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In order to enhance heat transfer between primary surface and the environment, radiat-
ing extended surfaces are commonly utilized. Especially in the case of large temperature
differences, variable thermal conductivity has a strong effect on performance of such a
surface. In this paper, variational iteration method is used to analyze convective straight
and radial fins with temperature-dependent thermal conductivity. In order to show the
efficiency of variational iteration method (VIM), the results obtained from VIM analysis
are compared with previously obtained results using Adomian decomposition method
(ADM) and the results from finite element analysis. VIM produces analytical expressions
for the solution of nonlinear differential equations. However, these expressions obtained
from VIM must be tested with respect to the results obtained from a reliable numerical
method or analytical solution. This work assures that VIM is a promising method for the
analysis of convective straight and radial fin problems.

Copyright © 2007 S. B. Coşkun and M. T. Atay. This is an open access article distributed
under the Creative Commons Attribution License, which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Finned surfaces have enhanced heat transfer mechanism between the primary surface and
its surrounding medium. Such heat transfer mechanisms are highly demanded with the
developing technology. A fin array in conduction combined with radiation in a nonpar-
ticipating medium or basis of dynamics of heat transfer in a space radiator and basic one-
dimensional radiating fins have been studied extensively [1–11]. A heat-rejecting system
consisting of parallel tubes joined by web plates was studied by Bartas and Sellers [1].
Expression of the optimum proportion of triangular fins radiating to space at absolute
zero was presented by Wilkins Jr [2]. As a structural element in the space craft applica-
tions, applications of the radiator were studied by Cockfield [4]. Optimization of mass



2 Mathematical Problems in Engineering

and structure of a space radiator for a flight power system was considered by Keil [5].
Optimum shape and minimum mass of a thin film with diffuse reflecting surfaces were
determined by Chung and Zhang [6]. Krishnaprakas and Narayana studied the optimum
design of a longitudinal rectangular fin system with angle [7]. The topic of optimizing
the design of heat tube/fin-type space radiators for the case of uniformly tapered fins for
flat fins was considered by Naumann [8]. Since the temperature difference of the fin base
and its tip is high in the actual situation, taking into consideration the variation of the
conductivity is an important issue. For this purpose, Arslantürk [12] made an analysis
including the effects of the variation of the thermal conductivity of the radial fin material
by using Adomian decomposition method (ADM).

For the convective straight fins, a number of studies have also been conducted. Aziz
and Hug [13] obtained a closed form solution for a straight convective fin with vari-
able thermal conductivity using regular perturbation method. Yu and Chen [14] solved
nonlinear conducting-convecting-radiating heat transfer equation assuming a linear vari-
ation for thermal conductivity. Razelos and Imre [15] took a variable convective heat
transfer coefficient into account in fin problem. Laor and Kalman [16] analyzed different
fins with temperature-dependent heat transfer coefficient. Arslantürk [17] used ADM
to obtain analytical expressions for dimensionless temperature and fin efficiency with
temperature-dependent thermal conductivity.

ADM has also been used for analyzing various nonlinear problems in heat transfer
[18–22]. ADM is a technique for obtaining analytical expressions in the solution of non-
linear differential equations [23]. The method depends heavily on tedious work of finding
of Adomian polynomials and then using them in the iteration of ADM approach to obtain
an analytical expression as a solution. In brief, this is a cumbersome process especially in
obtaining higher-order approximations.

In recent years, a solution technique called variational iteration method (VIM) [24]
has been given great importance for solving nonlinear differential equations. VIM is a
kind of variational-based analytical technique in efficient solution of nonlinear differ-
ential equations including boundary value and initial value problems, nonlinear system
of differential equations, nonlinear partial differential equations such as linear fractional
partial differential equations arising fluid mechanics, nonlinear thermoelasticity prob-
lems, nonlinear fluid flows in pipe-like domain problems, or solving integro-differential
equations [25–30]. The reason for choosing VIM in present problem is that this solu-
tion technique can be used in many engineering problems effectively. VIM directly gives
the solution of corresponding equation which is one of its advantages when compared to
ADM solution for the second example. The formulation and solution processes of VIM
are much easier when compared to decomposition methods, in this respect, VIM is an
easy-to-apply method for the analysis of nonlinear problems in engineering.

In this study, analyses of convective straight and radial fins with temperature-depend-
ent thermal conductivity are carried out by using VIM and FEM. The results obtained
from both analyses are also compared with the available results in the literature obtained
previously using ADM. Hence, the efficiency of the VIM solution technique can be illus-
trated with comparison with respect to ADM and FEM. Also by means of these compar-
isons, it can be shown that VIM is a better alternative in the solution of such problems.
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Figure 2.1. Geometry of a straight fin.

2. Convective straight and radial fins

2.1. Convective straight fins with temperature-dependent thermal conductivity. The
straight fin in Figure 2.1 is considered by assuming a temperature-dependent thermal
conductivity with an arbitrary cross-sectional area Ac, perimeter P and length b.

The temperature of the base surface where the fin is attached is Tb, surrounding fluid
temperature is Ta. Fin’s tip is insulated. One-dimensional energy-balance equation is

Ac
d

dx

[
k(T)

dT

dx

]
−Ph(T −Ta)= 0 (2.1)

where k(T) is temperature-dependent thermal conductivity. If thermal conductivity is
assumed to be a linear function of temperature, it becomes as follows:

k(T)= ka
[
1 + λ

(
T −Ta

)]
, (2.2)

where ka is the thermal conductivity at the ambient fluid temperature of the fin and λ is
a parameter defining the variation of thermal conductivity.

Introducing the following dimensionless parameters,

θ = T −Ta
Tb−Ta

, ξ = x

b
, β = λ(Tb−Ta); ψ =

(
hPb2

kaAc

)1/2

, (2.3)

(2.1) reduces to the following equation

d2θ

dξ2 +βθ
d2θ

dξ2 +β
(
dθ

dξ

)2

−ψ2θ = 0; 0≤ ξ ≤ 1 (2.4)

with the following boundary conditions:

dθ

dξ

∣∣∣∣
ξ=0
= 0, θ|ξ=1 = 1. (2.5)

The computational domain 0 ≤ x ≤ b is transformed to 0 ≤ ξ ≤ 1 by introducing the
dimensionless parameters given in (2.3).
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Figure 2.2. A heat pipe/fin radiating element.

2.2. Radial fins with temperature-dependent thermal conductivity. An example of heat
pipe/fin space radiator is shown in Figure 2.2. Both surfaces of the fin are radiating to the
outer space at a very low temperature, which is assumed equal to zero absolute. The fin
has temperature-dependent thermal conductivity k, which depends on temperature lin-
early and fin is diffuse-grey with emissivity ε. The tube surfaces temperature and the base
temperature Tb of the fin are constant, and the radiative exchange between the fin and
the heat pipe is neglected. The temperature distribution within the fin is assumed to be
one dimensional, because the fin is assumed to be thin. Hence, only fin tip length b is
considered as the computational domain.

The energy balance equation for a differential element of the fin is given as

2w
d

dx

[
k(T)

dT

dx

]
− 2εσT4 = 0, (2.6)

where k(T) and σ are thermal conductivity and the Stefan-Boltzmann constant, respec-
tively.

The thermal conductivity of the fin material is assumed to be a linear function of
temperature according to

k(T)= kb
[
1 + λ

(
T −Tb

)]
, (2.7)

where kb is the thermal conductivity at the base temperature of the fin and λ is the slope
of the thermal conductivity-temperature curve.

Introducing the following dimensionless parameters

θ = T

Tb
, ξ = x

b
, β = λTb, ψ = εσb2T3

b

kbw
, (2.8)

the formulation of the fin problem reduces to the following equation:

d2θ

dξ2 +βθ
d2θ

dξ2 +β
(
dθ

dξ

)2

−ψθ4 = 0, 0≤ ξ ≤ 1, (2.9)

with the following boundary conditions:

dθ

dξ

∣∣∣∣
ξ=0
= 0, θ|ξ=1 = 1. (2.10)

As in straight fin, case computational domain is transformed to 0≤ ξ ≤ 1 by introducing
the dimensionless parameters given in (2.8).
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3. VIM formulation of the problem

According to VIM, the differential equation (2.9) may be considered

Lu+Nu= g(x), (3.1)

where L is a linear operator, N is a nonlinear operator, and g(x) is an inhomogeneous
term.

Based on VIM, a correct functional can be constructed as follows:

un+1(x)= un(x) +
∫ x

0
λ
{
Lun(τ) +Nũn(τ)− g(τ)

}
dτ, (3.2)

where λ is a general Lagrangian multiplier, which can be identified optimally via the vari-
ational theory, the subscript n denotes the nth-order approximation, ũ is considered as a
restricted variation, that is, δũ= 0. Applying the formulation given above to differential
equation (2.9), a new differential equation for λ can be obtained as follows:

λ′′(τ)= 0, when τ = ξ. (3.3)

To solve (3.3), boundary conditions are obtained by integrating parts of (2.9) with respect
to (3.2);

B.C.1: for δθ′n(ξ),

λ(τ)= 0, when τ = ξ; (3.4)

B.C.2: for δθn(ξ),

(
1− λ′(τ)

)= 0, when τ = ξ. (3.5)

Then, Lagrange Multiplier λ is obtained by assuming L= d2/dξ2 with the restricted vari-
ation δũn = 0.

If the above formulation is applied to (3.2), the following iteration formula can be
obtained accordingly:

θn+1(ξ)= θn(ξ) +
∫ ξ

0
λ(τ)

{
Lθn(τ) +Nθ̃n(τ)

}
dτ (3.6)

with Lagrange multiplier as follows:

λ(τ)= τ − ξ. (3.7)

The iteration formula given in (3.6) is a simple approximation. Further information
about finding Lagrange multiplier λ and its related boundary conditions can be found
in [24–30]. Especially, [24] is the pioneering work for the specific method VIM and other
references include the applications of the method to different problems.
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4. Solutions for fin temperature distribution

4.1. Straight fins. As a starting approximation for VIM solution, θ is assumed as con-
stant, which was assumed as constant also in ADM solution [17]. First, three iterations of
the VIM are

θ0 = A, (4.1)

θ1 = A+
1
2
Aψ2ξ2, (4.2)

θ2 = A+
1
2
A(1−Aβ)ψ2ξ2 +

1
24
A(1− 3Aβ)ψ4ξ4, (4.3)

θ3 =A+
1
2
A
(
1−Aβ+A2β2)ψ2ξ2 +

1
24
A
(
1− 5Aβ+ 9A2β2− 3A3β3)ψ4ξ4

+
1

720
A
(
1− 18Aβ+ 60A2β2− 45A3β3)ψ6ξ6− 1

1152
A2β(−1 + 3Aβ)2ψ8ξ8.

(4.4)

An approximate expression for temperature distribution can be obtained by ignoring
higher-order terms in the expression at the end of the seventh iteration. Hence, an ap-
proximate solution for θ becomes

θ ∼= A+
A

2

(
1−Aβ+A2β2−A3β3 +A4β4−A5β5 +A6β6)ψ2ξ2

+
A

24

(
1− 5Aβ+ 12A2β2− 22A3β3 + 35A4β4− 51A5β5

+ 63A6β6− 45A7β7 + 30A8β8− 18A9β9 + 9A10β10)ψ4ξ4

+
A

720

(
1− 21Aβ+ 123A2β2− 415A3β3 + 1050A4β4− 2205A5β5

+ 3735A6β6− 4530A7β7 + 4617A8β8− 4113A9β9 + 3180A10β10)ψ6ξ6

+
A

40320

(
1− 85Aβ+ 1174A2β2− 7364A3β3 + 29799A4β4

− 90604A5β5 + 210484A6β6− 364515A7β7 + 514868A8β8

− 621369A9β9 + 649755A10β10)ψ8ξ8

+
A

3628800

(
1− 341Aβ+ 10845A2β2− 125274A3β3 + 813763A4β4

− 3595442A5β5 + 11434800A6β6− 26965949A7β7 + 50732463A8β8

− 79893120A9β9 + 107847459A10β10)ψ10ξ10.
(4.5)

In (4.1), coefficient A is the temperature at the fin tip, and must lie in the interval [0,1].
Value ofA can be determined by applying the boundary conditions in (2.5)–(4.5). SinceA
is assumed as constant as an initial guess, it automatically satisfies the derivative boundary
condition. As seen from the succeeding equations given in (4.1)–(4.5), additional terms
include ξ with the power two or more. Hence, derivative boundary condition at ξ = 0
again automatically satisfies. Due to this fact, the only parameter A can be determined by
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means of the following boundary condition:

θ|ξ=1 = 1. (4.6)

4.2. Radial fins. As a starting approximation for VIM solution, θ is assumed as constant.
The first two iterations are

θ0 = A, (4.7)

θ1 = A+
1
2
A4ψξ2, (4.8)

θ2 = A+
1
2
A4ξ2ψ − 1

2
A5βξ2ψ− 1

24
A7(−4 + 3Aβ)ψ2ξ4

+
1

20
A10ψ3ξ6 +

1
112

A13ψ4ξ8 +
1

1440
A16ψ5ξ10.

(4.9)

VIM solution for radial fins is obtained at the end of the fourth iteration. As in straight
fins, coefficient A is the temperature at the fin tip. The computational domain is defined
by a nondimensional term ξ and the value of ξ is in the interval of [0,1]. Value of A can
be determined again by applying the boundary conditions in (2.10) to (4.9).

5. Numerical results

5.1. Straight fins. The VIM results obtained from VIM analysis are compared with FEM
results and also the results obtained from an approximate sixth iteration ADM expression
given in [17]. FEM analyses of the problems are conducted using FlexPDE version 5. In
the FEM analysis, quadratic basis functions and a modified Newton-Raphson algorithm
are employed. A root-mean-square error criterion is used as a stopping criterion and the
error values are changing between 10−7–10−10.

Between Figures 5.1–5.3, dimensionless temperature variations for straight fins for dif-
ferent ψ values are demonstrated. Between Figures 5.4–5.7, the behavior of fin tip temper-
ature, A, is represented as with the increasing values of thermogeometric fin parameter.
Results have shown that VIM expression still provides a good approximation for the tem-
perature variation at the fin tip.

5.2. Radial fins. As in straight fins, the VIM results obtained from VIM analysis of radial
fins are compared with FEM results and also the fifth iteration ADM results available in
the literature [12].

Between Figures 5.8–5.11, dimensionless temperature variations for radial fins for dif-
ferent β values are shown. Between Figures 5.12–5.15, the behavior of fin tip temperature,
A, is given with the increasing values of thermogeometric fin parameter. Results have
shown that, VIM expression also provides a good approximation for the temperature
variation at the fin tip.
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Figure 5.1. Comparison for dimensionless temperature variation for ψ = 0.5.
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Figure 5.2. Comparison for dimensionless temperature variation for ψ = 1.0.
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Figure 5.3. Comparison for dimensionless temperature variation for ψ = 1.5.
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Figure 5.4. Variation of dimensionless fin tip temperature for β =−0.5.
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Figure 5.5. Variation of dimensionless fin tip temperature for β =−0.3.
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Figure 5.6. Variation of dimensionless fin tip temperature for β= 0.3.
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Figure 5.7. Variation of dimensionless fin tip temperature for β= 0.5.

D
im

en
si

on
le

ss
te

m
pe

ra
tu

re
,θ

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

β = 0.6

ψ = 1

ψ = 10

ψ = 100

Dimensionles coordinate, ξ

FEM
VIM
ADM

Figure 5.8. Comparison for dimensionless temperature variation for β =−0.6.
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Figure 5.9. Comparison for dimensionless temperature variation for β =−0.2.
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Figure 5.10. Comparison for dimensionless temperature variation for β = 0.2.
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Figure 5.11. Comparison for dimensionless temperature variation for β = 0.6.

A
,fi

n
ti

p
te

m
pe

ra
tu

re

0

0.25

0.5

0.75

1

0.01 0.1 1 10 100

β= 0.6

ψ, thermo-geometric fin parameter

FEM
VIM
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Figure 5.14. Variation of dimensionless fin tip temperature for β = 0.2.
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6. Conclusion

VIM and FEM analyses of convective straight fins and radial fins with temperature-
dependent thermal conductivity have been conducted in this study. VIM is a variational-
based iterative technique and it is an effective method in the solution of nonlinear differ-
ential equations. In each iteration, the method gives directly the solution as a polynomial
expression and this is the main advantage of the method when compared to ADM or
FEM. For the problems considered in this study, the solution is obtained in the form of
a higher-order polynomial (n > 8) in the space variable ξ. It can be clearly seen from the
figures, VIM results seem much better than the results of ADM. With the increasing effect
of variable thermal conductivity which leads to increasing nonlinearity in the equation,
higher-order approximations may be required in VIM solution in order to reach an ac-
ceptable accuracy. However, VIM solutions for both problems give better results when
compared to ADM solutions at the same order of approximation. If the nonlinearity in
the equation to be solved increases significantly, more iteration can be required and this
may be a time-consuming process. However, for the present study, obtained results are
enough to come to a conclusion about the efficiency of the method. It is also observed
that the value of thermogeometric fin parameter is another factor affecting the behavior
of the solution. As a result, it can be concluded that VIM is an advantageous method
when compared to ADM in view of formulation and solution processes.

Nomenclature

A: Integral constant
Ac: Cross-sectional area of the fin (m2)
b: Fin base (m)
h: Heat transfer coefficient (Wm−2K−1)
ka: Thermal conductivity at the ambient fluid temperature (Wm−1K−1)
k: Thermal conductivity of the fin material (Wm−1K−1)
kb: Thermal conductivity at the base temperature (Wm−1K−1)
L: Linear differential operator
N : Nonlinear differential operator
T : Temperature (K)
Tb: Temperature at fin base (K)
x: Distance measured from the fin tip (m)
w: Semithickness of the fin (m)
P: Fin perimeter (m)
Q: Heat transfer rate (W)
W : Effective radiating width of the heat pipe (m)
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