
Progrannning Enviromnent for a High­
Performance Parallel Supercomputer with
Intelligent Commmrication

A. GUNZINGER, B. BAUMLE, M. FREY, M. KLEBL, M. KOCHEISEN, P. KOHLER, R. MOREL,
U. MULLER, AND M. ROSENTHAL

Electronics Laboratory, Swiss Federal Institute of Technology (ETH), 8092 Zurich, Switzerland; e-mail: gunzinger@ife.ee.ethz.ch

ABSTRACT

At the Electronics Laboratory of the Swiss Federal Institute of Technology (ETH) in Zurich,
the high-performance parallel supercomputer MUSIC (MUlti processor System with
Intelligent Communication) has been developed. As applications like neural network
simulation and molecular dynamics show, the Electronics Laboratory supercomputer
is absolutely on par with those of conventional supercomputers, but electric power
requirements are reduced by a factor of 1,000, weight is reduced by a factor of 400,
and price is reduced by a factor of 100. Software development is a key issue of such
parallel systems. This article focuses on the programming environment of the MUSIC
system and on its applications. © 1996 by John Wiley & Sons, Inc.

1 INTRODUCTION

Parallel computers based on standard micropro­
cessors have proven that for many compute-inten­
sive applications they are able to reach perfor­
mances comparable to those of classical
supercomputers at a much lower cost. Tasks like
digital signal processing, the training of neural
nets, and simulations in physics and chemistry
have a great potential for parallel processing, i.e.,
they can be divided into several processes that run
independently in parallel on different processors
of a parallel or a distributed computer. The major
limiting factors for the attainable speedup of a

Received November 1994
Revised September 1995

© 1996 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 5, pp. 25-32 (1996)
CCC 1058-9244/96/010025-08

multiprocessor system against a single-processor
machine are the serial part of the program that
cannot be parallelized (Amdahl's Law) and the
time lost communicating data among the pro­
cesses. While nothing can be done about the first,
the second can be minimized if the system offers
fast, low latency communication among the pro­
cessing elements (PEs) and the programming
model really makes use of the available bandwidth.
This includes that the programming environment
allows simple generation of efficient parallel code.

Different architectures have been proposed by
developers [3, 17 -19]. Many systems show a
rather poor speedup for applications with low data
locality. The goal of the MUSIC [7, 13] project
was to design and build a parallel supercomputer
system with an improved speedup behavior and to
demonstrate its performance with real-world ap­
plications. This article focuses on the program­
ming environment of the MUSIC system and on
its application.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192695668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

26 GU:\"ZJ:\GER ET AL.

2 SYSTEM CONCEPT

The goal of building parallel systems is to increase
the performance by using several processors work­
ing in parallel. In digital signal processing and nu­
merical simulation the most simple computing
model for a parallel processors is SPMD (single
program multiple data) which means that each
processor executes the same program on different
data. The main problem in this computing model
is the exchange of data among the different PEs.
To support this computing model, global broad­
cast is used: All information produced by one sin­
gle PE is transferred to all other PEs. The ones
interested in that data make a local copy of it.
Figure 1 illustrates a typical situation: At the begin­
ning each PE has a local copy of the complete
input data set and computes a part of the output
data set (in this figure a matrix multiplication is
shown). The subsequent communication phase re­
distributes the data so that each PE has all infor­
mation necessary to continue with its next process­
ing step. As it can be seen in Figure 1 in the case
of a large number of processors, communication
administration can become the most critical part.
Simulations have shown that this communication
administration is even more critical than the net­
work bandwidth.

Here, the concept of intelligent communication
(IC) starts: The administration of communication
is implemented totally in hardware and runs at the

f:::::::::::::::;:;:::::::j

,
: :

t

l-8·o

p:=\:::\i=::::::::~
•·········· . . ·------···-·

t

l-8·o
·········
~ f .. !~j :

t t

1-8·· ~--lf---1-8··

FIGURE 1 Data distribution and collection phases in
the MUSIC system.

same speed as the communication network itself;
the communication becomes intelligent. This con­
cept makes better use of the bandwidth of anv
network applied to complex communicatio~
schemes: in such applications 95% of the peak
communication rate could be measured.

It was the goal of this project to demonstrate the
correctness of this concept.

2.1 System Hardware

Figure 2 gives an overview of the hardware of the
MUSIC system. Each board contains three PEs.
Each PE consists of a DSP (96002 by Motorola),
2.8 MByte video RAM (VRAM), 0.25 .. 1 MBvte
static RAM (SRAM), and a communication c~n­
troller logic cell array (LCA, XILIJ\X XC3090).
Because the communication network uses the
VRAM's serial port for the communication, its ac­
tivity affects normal data processing on the DSPs
only slightly. Each board also contains a manager
(INMOS T805 transputer), connected to the host
interface of the DSPs. lt is responsible for up- and
down-loading of data and code, time measure­
ments, and the dynamic adaption of processor
loads. The managers of different boards are con­
nected by their transputer links and form a stan­
dard transputer network. For the fast data
throughput required by applications such as real­
time image processing, special input/ output
boards can be added. The MUSIC svstem is con­
nected to the host computer (SUN, PC, MAC) by
a transputer link or SCSI connection. The host
computer has access to mass storage and user ter­
minals and is responsible for managing the com­
plete MUSIC system from the user's point of view.
The communication network is a pipelined ring
bus, operating at a 15-MHz clock rate. Its width
is 40 bits: 32 data bits and 8 token bits. The tokens
contain the identification of the transmitting PE.
The IC is implemented in a distributed fashion:
Each PE has its own communication controller
implemented in a programmable gate array. The
IC-controller controls the access from/ to the
VRAM of the processor to/from the network.

The DSPs run at a 40-MHz clock rate and have
a peak performance of 60 MFlops. l\;otice that the
DSP clock rate is independent of the communica­
tion clock rate. Up to 21 boards or 63 PEs fit into
a standard 19-inch rack, resulting in a 3.8-GFlops
system. The power consumption of such a system
is less than 800 W (a standard supercomputer uses
400 kW), its weight is 40 kg (the weight of a con­
ventional supercomputer is in the range of 16

--, _, -I

---""" -

.

~--- --- -- ---------------------------------------

FIGURE 2 Block diagram of the .\ICSIC system.

tons), and its price is in the range of several thou­
sand dollars (vs. several million dollars for a classi­
cal supercomputer).

The ~CSIC system also offers different high­
speed input/ output interfaces such as for audio.
video, radar, high-speed network, and hard disks
(SCSI). The mobility of the MCSIC system, its low
power requirement, and its fa,;t l/0 allow,; it di­
rectly at the place of the application, e.g" in a
plane, in a car. or for oil exploration.

2.2 System Software

The system software of MlJSIC especially supports
the implementation of data-parallel algorithms.
This means that the same program (algorithm) is
executed on several PEs in parallel, but each pro­
gram is executed on a different data set and pro­
duces a different part of the resulting data block.
This computing model is also called SP~D. Be­
tween two iteration steps a redistribution of the
data takes place. Data-parallel iteration steps are
often naturally inherent to simulation applications
as in physics, chemistry, linear algebra, and neu­
ral networks.

The user has to write data-parallel code for one
single DSP using C or assembly language for time
critical parts in the program (Fig. 3). To write such
a parallel program is not essentially more compli­
cated than an implementation on a single process­
ing environment. The main difference is that the
data-parallel code must be able to produce only a
subset of the resulting data block. Just three func­
tions are needed to control the communication net-

work: Ini t_comm () initializes the communica­
tion network for the redistribution of a particular
data block. The user program gets all the parame­
ters it needs to run an SPMD program (array sizes,
dimensions. and buffer pointers); Data_ready ()
informs the communication network that a new
data subset is ready to be transported to other PEs:
and Wai t_data () waits until all expected data
values have arrived and are ready to be used for
the following computation steps.

The partitioning of the data i,; basically arbi­
trary. but the usual way is to tell the operating
system only along which axis of a multidimensional
data block (x, y, z . . .) the distributions have to
be carried out. The actual partitioning scheme is
then determined by the operating system at run­
time according to the data size and the number of
PEs. This means the operating systems on every
PE know how manv PEs are available. the size of
the data array, and in which dimensions this array
has to be distributed. According to this. it sets

C and/or Assembler Application

C Runtime MUSIC Communication

Library Library

Computing Hardware Communication

Hardware

FIGURE 3 Software structure using standard C.

28 Gl !\Zl:\"GER ET AL.

the parameters for the following communication.
Because all PEs elements are using the same algo­
rithm to calculate its own data pare no overlap
will occur unless otherwise defined. The data parti­
tioning and communication are fully hardware
supported for one. two. and three-dimensional
data sets. Higher dimensions can be implemented
in software.

The standard partitioning method of the ope rat­
ing system is to subdivide the data sets into equally
sized pieces. This method works well if the process­
ing time is independent of the data values. Another
implemented technique is r~vnamic load balanc­
ing. In this case the operating system computes
the data distribution according to the computation
times of the different PEs in the previous iteration
step. In the present solution it is assumed that the
computationally intensive areas of a data set differ
little between two consecutive iteration steps. The
implementation of other load-balancing para­
digms is conceivable.

Some languages such as high-performance For­
tran (HPF) and high-performance C (HPC) sup­
port data-parallel programming. Data distribution
and redistribution functions from these languages.
the key features for data-parallel programming
with HPF and HPC, are directly supported by IC.
This makes the implementation of such compilers
very easy. No mapping to message passing or writ­
ing of new functions has to be done. Figure 4 shows
the software structure for HPC. This compiler has
been implemented at the Electronics Laboratory
[9]. Comparing HPC with a C program with addi­
tional parallel functions. most data-parallel appli­
cations written in HPC run as fast as in standard C:
however, implementation in HPC is much easier.

2.3 Program Example

In the MUSIC system parallelization is done in the
data space. This means each PE holds its needed

HPC and'or C and/or Assembler Application

I High Performance C • Library I
C Runtime MUSIC Communication

Ubrary Ubrary

Computing Har!t.wre Communication

Har!t.wre

FIGURE 4 Software structure using HPC.

part of the total data and computes its part of
the result. After this computation the results are
globally communicated and each PE makes a copy
of the result data needed for the next calculation.
To demonstrate the implementation of a parallel
program to the ~ICSIC system, a simple ma­
trix-vector multiplication is used:

x(t + 1) =A · x(t)

Firsc the global dimensions of vector x are en­
tered in a C011111Ldef _ t structure (in this case the
order of the vector is 400). The operating system
function Complete_procLwindow () calculates
which part of the result data will be on which PE
and enters these values (which are different for
each PE) in the structure. We use x.....DISTR here
to get a distribution of the data into blocks of simi­
lar size. We then have to allocate memory for the
number of elements that will be locally on this PE.

co11111Ldef_t cd;

cd.dim.x 400;
cd. dim. y 1;
cd. dim. z 1;
cd.elem_size = 1;
Complete_procLwindow (&cd, x.....DISTR) ;
Complete_cons_window (&cd, ALL_DISTR,

0, 0, 0);
x_old dmalloc(400, MT_CONS);
x_new dmalloc(cd.prod.nelements,

MT_.PROD);

Each PE has to calculate onlv its amount of
data, up to the upper local boundary
cd. prod. part. x. After the calculation. its part
of x_new has to be communicated and all PEs get
the complete result vector. This is done by the
following 3-system functions.

The programmer has to look at the problem
from a local point of view.

MINT iteration(void)
{

}

int i, k;
MINT sum;

for(i=O; i<cd.prod.part.x; i++)
{
sum = 0;
for (k=O; k<400; k++)

sum+= a[i*400+k] *x_old[k];
x_new [i] = sum;

}

Init_comm(&cd, x_new, x_old,
COMl\LNORM) ;

Data_ready(ALL_DATA);
Wait_data(ALL_DATA);
return 0;

HPC [9] is an extension to the C programming
language that simplifies data -parallel program
ming in distributed memory systems. It supplies
constructs that make it easv to distribute data on
several PEs and that ease access to this distributed
data. In HPC. algorithms can be written from a
global point of view in contrast to traditional .\1U­
SIC programming which is done from a local point
of view. This simplifies application development
and makes it easy to migrate soft ware to other data­
parallel architectures. To illustrate this approach
we show the same example written in HPC.

par MINT x_old[400] @ [];
par MINT x_new [400] @ [block];

The arrays are declared as par (parallel) vari­
ables, which means they are distributed on all PEs.
The kind of distribution is stated after the@ char­
acter: e.g., array x_new is distributed in a manner
that each PE holds a block (of equal size) of the
array. Arrayx_oldis not distributed, which means
all PEs own a complete copy of it.

The k loop in this version is written with a global
index (0 to 400) as it would be in an algorithm for
a single processor system. The only difference of
HPC to such a program is the first loop in this
example. forall is a for loop that can be executed
in parallel on every PE. The forallloop is restricted
by the on_owner statement to ensure each PE
only computes its part of the distributed data. In
HPC. the programmer looks at array indices from
a global point of view just as if programming a
single processor system.

Communication of the distributed vector x_new
to x_old is done by just assigning x_new [] to
x_old [].

par MINT iteration(void)
{

int i, k;
MINT sum;

forall(i=O; i<400; i++)
on_owner(x_new[i])
{

sum = 0;

}

PROGRAYL\11'\G E'\YIR0:\'\1EYf 29

for (k=O; k<400; k++)
sum+= a[i] [k] *x_old[k];

x_new [i] = sum;
} x_old[] = x_new[];

return 0;

Note. the program for both applications is totally
independent of the number of PEs: this means.
that after compilation a program can run on a ·'L
12, or 60 PE svstem without anv changes in the
program code. rfhe program load~r adjusts the dif­
ferent local counter variables to the right value.

3 APPLICATIONS

Applications of the ~1CS1C computer include sig­
nal processing (audio, video. RADAR). computer
graphics. neural networb, and simulations in
chemistry and physics.

3.1 Neural Networks

Back-propagation is a very popular algorithm for
the learning of layered feed forward neural net­
works (multilayer perceptrons) [16]. Each of the
PEs of the MUSIC system computes a subset of
the output vector of a specific layer of the neural
net. These subsets are collected and a copy of the
complete vector is distributed by the communica­
tion network to serve as input for the computation
of the following layer. To avoid the communication
of the updated weights, which would lead to com­
munication saturation very easily. two different
weight subsets for the forward and the backward
propagation are stored and updated individually
on every PE[10].

The measured results and a comparison to other
computer systems are given in Table 1. The most
critical part in neural net is learning, therefore the
performance is measured in .\1CUPS (million con­
nection updates per second). It tells how many
weights may be updated in a second.

On a MCSIC-21 we get 330 MCUPS; this cor­
responds to 1, 408 algorithmic YIFlops. However.
because the weight update is computed twice, ac­
tually 1,870 MFlops are executed. This is about
50% of the peak performance (3.8 GFlops).

We would like to emphasize that the MUSIC
system has been designed to be used in research
work and therefore has a very high degree of flexi­
bility. That means that it allows almost any modi­
fication on the neural network structure and learn-

30 GL:'\iZll\"GER ET AL.

Table 1. Comparison of Back-Propagation Implementations

Continuous
1\"o. of Backprop Weight

System PEs [MCLPS] Lpdate

PC (80486, 50 MHz)* 1 0.47 Yes
Sun (Sparcstation 10)* 1 1.1 Yes
Alpha station (150 MHz)* 1 3.2 Yes
Transputer T800 [11] 64 9.9
Warp [15] 10 17.0 :\"o
CM-2 64K 40.0 '\o
CRA Y Y -~IP C90 1 65.6 Yes
CM-5 512 78.0 1'\o
RAP 40 106 Yes
:'\iEC SX-3** 1 130.0 Yes
MUSIC-21 * 6:3 330 Yes
GF11 356 901 ~0

* Based on our U\vn tneasurernents.
**Presented bv 1'<. Koike ofl'<EC at the 1992 Second ETH-:\"EC .Joint \J>~orkshop

on Supercomputing (no published referPnee available).

ing algorithm. Other implementations are much
more restricted in this point. The IBM GF11 imple­
mentation (900 YICUPS), for instance, parallelizes
over the training set. This method only allows
batch learning (no immediate weight update),
which has the effect that the learning convergence
is in many cases much slower.

Convolutional nets are partially connected neu­
ral nets with shared weights. Because such nets
have a very complicated communication structure,
implementation on a parallel computer becomes
verv difficult. On the YICSlC svstem convolutional . .
nets were implemented successfully [12].

3.2 Molecular Dynamics

The program MD-Atom is used for time-discrete
simulations of the dvnamics of atomic fluids. The
basic concept of this algorithm is the computation
of all partial forces to a single atom generated by
all other atoms. This force is considered to be con­
stant in a single time step (10- 15 to 10-H s) and
with Newton's equations of motion a new position
is computed.

For each iteration step the following operations
are executed: (1) compute the distance between
each atom and all other atoms; (2) if the distance
is smaller than a cut-off radius Rn compute the
pair force (only atoms in the near neighborhood
have an influence); (3) compute sum of all pair
forces and make position update [14].

As a benchmark, two models with 125 atoms

and 1,000 iterations, and 1000 atoms and 100
iterations, respectively have been chosen [2, 5, 6].

In the YICSIC implementation, the positions are
broadcast to all PEs. Each PE does the position
update for its share of atoms and broadcasts the
new positions again among all PEs. The MUSIC
implementation is written in assembly language.
as no compiler was available at the time of writing.

To compare the performance of MD-Atom on
MUSIC with other supercomputers, an implemen­
tation on the NEC SX-3, one on the CRAY YYIP,
and one on the Sun-4 (IPX) was done by the Labo­
ratory of Physical Chemistry. Swiss Federal Insti­
tute of Technology [6. 8]. These implementations
were written in Fortran and have been optimized
for the respective hardware. As far as we know.
these are the fastest implementations of ~1D-Atom
on supercomputers.

The measured results of this comparison are
given in Tables 1 and 2. The programs of the Cray

Table 2. Executing Time of MD-Atom on
Different Computer Systems

Sun IPX
CRAY Y-MP
NEC SX-3
MUSIC-10 (30 PEs)
MUSIC-20 (60 PEs)

Model 1
(125/1.000)

118
3.7
1.4
1.3
0.91

Model2
(1,000/100)

643
12.2

4.4
3.8
2.02

and the 1\"EC supercomputer are using one proces­
sor. An implementation for more than one proces­
sor has, as far as we know, not been realized yet.
As can be seen, the MCSIC system is the fastest
in both cases. For the 1,000 atom system running
on MuSIC-20, an algorithmic performance of
about 500 MFlops was obtained: the ~CSIC-20
actually executed L 163 ~1Flops.

Apart from the direct computation of distances,
other acceleration techniques like pair list are also
available on the MCSIC now. The benchmarking
of these methods for other supercomputers will be
done in the near future.

3.3 EEG Analysis

The quantitative analysis of the human sleep elec­
troencephalogram (EEG) has provided new in­
sights into the processes underlying sleep regula­
tion and given rise to formal mathematical models
of sleep regulation. The complexity of the EEG
can be estimated by calculating the correlation di­
mension. This represents a novel approach to ex­
ploring the dynamics of sleep and the processes
underlying its regulations. Due to the large number
of calculations required, only selected short seg­
ments (4 to 164 s) of the sleep EEC could be ana­
lyzed so far. By using the ~LSlC system, whole
night EEGs (480 min) of 11 persons were ana­
lyzed. A MCSIC system with 21 processors is able
to do the calculations in real time [1 j.

3.4 Plasma Physics

The one-dimensional Particle-In-Cell & Monte
Carlo collision code XPDP1 is used to model radio­
frequency argon-plasma discharges. The code
runs faster on the MCSIC system than on a CRA Y
Y -~P. The low cost of the MCSIC svstem allows
a 24-h per-day use and the simulation results are
available one order of magnitude quicker than with
a supercomputer shared with other users. Very
good agreement is found between simulation re­
sults and measurements done in an experimental
argon discharge [4 j.

4 CONCLUSION

The goal of this project, to build a parallel super­
computer and to demonstrate its performance in
real-world applications, could be attained. The
low power consumption and small size make it
possible to put such a computer on the scientist's

PROGRA.\1.\11:--JG E~VIRO"'ME:\T 31

desk or use it in many mobile applications. The
programming environment allows an easy imple­
mentation of data-parallel algorithms achieving a
very high performance.

REFERENCES

[1] P. Achermann, R. Hartmann, A. Gunzinger. W.
Guggenbiihl, and A. A. Borbely, ·'Correlation di­
mension of the human sleep electroencephalo­
gram: cyclic changes in the course of the night.··
Eur.]. Neurosci. vol. 6, pp. "±9?-500.

[2] M.P. Allen and D. J. Tildesley, ComputerSinwla­
tions of Liquids. :'\Jew York: Oxford Lniversity
Press, 1987.

[3] M. Annaratone. E. Arnold. T. Gross. H. T. Kung.
M. Lam, 0. Menzilicioglu. and J. A. \Vebb. "The
WARP computer: architecture. implementation
and performance," /L'A'E Trans. Compul .. vol. C-
36. no .. 12. pp. 1523-1538. Dec. 198?.

[4] .\1. Fifaz. B. Biiumle. A. Howling. L. Ruegsegger,
and w·. Schwarzenbach. ·'Parallel simulation of
radio-frequency discharges.·· in 6th ./oint EPS­
APS International Conference on Ph.Ysics Com­
puting, Lugano. Switzerland. August 199"±. pp.
5-8.

[5] W. F. van Gunsteren and H. J. C. Berendsen. '':\lo­
lecular dynamics computer simulations: method­
ology. applications and perspectives in chemis­
try. Angewandte Chemic. vol. 29. pp.
992-1023, 1990.

[6] W. F. van Gunsteren, II. J. C. Berendsen. F. Co­
lonna, D. Perahia. J.P. Hollenberg. and D. Lel­
louch." On searching neighbours in computer
simulations of macromolecular svstems .. , ./.
Camp. Chem., vol. 5, no. :3. pp. 272-2?9. 198"-t.

[?] A. Gunzinger, l). :\1i1ller. and H. Vonder :\IiihlL
''Architecture and realization of a multi signal
processor system." in Berlin '91, A. Aliphas, Ed.
DSP Associates. 1991, pp. 2"±2-249.

[8] A. Gunzinger, L. A . .\1i1ller. W. Scott, B. Biiumle,
P. Kohler, H. V . .\1iihll. F . .\1iiller-Plathe. W. F.
van Gunsteren, and W. Guggenbiihl, "Achieving
supercomputer performance with a DSP array
processor. in Supercomputing '92, IEEE/ ACM.
IEEE Computer Society Press, 1992. pp.
543-550.

[9] P. Kalberer and R. MoreL Parallelisiererzder Com­
piler fur SPMD-Rechner. ETH Z iirich: Institut fur
Elektronik. 1 994.

[10] W.-M. Lin, V. K. Prasanna, and K. Wojtek Przy­
tula, Algorithmic mapping of neural network mod­
els onto parallel simd machines," IEEE' Trans.
Computers, vol. 40, pp. 1390-1401, December
1991.

[11] H. Miihlbein and K. Wolf, "~eural network simu-

32 Gl'-.;ZI:'\GER ET AL.

lation on parallt>l computt>rs. · · Parallel Comput­
ing->;,9, in D. J. Evans. C. R. Jouben. and Frans
J. Peters. Eds. Am~tt>rdam: '-.;onh Holland. 1990.
pp. 365-37"!.

r12] C. A. ~hiller. ··Parallel traininf! of convolutional
nets with panial baches."' Ad1•. Aeural Informa­
tion Processing Srstems (:\'IPS-7) (submitted).

[13] L.A. MiillPr. B. Biiumle. P. Kohler. A. Gunzinger.
and ~-. Guggenbiihl. .. Achin·ing supercornputPr
performance for nPural net simulation with an
array of digital signal procpssors."' !Ef..'E Jlicro,
vol. 12. pp. 55-65. 1992.

[14] F. Muller-Plathe ... Paralldising a molecular dy­
namics algorithm on a multi-proct>ssor worksta­
tion." Computer Ph_1·s. Communications. vol. 61.
pp. 285-293. 1990.

[15] D. A. Pomerleau. G. L. Gusciora. D. S. Touretzkv.
and H. T. Kung. ·''-.;eural network simulation at
warp speed: I fow we got 17 million connections
per second. •· in IEEf~ Int. Con.f Neural Networks.
1988. p. Il-143.

[161 D. E. Rumelhan. G. E. Ilinton. and R. J. ~-illiams.

"Learning internal rPpresentation by error propa­
gation ... in Parallel Distributet Processing: Lr.:­
plorations in the Jlicrostructure of Cognition.
D. E. Rumelhan and J. L. McClelland. Eds .. vol.
1. Cambridere • .\1A: Bradford Books. 1986. pp.
318-362.

[17] R. R. Shively and L. J. Wu. "Application and
packaging of the AT & T DSP:~ parallPI sif!nal pro­
cessor."· in Digital Signal Processing-gl. \'.Cap­
pPilini and A. G. Constantinides. Eds. :\'ew York:
Elsevier. 1 991 .

[18] .\1. Witbrock and M. Zaerha. "An implementation
of backpropaeration learning on GF11. a large
SI.\1D parallel computer."' Parallel Computing.
vol. 14. pp. 329-:346. 1990.

[19] X. Zhang . .\1 . .\lckenna. J.P . .\lesirov. and D. L.
~-altz. '·An efficient implementation of the back­
propagation algorithm on the connection machine
em-2."' in Advances in fVeural Information Pro­
cessing !::J)·stems (;\JPS-89). David S. Touretzky.
Ed. San .\lateo. CA: .\forgan Kaufman Publishers ..
1990. pp. 801-809.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

