𝑘-gamma distribution is equal to a
parameter𝑚.

(iii) The variance of 𝑘-gamma distribution is equal to the
product of two parameters𝑚𝑘.

Proof of (i). Using the definition of 𝑘-gamma distribution
along with the relation (10), we have

∫

∞

0

𝑓
𝑘
(𝑧) 𝑑𝑧 =

1

Γ
𝑘
(𝑚)

∫

∞

0

𝑧
𝑚−1

𝑒
−𝑧
𝑘
/𝑘

𝑑𝑧 =
Γ
𝑘
(𝑚)

Γ
𝑘
(𝑚)

= 1.

(30)

Proof of (ii). Asmean of a distribution is the expected value of
the variate, so the mean of the 𝑘-gamma distribution is given
by

𝑧 = 𝐸
𝑘
(𝑍) =

1

Γ
𝑘
(𝑚)

∫

∞

0

𝑧 ⋅ 𝑧
𝑚−1

𝑒
−𝑧
𝑘
/𝑘

𝑑𝑧. (31)

Using the definition of 𝑘-gamma function and the relation
(13), we have

𝑧 =
1

Γ
𝑘
(𝑚)

∫

∞

0

𝑧
𝑚

𝑒
−𝑧
𝑘
/𝑘

𝑑𝑧 =
Γ
𝑘
(𝑚 + 𝑘)

Γ
𝑘
(𝑚)

= 𝑚
Γ
𝑘
(𝑚)

Γ
𝑘
(𝑚)

= 𝑚.

(32)

Proof of (iii). As variance of a distribution is equal to 𝐸(𝑥2) −
(𝐸(𝑥))

2, so the variance of 𝑘-gamma distribution is calculated
as

Var
𝑘
(𝑍) = 𝐸

𝑘
(𝑍
2

) − (𝐸
𝑘
(𝑍))
2

. (33)

Now, we have to find 𝐸
𝑘
(𝑍
2

), which is given by

𝐸
𝑘
(𝑍
2

) =
1

Γ
𝑘
(𝑚)

∫

∞

0

𝑧
2

⋅ 𝑧
𝑚−1

𝑒
−𝑧
𝑘
/𝑘

𝑑𝑧

=
1

Γ
𝑘
(𝑚)

∫

∞

0

𝑧
𝑚+1

𝑒
−𝑧
𝑘
/𝑘

𝑑𝑧

=
Γ
𝑘
(𝑚 + 2𝑘)

Γ
𝑘
(𝑚)

=
(𝑚 + 𝑘)𝑚Γ

𝑘
(𝑚)

Γ
𝑘
(𝑚)

= 𝑚 (𝑚 + 𝑘) .

(34)

Thus we obtain the variance of 𝑘-gamma distribution as

𝜎
2

𝑘
= 𝑚 (𝑚 + 𝑘) − 𝑚

2

= 𝑚𝑘, (35)

where 𝜎2
𝑘
is the notation of variance present in the literature.

2.1. 𝑘-Beta Distribution of First Kind. Let 𝑍 be a continuous
random variable; then it is said to have a 𝑘-beta distribution
of the first kindwith two parameters𝑚 and 𝑛, if its probability
distribution function is defined by

𝑓
𝑘
(𝑧)

=
{

{

{

1

𝑘𝐵
𝑘
(𝑚, 𝑛)

𝑧
𝑚/𝑘−1

(1 − 𝑧)
𝑛/𝑘−1

, 0 ≦ 𝑧 ≦ 1; 𝑚, 𝑛, 𝑘 > 0,

0, elsewhere.
(36)
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In the above distribution, the beta variable of the first kind is
referred to as 𝛽

1,𝑘
(𝑚, 𝑛) and its distribution function 𝐹

𝑘
(𝑧) is

given by

𝐹
𝑘
(𝑧) =

{{{{{{{{

{{{{{{{{

{

0, 𝑧 < 0,

∫

𝑧

0

1

𝑘𝐵
𝑘
(𝑚, 𝑛)

𝑧
𝑚/𝑘−1

(1 − 𝑧)
𝑛/𝑘−1

𝑑𝑧, 0 ≦ 𝑧 ≦ 1;

𝑚, 𝑛 > 0,

0, 𝑧 > 1.

(37)

Proposition 3. The 𝑘-beta distribution 𝛽
1,𝑘
(𝑚, 𝑛) satisfies the

following basic properties.

(i) 𝑘-beta distribution is the probability distribution that
is the area of 𝛽

1,𝑘
(𝑚, 𝑛) under a curve 𝑓

𝑘
(𝑧) is unity.

(ii) The mean of this distribution is𝑚/(𝑚 + 𝑛).
(iii) The variance of 𝛽

1,𝑘
(𝑚, 𝑛) is𝑚𝑛𝑘/((𝑚+𝑛)

2

(𝑚+𝑛+𝑘)).

Proof of (i). By using the above definition of 𝑘-beta distribu-
tion, we have

∫

𝑧

0

𝐹
𝑘
(𝑧) 𝑑𝑧 = ∫

𝑧

0

1

𝑘𝐵
𝑘
(𝑚, 𝑛)

𝑧
𝑚/𝑘−1

(1 − 𝑧)
𝑛/𝑘−1

𝑑𝑧,

0 ≦ 𝑧 ≦ 1; 𝑚, 𝑛 > 0.

(38)

By the relation (11), we get

∫

𝑧

0

𝐹
𝑘
(𝑧) 𝑑𝑧 = ∫

1

0

1

𝑘𝐵
𝑘
(𝑚, 𝑛)

𝑧
𝑚/𝑘−1

(1 − 𝑧)
𝑛/𝑘−1

𝑑𝑧

=
𝐵
𝑘
(𝑚, 𝑛)

𝐵
𝑘
(𝑚, 𝑛)

= 1.

(39)

Proof of (ii). Themean of the distribution, 𝜇󸀠
1,𝑘
, is given by

𝜇
󸀠

1,𝑘
= 𝐸
𝑘
(𝑍) = ∫

𝑧

0

𝑧𝐹
𝑘
(𝑧) 𝑑𝑧

= ∫

𝑧

0

1

𝑘𝐵
𝑘
(𝑚, 𝑛)

𝑧 ⋅ 𝑧
𝑚/𝑘−1

(1 − 𝑧)
𝑛/𝑘−1

𝑑𝑧,

0 ≦ 𝑧 ≦ 1; 𝑚, 𝑛 > 0.

(40)

Using the relations (12), (13), and (16), we have

𝜇
󸀠

1,𝑘
= ∫

1

0

1

𝑘𝐵
𝑘
(𝑚, 𝑛)

𝑧
𝑚/𝑘

(1 − 𝑧)
𝑛/𝑘−1

𝑑𝑧 =
𝐵
𝑘
(𝑚 + 𝑘, 𝑛)

𝐵
𝑘
(𝑚, 𝑛)

=
Γ
𝑘
(𝑚 + 𝑘) Γ

𝑘
(𝑛) Γ
𝑘
(𝑚 + 𝑛)

Γ
𝑘
(𝑚) Γ
𝑘
(𝑛) Γ
𝑘
(𝑚 + 𝑛 + 𝑘)

=
𝑚

𝑚 + 𝑛
.

(41)

Proof of (iii). The variance of 𝛽
1,𝑘
(𝑚, 𝑛) is given by

𝜎
2

𝑘
= (Var)

𝑘
= 𝐸
𝑘
(𝑍
2

) − (𝐸
𝑘
(𝑍))
2

, (42)

𝐸
𝑘
(𝑍
2

) = ∫

1

0

1

𝑘𝐵
𝑘
(𝑚, 𝑛)

𝑧
𝑚/𝑘+1

(1 − 𝑧)
𝑛/𝑘−1

𝑑𝑧

=
𝐵
𝑘
(𝑚 + 2𝑘, 𝑛)

𝐵
𝑘
(𝑚, 𝑛)

=
Γ
𝑘
(𝑚 + 2𝑘) Γ

𝑘
(𝑛) Γ
𝑘
(𝑚 + 𝑛)

Γ
𝑘
(𝑚) Γ
𝑘
(𝑛) Γ
𝑘
(𝑚 + 𝑛 + 2𝑘)

=
𝑚 (𝑚 + 𝑘)

(𝑚 + 𝑛) (𝑚 + 𝑛 + 𝑘)
.

(43)

Thus substituting the values of𝐸
𝑘
(𝑍
2

) and𝐸
𝑘
(𝑍) in (42) along

with some algebraic calculations we have the desired result.

2.2. 𝑘-Beta Distribution of the Second Kind. A continuous
random variable 𝑍 is said to have a 𝑘-beta distribution of
the second kind with parameters 𝑚 and 𝑛, if its probability
distribution function is defined by

𝑓
𝑘
(𝑧)

=

{{

{{

{

1

𝑘𝛽
𝑘
(𝑚, 𝑛)

𝑧
𝑚/𝑘−1

(1 + 𝑧)
(𝑚+𝑛)/𝑘

, 0 ≦ 𝑧 < ∞; 𝑚, 𝑛, 𝑘 > 0,

0, otherwise.
(44)

Note. The 𝑘-beta distribution of the second kind is denoted
by 𝛽
2,𝑘
(𝑚, 𝑛).

Theorem 4. The 𝑘-beta function of the second kind represents
a probability distribution function that is

∫

∞

0

𝑓
𝑘
(𝑧) 𝑑𝑧 = 1. (45)

Proof. We observe that

∫

∞

0

𝑓
𝑘
(𝑧) 𝑑𝑧 = ∫

∞

0

1

𝑘𝛽
𝑘
(𝑚, 𝑛)

𝑧
𝑚/𝑘−1

(1 + 𝑧)
(𝑚+𝑛)/𝑘

𝑑𝑧. (46)

Let 1 + 𝑧 = 1/𝑦, so that 𝑑𝑧 = −𝑑𝑦/𝑦
2; thus by using the

relation (11), the above equation gives

=
1

𝛽
𝑘
(𝑚, 𝑛)

1

𝑘
∫

1

0

𝑦
𝑛/𝑘−1

(1 − 𝑦)
𝑚/𝑘−1

𝑑𝑦 =
𝛽
𝑘
(𝑚, 𝑛)

𝛽
𝑘
(𝑚, 𝑛)

= 1.

(47)

3. Moment Generating Function of
𝑘-Gamma Distribution

In this section, we derive the moment generating function
of continuous random variable 𝑍 of newly defined 𝑘-gamma
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distribution in terms of a new parameter 𝑘 > 0, which is
illustrated as

𝑀
0,𝑘
(𝑡) = 𝐸

𝑘
(𝑒
𝑡𝑍
𝑘

) = ∫

∞

0

1

Γ
𝑘
(𝑚)

𝑒
𝑡𝑧
𝑘

𝑧
𝑚−1

𝑒
−𝑧
𝑘
/𝑘

𝑑𝑧

=
1

Γ
𝑘
(𝑚)

∫

∞

0

𝑧
𝑚−1

𝑒
(−𝑧
𝑘
/𝑘)(1−𝑘𝑡)

𝑑𝑧.

(48)

Let 𝑢 = 𝑧(1−𝑘𝑡)
1/𝑘, so that 𝑧 = 𝑢/(1−𝑘𝑡)

1/𝑘 and 𝑑𝑧 = 𝑑𝑢/(1−

𝑘𝑡)
1/𝑘. Then substituting these values in (48), we obtain

𝑀
0,𝑘
(𝑡) =

1

(1 − 𝑘𝑡)
(𝑚−1)/𝑘

Γ
𝑘
(𝑚)

∫

∞

0

𝑢
𝑚−1

𝑒
−𝑢
𝑘
/𝑘

𝑑𝑢

(1 − 𝑘𝑡)
1/𝑘

=
1

(1 − 𝑘𝑡)
𝑚/𝑘

Γ
𝑘
(𝑚)

∫

∞

0

𝑢
𝑚−1

𝑒
−𝑢
𝑘
/𝑘

𝑑𝑢

=
Γ
𝑘
(𝑚)

(1 − 𝑘𝑡)
𝑚/𝑘

Γ
𝑘
(𝑚)

= (1 − 𝑘𝑡)
−𝑚/𝑘

, |𝑘𝑡| < 1.

(49)

Now differentiating 𝑟 times 𝑀
0,𝑘
(𝑡) with respect to 𝑡 and

putting 𝑡 = 0, we get

𝜇
󸀠

𝑟,𝑘
= 𝑚 (𝑚 + 𝑘) (𝑚 + 2𝑘) ⋅ ⋅ ⋅ (𝑚 + (𝑟 − 1) 𝑘) . (50)

Thus when 𝑟 = 1, we obtain 𝜇
󸀠

1,𝑘
= 𝑚, when 𝑟 = 2, 𝜇󸀠

2,𝑘
=

𝑚(𝑚+ 𝑘), and hence 𝜇
2,𝑘

= 𝜇
󸀠2

1,𝑘
− 𝜇
󸀠

2,𝑘
= 𝑚𝑘 = variance of the

𝑘-gamma distribution proved in Proposition 2.

3.1. Higher Moment in terms of 𝑘. The 𝑟th moment in terms
of 𝑘 is given by

𝜇
󸀠

𝑟,𝑘

= 𝐸 (𝑍
𝑟

) =
1

𝑘𝐵
𝑘
(𝑚, 𝑛)

∫

1

0

𝑧
𝑟

⋅ 𝑧
𝑚/𝑘−1

(1 − 𝑧)
𝑛/𝑘−1

𝑑𝑧

=
1

𝑘𝐵
𝑘
(𝑚, 𝑛)

∫

1

0

𝑧
𝑚/𝑘+𝑟−1

(1 − 𝑧)
𝑛/𝑘−1

𝑑𝑧

=
𝐵
𝑘
(𝑚 + 𝑟𝑘, 𝑛)

𝐵
𝑘
(𝑚, 𝑛)

=
Γ
𝑘
(𝑚 + 𝑟𝑘) Γ

𝑘
(𝑚 + 𝑛)

Γ
𝑘
(𝑚) Γ
𝑘
(𝑚 + 𝑟𝑘 + 𝑛)

=
𝑚 (𝑚 + 𝑘) (𝑚 + 2𝑘) ⋅ ⋅ ⋅ (𝑚 + (𝑟 − 1) 𝑘)

(𝑚 + 𝑛) (𝑚 + 𝑛 + 𝑘) (𝑚 + 𝑛 + 2𝑘) ⋅ ⋅ ⋅ (𝑚 + 𝑛 + (𝑟 − 1) 𝑘)
.

(51)

Theorem 5. The moments of the higher order of 𝑘-beta
distribution of the second kind are given as

𝜇
󸀠

𝑟,𝑘
=
𝑚 (𝑚 + 𝑘) (𝑚 + 2𝑘) ⋅ ⋅ ⋅ (𝑚 + (𝑟 − 1) 𝑘)

(𝑛 − 𝑘) (𝑛 − 2𝑘) ⋅ ⋅ ⋅ (𝑛 − 𝑟𝑘)
. (52)

Proof. Consider

𝜇
󸀠

𝑟,𝑘
= 𝐸 (𝑍

𝑟

) = ∫

∞

0

1

𝑘𝛽
𝑘
(𝑚, 𝑛)

𝑧
𝑚/𝑘−1+𝑟

(1 + 𝑧)
(𝑚+𝑛)/𝑘

𝑑𝑧. (53)

Changing the variables as 𝑧 = (1 − 𝑦)/𝑦 ⇒ 𝑑𝑧 = (−1/𝑦
2

)𝑑𝑦,
above equation becomes

=
1

𝑘𝛽
𝑘
(𝑚, 𝑛)

∫

1

0

𝑦
𝑛/𝑘−𝑟−1

(1 − 𝑦)
𝑚/𝑘+𝑟−1

𝑑𝑦. (54)

Replacing (1 − 𝑦) by 𝑡, we have

𝜇
󸀠

𝑟,𝑘
=

1

𝛽
𝑘
(𝑚, 𝑛)

1

𝑘
∫

1

0

𝑡
𝑚/𝑘+𝑟−1

(1 − 𝑡)
𝑛/𝑘−𝑟−1

𝑑𝑡

=
𝛽
𝑘
(𝑚 + 𝑟𝑘, 𝑛 − 𝑟𝑘)

𝛽
𝑘
(𝑚, 𝑛)

=
Γ
𝑘
(𝑚 + 𝑟𝑘) Γ

𝑘
(𝑛 − 𝑟𝑘) Γ

𝑘
(𝑚 + 𝑛)

Γ
𝑘
(𝑚) Γ
𝑘
(𝑛) Γ
𝑘
(𝑚 + 𝑛)

=
Γ
𝑘
(𝑚 + 𝑟𝑘) Γ

𝑘
(𝑛 − 𝑟𝑘)

Γ
𝑘
(𝑚) Γ
𝑘
(𝑛)

.

(55)

Now using Γ
𝑘
(𝑛 − 𝑟𝑘) = Γ

𝑘
(𝑛)/(𝑛 − 𝑘)(𝑛 − 2𝑘) ⋅ ⋅ ⋅ (𝑛 − 𝑟𝑘) in

the above equation we get the desired result.

4. Conclusion

In this paper the authors conclude that we have the following.

(i) If 𝑘 tends to 1, then 𝑘-gamma distribution and 𝑘-
beta distribution tend to classical gamma and beta
distribution.

(ii) The authors also conclude that the area of 𝑘-gamma
distribution and 𝑘-beta distribution for each positive
value of 𝑘 is one and theirmean is equal to a parameter
𝑚 and 𝑚/(𝑚 + 𝑛), respectively. The variance of 𝑘-
gamma distribution for each positive value of 𝑘 is
equal to 𝑘 times of the parameter 𝑚. In this case if
𝑘 = 1, then it will be equal to variance of gamma
distribution. The variance of 𝑘-beta distribution for
each positive value of 𝑘 is also defined.

(iii) In this paper the authors introduced moments gener-
ating function and higher moments in terms of a new
parameter 𝑘 > 0.
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