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ABSTRACT 

At the Electronics Laboratory of the Swiss Federal Institute of Technology (ETH) in Zurich, 
the high-performance parallel supercomputer MUSIC (MUlti processor System with 
Intelligent Communication) has been developed. As applications like neural network 
simulation and molecular dynamics show, the Electronics Laboratory supercomputer 
is absolutely on par with those of conventional supercomputers, but electric power 
requirements are reduced by a factor of 1,000, weight is reduced by a factor of 400, 
and price is reduced by a factor of 100. Software development is a key issue of such 
parallel systems. This article focuses on the programming environment of the MUSIC 
system and on its applications. © 1996 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Parallel computers based on standard micropro­
cessors have proven that for many compute-inten­
sive applications they are able to reach perfor­
mances comparable to those of classical 
supercomputers at a much lower cost. Tasks like 
digital signal processing, the training of neural 
nets, and simulations in physics and chemistry 
have a great potential for parallel processing, i.e., 
they can be divided into several processes that run 
independently in parallel on different processors 
of a parallel or a distributed computer. The major 
limiting factors for the attainable speedup of a 
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multiprocessor system against a single-processor 
machine are the serial part of the program that 
cannot be parallelized (Amdahl's Law) and the 
time lost communicating data among the pro­
cesses. While nothing can be done about the first, 
the second can be minimized if the system offers 
fast, low latency communication among the pro­
cessing elements (PEs) and the programming 
model really makes use of the available bandwidth. 
This includes that the programming environment 
allows simple generation of efficient parallel code. 

Different architectures have been proposed by 
developers [3, 17 -19]. Many systems show a 
rather poor speedup for applications with low data 
locality. The goal of the MUSIC [7, 13] project 
was to design and build a parallel supercomputer 
system with an improved speedup behavior and to 
demonstrate its performance with real-world ap­
plications. This article focuses on the program­
ming environment of the MUSIC system and on 
its application. 
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2 SYSTEM CONCEPT 

The goal of building parallel systems is to increase 
the performance by using several processors work­
ing in parallel. In digital signal processing and nu­
merical simulation the most simple computing 
model for a parallel processors is SPMD (single 
program multiple data) which means that each 
processor executes the same program on different 
data. The main problem in this computing model 
is the exchange of data among the different PEs. 
To support this computing model, global broad­
cast is used: All information produced by one sin­
gle PE is transferred to all other PEs. The ones 
interested in that data make a local copy of it. 
Figure 1 illustrates a typical situation: At the begin­
ning each PE has a local copy of the complete 
input data set and computes a part of the output 
data set (in this figure a matrix multiplication is 
shown). The subsequent communication phase re­
distributes the data so that each PE has all infor­
mation necessary to continue with its next process­
ing step. As it can be seen in Figure 1 in the case 
of a large number of processors, communication 
administration can become the most critical part. 
Simulations have shown that this communication 
administration is even more critical than the net­
work bandwidth. 

Here, the concept of intelligent communication 
(IC) starts: The administration of communication 
is implemented totally in hardware and runs at the 
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FIGURE 1 Data distribution and collection phases in 
the MUSIC system. 

same speed as the communication network itself; 
the communication becomes intelligent. This con­
cept makes better use of the bandwidth of anv 
network applied to complex communicatio~ 
schemes: in such applications 95% of the peak 
communication rate could be measured. 

It was the goal of this project to demonstrate the 
correctness of this concept. 

2.1 System Hardware 

Figure 2 gives an overview of the hardware of the 
MUSIC system. Each board contains three PEs. 
Each PE consists of a DSP (96002 by Motorola), 
2.8 MByte video RAM (VRAM), 0.25 .. 1 MBvte 
static RAM (SRAM), and a communication c~n­
troller logic cell array (LCA, XILIJ\X XC3090). 
Because the communication network uses the 
VRAM's serial port for the communication, its ac­
tivity affects normal data processing on the DSPs 
only slightly. Each board also contains a manager 
(INMOS T805 transputer), connected to the host 
interface of the DSPs. lt is responsible for up- and 
down-loading of data and code, time measure­
ments, and the dynamic adaption of processor 
loads. The managers of different boards are con­
nected by their transputer links and form a stan­
dard transputer network. For the fast data 
throughput required by applications such as real­
time image processing, special input/ output 
boards can be added. The MUSIC svstem is con­
nected to the host computer (SUN, PC, MAC) by 
a transputer link or SCSI connection. The host 
computer has access to mass storage and user ter­
minals and is responsible for managing the com­
plete MUSIC system from the user's point of view. 
The communication network is a pipelined ring 
bus, operating at a 15-MHz clock rate. Its width 
is 40 bits: 32 data bits and 8 token bits. The tokens 
contain the identification of the transmitting PE. 
The IC is implemented in a distributed fashion: 
Each PE has its own communication controller 
implemented in a programmable gate array. The 
IC-controller controls the access from/ to the 
VRAM of the processor to/from the network. 

The DSPs run at a 40-MHz clock rate and have 
a peak performance of 60 MFlops. l\;otice that the 
DSP clock rate is independent of the communica­
tion clock rate. Up to 21 boards or 63 PEs fit into 
a standard 19-inch rack, resulting in a 3.8-GFlops 
system. The power consumption of such a system 
is less than 800 W (a standard supercomputer uses 
400 kW), its weight is 40 kg (the weight of a con­
ventional supercomputer is in the range of 16 
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FIGURE 2 Block diagram of the .\ICSIC system. 

tons), and its price is in the range of several thou­
sand dollars ( vs. several million dollars for a classi­
cal supercomputer). 

The ~CSIC system also offers different high­
speed input/ output interfaces such as for audio. 
video, radar, high-speed network, and hard disks 
(SCSI). The mobility of the MCSIC system, its low 
power requirement, and its fa,;t l/0 allow,; it di­
rectly at the place of the application, e.g" in a 
plane, in a car. or for oil exploration. 

2.2 System Software 

The system software of MlJSIC especially supports 
the implementation of data-parallel algorithms. 
This means that the same program (algorithm) is 
executed on several PEs in parallel, but each pro­
gram is executed on a different data set and pro­
duces a different part of the resulting data block. 
This computing model is also called SP~D. Be­
tween two iteration steps a redistribution of the 
data takes place. Data-parallel iteration steps are 
often naturally inherent to simulation applications 
as in physics, chemistry, linear algebra, and neu­
ral networks. 

The user has to write data-parallel code for one 
single DSP using C or assembly language for time 
critical parts in the program (Fig. 3). To write such 
a parallel program is not essentially more compli­
cated than an implementation on a single process­
ing environment. The main difference is that the 
data-parallel code must be able to produce only a 
subset of the resulting data block. Just three func­
tions are needed to control the communication net-

work: Ini t_comm () initializes the communica­
tion network for the redistribution of a particular 
data block. The user program gets all the parame­
ters it needs to run an SPMD program (array sizes, 
dimensions. and buffer pointers); Data_ready () 
informs the communication network that a new 
data subset is ready to be transported to other PEs: 
and Wai t_data () waits until all expected data 
values have arrived and are ready to be used for 
the following computation steps. 

The partitioning of the data i,; basically arbi­
trary. but the usual way is to tell the operating 
system only along which axis of a multidimensional 
data block (x, y, z . . . ) the distributions have to 
be carried out. The actual partitioning scheme is 
then determined by the operating system at run­
time according to the data size and the number of 
PEs. This means the operating systems on every 
PE know how manv PEs are available. the size of 
the data array, and in which dimensions this array 
has to be distributed. According to this. it sets 
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FIGURE 3 Software structure using standard C. 
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the parameters for the following communication. 
Because all PEs elements are using the same algo­
rithm to calculate its own data pare no overlap 
will occur unless otherwise defined. The data parti­
tioning and communication are fully hardware 
supported for one. two. and three-dimensional 
data sets. Higher dimensions can be implemented 
in software. 

The standard partitioning method of the ope rat­
ing system is to subdivide the data sets into equally 
sized pieces. This method works well if the process­
ing time is independent of the data values. Another 
implemented technique is r~vnamic load balanc­
ing. In this case the operating system computes 
the data distribution according to the computation 
times of the different PEs in the previous iteration 
step. In the present solution it is assumed that the 
computationally intensive areas of a data set differ 
little between two consecutive iteration steps. The 
implementation of other load-balancing para­
digms is conceivable. 

Some languages such as high-performance For­
tran (HPF) and high-performance C (HPC) sup­
port data-parallel programming. Data distribution 
and redistribution functions from these languages. 
the key features for data-parallel programming 
with HPF and HPC, are directly supported by IC. 
This makes the implementation of such compilers 
very easy. No mapping to message passing or writ­
ing of new functions has to be done. Figure 4 shows 
the software structure for HPC. This compiler has 
been implemented at the Electronics Laboratory 
[9]. Comparing HPC with a C program with addi­
tional parallel functions. most data-parallel appli­
cations written in HPC run as fast as in standard C: 
however, implementation in HPC is much easier. 

2.3 Program Example 

In the MUSIC system parallelization is done in the 
data space. This means each PE holds its needed 
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FIGURE 4 Software structure using HPC. 

part of the total data and computes its part of 
the result. After this computation the results are 
globally communicated and each PE makes a copy 
of the result data needed for the next calculation. 
To demonstrate the implementation of a parallel 
program to the ~ICSIC system, a simple ma­
trix-vector multiplication is used: 

x(t + 1) =A · x(t) 

Firsc the global dimensions of vector x are en­
tered in a C011111Ldef _ t structure (in this case the 
order of the vector is 400). The operating system 
function Complete_procLwindow () calculates 
which part of the result data will be on which PE 
and enters these values (which are different for 
each PE) in the structure. We use x.....DISTR here 
to get a distribution of the data into blocks of simi­
lar size. We then have to allocate memory for the 
number of elements that will be locally on this PE. 

co11111Ldef_t cd; 

cd.dim.x 400; 
cd. dim. y 1; 
cd. dim. z 1; 
cd.elem_size = 1; 
Complete_procLwindow (&cd, x.....DISTR) ; 
Complete_cons_window (&cd, ALL_DISTR, 

0, 0, 0); 
x_old dmalloc(400, MT_CONS); 
x_new dmalloc(cd.prod.nelements, 

MT_.PROD); 

Each PE has to calculate onlv its amount of 
data, up to the upper local boundary 
cd. prod. part. x. After the calculation. its part 
of x_new has to be communicated and all PEs get 
the complete result vector. This is done by the 
following 3-system functions. 

The programmer has to look at the problem 
from a local point of view. 

MINT iteration(void) 
{ 

} 

int i, k; 
MINT sum; 

for(i=O; i<cd.prod.part.x; i++) 
{ 
sum = 0; 
for (k=O; k<400; k++) 

sum+= a[i*400+k] *x_old[k]; 
x_new [ i] = sum; 



} 

Init_comm(&cd, x_new, x_old, 
COMl\LNORM) ; 

Data_ready(ALL_DATA); 
Wait_data(ALL_DATA); 
return 0; 

HPC [9] is an extension to the C programming 
language that simplifies data -parallel program 
ming in distributed memory systems. It supplies 
constructs that make it easv to distribute data on 
several PEs and that ease access to this distributed 
data. In HPC. algorithms can be written from a 
global point of view in contrast to traditional .\1U­
SIC programming which is done from a local point 
of view. This simplifies application development 
and makes it easy to migrate soft ware to other data­
parallel architectures. To illustrate this approach 
we show the same example written in HPC. 

par MINT x_old[400] @ []; 
par MINT x_new [ 400] @ [block]; 

The arrays are declared as par (parallel) vari­
ables, which means they are distributed on all PEs. 
The kind of distribution is stated after the@ char­
acter: e.g., array x_new is distributed in a manner 
that each PE holds a block (of equal size) of the 
array. Arrayx_oldis not distributed, which means 
all PEs own a complete copy of it. 

The k loop in this version is written with a global 
index (0 to 400) as it would be in an algorithm for 
a single processor system. The only difference of 
HPC to such a program is the first loop in this 
example. forall is a for loop that can be executed 
in parallel on every PE. The forallloop is restricted 
by the on_owner statement to ensure each PE 
only computes its part of the distributed data. In 
HPC. the programmer looks at array indices from 
a global point of view just as if programming a 
single processor system. 

Communication of the distributed vector x_new 
to x_old is done by just assigning x_new [] to 
x_old []. 

par MINT iteration(void) 
{ 

int i, k; 
MINT sum; 

forall(i=O; i<400; i++) 
on_owner(x_new[i]) 
{ 

sum = 0; 

} 
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for (k=O; k<400; k++) 
sum+= a[i] [k] *x_old[k]; 

x_new [i] = sum; 
} x_old[] = x_new[]; 

return 0; 

Note. the program for both applications is totally 
independent of the number of PEs: this means. 
that after compilation a program can run on a ·'L 
12, or 60 PE svstem without anv changes in the 
program code. rfhe program load~r adjusts the dif­
ferent local counter variables to the right value. 

3 APPLICATIONS 

Applications of the ~1CS1C computer include sig­
nal processing (audio, video. RADAR). computer 
graphics. neural networb, and simulations in 
chemistry and physics. 

3.1 Neural Networks 

Back-propagation is a very popular algorithm for 
the learning of layered feed forward neural net­
works (multilayer perceptrons) [16]. Each of the 
PEs of the MUSIC system computes a subset of 
the output vector of a specific layer of the neural 
net. These subsets are collected and a copy of the 
complete vector is distributed by the communica­
tion network to serve as input for the computation 
of the following layer. To avoid the communication 
of the updated weights, which would lead to com­
munication saturation very easily. two different 
weight subsets for the forward and the backward 
propagation are stored and updated individually 
on every PE[10]. 

The measured results and a comparison to other 
computer systems are given in Table 1. The most 
critical part in neural net is learning, therefore the 
performance is measured in .\1CUPS (million con­
nection updates per second). It tells how many 
weights may be updated in a second. 

On a MCSIC-21 we get 330 MCUPS; this cor­
responds to 1, 408 algorithmic YIFlops. However. 
because the weight update is computed twice, ac­
tually 1,870 MFlops are executed. This is about 
50% of the peak performance (3.8 GFlops). 

We would like to emphasize that the MUSIC 
system has been designed to be used in research 
work and therefore has a very high degree of flexi­
bility. That means that it allows almost any modi­
fication on the neural network structure and learn-
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Table 1. Comparison of Back-Propagation Implementations 

Continuous 
1\"o. of Backprop Weight 

System PEs [MCLPS] Lpdate 

PC (80486, 50 MHz)* 1 0.47 Yes 
Sun (Sparcstation 10)* 1 1.1 Yes 
Alpha station (150 MHz)* 1 3.2 Yes 
Transputer T800 [11] 64 9.9 
Warp [15] 10 17.0 :\"o 
CM-2 64K 40.0 '\o 
CRA Y Y -~IP C90 1 65.6 Yes 
CM-5 512 78.0 1'\o 
RAP 40 106 Yes 
:'\iEC SX-3** 1 130.0 Yes 
MUSIC-21 * 6:3 330 Yes 
GF11 356 901 ~0 

* Based on our U\vn tneasurernents. 
**Presented bv 1'<. Koike ofl'<EC at the 1992 Second ETH-:\"EC .Joint \J>~orkshop 

on Supercomputing (no published referPnee available). 

ing algorithm. Other implementations are much 
more restricted in this point. The IBM GF11 imple­
mentation (900 YICUPS), for instance, parallelizes 
over the training set. This method only allows 
batch learning (no immediate weight update), 
which has the effect that the learning convergence 
is in many cases much slower. 

Convolutional nets are partially connected neu­
ral nets with shared weights. Because such nets 
have a very complicated communication structure, 
implementation on a parallel computer becomes 
verv difficult. On the YICSlC svstem convolutional . . 
nets were implemented successfully [12]. 

3.2 Molecular Dynamics 

The program MD-Atom is used for time-discrete 
simulations of the dvnamics of atomic fluids. The 
basic concept of this algorithm is the computation 
of all partial forces to a single atom generated by 
all other atoms. This force is considered to be con­
stant in a single time step (10- 15 to 10-H s) and 
with Newton's equations of motion a new position 
is computed. 

For each iteration step the following operations 
are executed: (1) compute the distance between 
each atom and all other atoms; (2) if the distance 
is smaller than a cut-off radius Rn compute the 
pair force (only atoms in the near neighborhood 
have an influence); (3) compute sum of all pair 
forces and make position update [ 14]. 

As a benchmark, two models with 125 atoms 

and 1,000 iterations, and 1000 atoms and 100 
iterations, respectively have been chosen [2, 5, 6]. 

In the YICSIC implementation, the positions are 
broadcast to all PEs. Each PE does the position 
update for its share of atoms and broadcasts the 
new positions again among all PEs. The MUSIC 
implementation is written in assembly language. 
as no compiler was available at the time of writing. 

To compare the performance of MD-Atom on 
MUSIC with other supercomputers, an implemen­
tation on the NEC SX-3, one on the CRAY YYIP, 
and one on the Sun-4 (IPX) was done by the Labo­
ratory of Physical Chemistry. Swiss Federal Insti­
tute of Technology [ 6. 8]. These implementations 
were written in Fortran and have been optimized 
for the respective hardware. As far as we know. 
these are the fastest implementations of ~1D-Atom 
on supercomputers. 

The measured results of this comparison are 
given in Tables 1 and 2. The programs of the Cray 

Table 2. Executing Time of MD-Atom on 
Different Computer Systems 

Sun IPX 
CRAY Y-MP 
NEC SX-3 
MUSIC-10 (30 PEs) 
MUSIC-20 (60 PEs) 

Model 1 
(125/1.000) 

118 
3.7 
1.4 
1.3 
0.91 

Model2 
(1,000/100) 

643 
12.2 

4.4 
3.8 
2.02 



and the 1\"EC supercomputer are using one proces­
sor. An implementation for more than one proces­
sor has, as far as we know, not been realized yet. 
As can be seen, the MCSIC system is the fastest 
in both cases. For the 1,000 atom system running 
on MuSIC-20, an algorithmic performance of 
about 500 MFlops was obtained: the ~CSIC-20 
actually executed L 163 ~1Flops. 

Apart from the direct computation of distances, 
other acceleration techniques like pair list are also 
available on the MCSIC now. The benchmarking 
of these methods for other supercomputers will be 
done in the near future. 

3.3 EEG Analysis 

The quantitative analysis of the human sleep elec­
troencephalogram (EEG) has provided new in­
sights into the processes underlying sleep regula­
tion and given rise to formal mathematical models 
of sleep regulation. The complexity of the EEG 
can be estimated by calculating the correlation di­
mension. This represents a novel approach to ex­
ploring the dynamics of sleep and the processes 
underlying its regulations. Due to the large number 
of calculations required, only selected short seg­
ments ( 4 to 164 s) of the sleep EEC could be ana­
lyzed so far. By using the ~LSlC system, whole 
night EEGs ( 480 min) of 11 persons were ana­
lyzed. A MCSIC system with 21 processors is able 
to do the calculations in real time [ 1 j. 

3.4 Plasma Physics 

The one-dimensional Particle-In-Cell & Monte 
Carlo collision code XPDP1 is used to model radio­
frequency argon-plasma discharges. The code 
runs faster on the MCSIC system than on a CRA Y 
Y -~P. The low cost of the MCSIC svstem allows 
a 24-h per-day use and the simulation results are 
available one order of magnitude quicker than with 
a supercomputer shared with other users. Very 
good agreement is found between simulation re­
sults and measurements done in an experimental 
argon discharge [ 4 j. 

4 CONCLUSION 

The goal of this project, to build a parallel super­
computer and to demonstrate its performance in 
real-world applications, could be attained. The 
low power consumption and small size make it 
possible to put such a computer on the scientist's 
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desk or use it in many mobile applications. The 
programming environment allows an easy imple­
mentation of data-parallel algorithms achieving a 
very high performance. 
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