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We introduce and study a subclass of analytic functions related to Robertson functions. Here we discuss the coefficient estimate for
function in this class.

1. Introduction

Let 𝐴 be the class of functions 𝑓 of the form

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎
𝑛
𝑧
𝑛 (1)

which are analytic in the open unit disc 𝐸 = {𝑧 : |𝑧| < 1}.
Also let 𝑆∗ and 𝐶 denote the well-known classes of starlike
and convex functions, respectively.

For any two analytic functions 𝑓 given by (1) and 𝑔 with

𝑔 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑏
𝑛
𝑧
𝑛

, for 𝑧 ∈ 𝐸, (2)

the convolution (Hadamard product) is given by

(𝑓 ⋆ 𝑔) (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝑎
𝑛
𝑏
𝑛
𝑧
𝑛

, for 𝑧 ∈ 𝐸. (3)

Using the concept of convolution, Ruscheweyh [1] introduced
a differential operator𝐷𝛿 given by

𝐷
𝛿

𝑓 (𝑧) =
𝑧

(1 − 𝑧)
𝛿+1

∗ 𝑓 (𝑧) = 𝑧 +

∞

∑

𝑛=2

𝜑
𝑛
(𝛿) 𝑎
𝑛
𝑧
𝑛

,

(𝛿 > −1)

(4)

with

𝜑
𝑛
(𝛿) =

(𝛿 + 1)
𝑛−1

(𝑛 − 1)!
, (5)

where (𝑥)
𝑛
is a Pochhammer symbol given as

(𝑥)
𝑛
= {

1, 𝑛 = 0,

𝑥 (𝑥 + 1) (𝑥 + 2) ⋅ ⋅ ⋅ (𝑥 + 𝑛 − 1) , 𝑛 ∈ N.
(6)

It is obvious that𝐷0𝑓(𝑧) = 𝑓(𝑧),𝐷1𝑓(𝑧) = 𝑧𝑓(𝑧), and

𝐷
𝑛

𝑓 (𝑧) =

𝑧(𝑧
𝑛−1

𝑓 (𝑧))
(𝑛)

𝑛!
, ∀𝛿 = 𝑛 ∈ 𝑁

0
= {0, 1, 2, . . .} .

(7)

The following identity can easily be established:

(𝛿 + 1)𝐷
𝛿+1

𝑓 (𝑧) = 𝛿𝐷
𝛿

𝑓 (𝑧) + 𝑧(𝐷
𝛿

𝑓 (𝑧))


. (8)

Nowwith the help of Ruscheweyh derivative, we define a class
𝑉𝐷
𝜆
(𝛼, 𝛽, 𝑏, 𝛿) of analytic functions as follows.

Definition 1. Let 𝑓(𝑧) ∈ 𝐴. Then, 𝑓(𝑧) ∈ 𝑉𝐷
𝜆
(𝛼, 𝛽, 𝑏, 𝛿), if

and only if

Re{𝑒𝑖𝜆 (1 − 2
𝑏
+
2

𝑏

𝐷
𝛿+1

𝑓 (𝑧)

𝐷𝛿𝑓 (𝑧)
)}

> 𝛼



2

𝑏
(
𝐷
𝛿+1

𝑓 (𝑧)

𝐷𝛿𝑓 (𝑧)
− 1)



+ 𝛽 cos 𝜆,

(9)

where 𝛼 ≥ 0, 0 ≤ 𝛽 < 1, 𝛿 > −1, 𝜆 is real with |𝜆| < 𝜋/2, and
𝑏 ∈ C \ {0}.
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By giving specific values to 𝛼, 𝛽, 𝜆, 𝑏, and 𝛿 in
𝑉𝐷
𝜆
(𝛼, 𝛽, 𝑏, 𝛿), we obtainmany important subclasses studied

by various authors in earlier papers, see for details [2–5], and
list some of them as follows:

(i) 𝑉𝐷
𝜆
(0, 0, 2, 0) ≡ 𝑆

∗

𝜆
and 𝑉𝐷

𝜆
(0, 0, 1, 1) ≡ 𝐾

𝜆
, studied

by Spacek [6] and Robertson [7], respectively; for the
advancement work, see [8, 9].

(ii) 𝑉𝐷
0
(𝛼, 𝛽, 2, 0) ≡ 𝑆𝐷(𝛼, 𝛽) and 𝑉𝐷

0
(𝛼, 𝛽, 1, 1) ≡

𝐾𝐷(𝛼, 𝛽), studied by both Owa et al. and Shams et
al. [10, 11].

(iii) 𝑉𝐷
𝜆
(1, 0, 2, 0) ≡ 𝑈𝑆𝑃(𝜆), 𝑉𝐷

𝜆
(1, 0, 1, 1) ≡ UCSP(𝜆),

introduced by Ravichandran et al. [12].
(iv) 𝑉𝐷

0
(𝛼, 𝛽, 𝑏, 𝛿) ≡ 𝑉𝐷(𝛼, 𝛽, 𝑏, 𝛿), considered by Latha

[13].
(v) 𝑉𝐷

0
(0, 𝛽, 2, 0) ≡ 𝑆

∗

(𝛽), 𝑉𝐷
0
(0, 𝛽, 1, 1) ≡ 𝐶(𝛽), the

well-known classes of starlike and convex functions
of order 𝛽.

From the above special cases, we note that this class
provides a continuous passage from the class of starlike
functions to the class of convex functions.

We will assume throughout our discussion, unless other-
wise stated, that 𝛼 ≥ 0, 0 ≤ 𝛽 < 1, 𝛿 > −1, 𝜆 is real with
|𝜆| < 𝜋/2, and 𝑏 ∈ C \ {0}.

2. Some Properties of the Class 𝑉𝐷
𝜆
(𝛼, 𝛽, 𝑏, 𝛿)

Theorem 2. If 𝑓(𝑧) ∈ 𝑉𝐷
𝜆
(𝛼, 𝛽, 𝑏, 𝛿) with 0 ≤ 𝛼 ≤ 𝛽, then

𝑓 (𝑧) ∈ 𝑉𝐷
𝜆
(0, (

𝛽 − 𝛼

1 − 𝛼
) , 𝑏, 𝛿) . (10)

Proof. Since Re𝑤 ≤ |𝑤| for any complex number 𝑤, 𝑓(𝑧) ∈
𝑉𝐷
𝜆
(𝛼, 𝛽, 𝑏, 𝛿) implies that

Re{𝑒𝑖𝜆 (1 − 2
𝑏
+
2

𝑏

𝐷
𝛿+1

𝑓 (𝑧)

𝐷𝛿𝑓 (𝑧)
)}

> 𝛼



2

𝑏

𝐷
𝛿+1

𝑓 (𝑧)

𝐷𝛿𝑓 (𝑧)
−
2

𝑏



+ 𝛽 cos 𝜆

≥ 𝛼Re{𝑒𝑖𝜆 (1 − 2
𝑏
+
2

𝑏

𝐷
𝛿+1

𝑓 (𝑧)

𝐷𝛿𝑓 (𝑧)
)}

+ (𝛽 − 𝛼) cos 𝜆

(11)

which implies that

Re{𝑒𝑖𝜆 (1 − 2
𝑏
+
2

𝑏

𝐷
𝛿+1

𝑓 (𝑧)

𝐷𝛿𝑓 (𝑧)
)}

>
(𝛽 − 𝛼) cos 𝜆
(1 − 𝛼)

, (𝑧 ∈ 𝐸) .

(12)

And hence, we obtain the required result.
Put 𝜆 = 0, 𝑏 = 2, and 𝛿 = 0 in Theorem 2; we obtain the

following result.

Corollary 3 (see [10]). If 𝑓(𝑧) ∈ 𝑆𝐷(𝛼, 𝛽) with 0 ≤ 𝛼 ≤ 𝛽,
then

𝑓 (𝑧) ∈ 𝑆
∗

(
𝛽 − 𝛼

1 − 𝛼
) . (13)

Set 𝜆 = 0, 𝑏 = 1, and 𝛿 = 1 inTheorem 2; one has the following
result.

Corollary 4 (see [10]). If 𝑓(𝑧) ∈ 𝐾𝐷(𝛼, 𝛽) with 0 ≤ 𝛼 ≤ 𝛽,
then

𝑓 (𝑧) ∈ 𝐾(
𝛽 − 𝛼

1 − 𝛼
) . (14)

Theorem 5. If 𝑓(𝑧) ∈ 𝑉𝐷
𝜆
(𝛼, 𝛽, 𝑏, 𝛿), then

𝑎2
 ≤

|𝑏|
𝜂


|1 − 𝛼|
, (15)

𝑎𝑛
 ≤

(𝛿 + 1) |𝑏|
𝜂


(𝑛 − 1) |1 − 𝛼| 𝜑
𝑛
(𝛿)

𝑛−2

∏

𝑗=1

(1 +
(𝛿 + 1) |𝑏|

𝜂


𝑗 |1 − 𝛼|
) ,

𝑛 ≥ 3,

(16)

where
𝜂
 =

√(1 − 𝛽)
2cos2𝜆 + (1 − 𝛼)2sin2𝜆. (17)

Proof. We note that for 𝑓(𝑧) ∈ 𝑉𝐷
𝜆
(𝛼, 𝛽, 𝑏, 𝛿),

Re{𝑒𝑖𝜆 (1 − 2
𝑏
+
2

𝑏

𝐷
𝛿+1

𝑓 (𝑧)

𝐷𝛿𝑓 (𝑧)
)} >

(𝛽 − 𝛼)

(1 − 𝛼)
cos 𝜆,

𝑧 ∈ 𝐸.

(18)

Let us define the function 𝑝(𝑧) by

𝑝 (𝑧) = ((1 − 𝛼)

× [𝑒
𝑖𝜆

(1 − 2/𝑏 + (2/𝑏) (𝐷
𝛿+1

𝑓 (𝑧) /𝐷
𝛿

𝑓 (𝑧)))]

− (𝛽 − 𝛼) cos 𝜆) ×((1 − 𝛽) cos 𝜆 + 𝑖 (1 − 𝛼) sin 𝜆)−1.
(19)

Then, 𝑝(𝑧) is analytic in 𝐸with 𝑝(0) = 1 and Re𝑝(𝑧) > 0. Let

𝑝 (𝑧) = 1 +

∞

∑

𝑛=1

𝑝
𝑛
𝑧
𝑛

. (20)

Then, (19) can be written as

1 −
2

𝑏
+
2

𝑏

𝐷
𝛿+1

𝑓 (𝑧)

𝐷𝛿𝑓 (𝑧)

= 1 +
(1 − 𝛽) cos 𝜆 + 𝑖 (1 − 𝛼) sin 𝜆

𝑒𝑖𝜆 (1 − 𝛼)

∞

∑

𝑛=1

𝑝
𝑛
𝑧
𝑛

,

(21)

and using (8), we have

2𝑒
𝑖𝜆 (1 − 𝛼)

(𝛿 + 1)
(𝑧(𝐷
𝛿

𝑓 (𝑧))


− (𝐷
𝛿

𝑓 (𝑧)))

= 𝑏𝜂 (𝐷
𝛿

𝑓 (𝑧)) (

∞

∑

𝑛=1

𝑝
𝑛
𝑧
𝑛

)

(22)
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which implies that

𝑒
𝑖𝜆

𝑎
𝑛
=

𝑏𝜂 (𝛿 + 1)

2 (1 − 𝛼) (𝑛 − 1) 𝜑
𝑛
(𝛿)

× {𝑝
𝑛−1

+ 𝜑
2
(𝛿) 𝑎
2
𝑝
𝑛−2

+ ⋅ ⋅ ⋅ + 𝜑
𝑛−1
(𝛿) 𝑎
𝑛−1
𝑝
1
} ,

(23)

where we have used (4) and (5). Now applying the coefficient
estimates |𝑝

𝑛
| ≤ 2 for Caratheodory function [14], we obtain

𝑎𝑛
 ≤

(𝛿 + 1) |𝑏|
𝜂


(𝑛 − 1) |1 − 𝛼| 𝜑
𝑛
(𝛿)

× [1 + 𝜑
2
(𝛿)

𝑎2
 + ⋅ ⋅ ⋅ + 𝜑𝑛−1 (𝛿)

𝑎𝑛−1
] .

(24)

For 𝑛 = 2,

𝑎2
 ≤

|𝑏|
𝜂


|1 − 𝛼|
(25)

which proves (15).
For 𝑛 = 3,

𝑎3
 ≤

(𝛿 + 1) |𝑏|
𝜂


2 |1 − 𝛼| 𝜑
3
(𝛿)

[1 +
(𝛿 + 1) |𝑏|

𝜂


|1 − 𝛼|
] . (26)

Therefore, (16) holds for 𝑛 = 3. Assume that (16) is true for all
𝑛 = 3, 4, . . . 𝑘 and consider

𝑎𝑘+1
 ≤

(𝛿 + 1) |𝑏|
𝜂


(𝑘 + 1 − 1) |1 − 𝛼| 𝜑
𝑘+1
(𝛿)

×
{

{

{

(1 +
(𝛿 + 1) |𝑏|

𝜂


|1 − 𝛼|
)

+
(𝛿 + 1) |𝑏|

𝜂


2 |1 − 𝛼|
(1 +

(𝛿 + 1) |𝑏|
𝜂


|1 − 𝛼|
)

+ ⋅ ⋅ ⋅ +
(𝛿 + 1) |𝑏|

𝜂


(𝑘 − 1) | |1 − 𝛼|

𝑘−2

∏

𝑗=1

1 +
(𝛿 + 1) |𝑏|

𝜂


𝑗 |1 − 𝛼|

}

}

}

=
(𝛿 + 1) |𝑏|

𝜂


𝑘 |1 − 𝛼| 𝜑
𝑘+1
(𝛿)

𝑘−1

∏

𝑗=1

(1 +
(𝛿 + 1) |𝑏|

𝜂


𝑗 |1 − 𝛼|
) .

(27)

Thus, the result is true for 𝑛 = 𝑘 + 1, and hence by induction,
(16) holds for all 𝑛 ≥ 3.

If we set 𝜆 = 0, 𝑏 = 2, and 𝛿 = 0 in Theorem 5, we get the
result proved in [10].

Corollary 6. If 𝑓(𝑧) ∈ 𝑆𝐷(𝛼, 𝛽), then

𝑎2
 ≤

2 (1 − 𝛽)

|1 − 𝛼|
,

𝑎𝑛
 ≤

2 (1 − 𝛽)

(𝑛 − 1) |1 − 𝛼|

𝑛−2

∏

𝑗=1

(1 +
2 (1 − 𝛽)

𝑗 |1 − 𝛼|
) , (𝑛 ≥ 3) .

(28)

Remark 7. If we take 𝛼 = 0 in Corollary 6, we have

𝑎𝑛
 ≤

1

(𝑛 − 1)!

𝑛

∏

𝑗=2

(𝑗 − 2𝛽) , (𝑛 ≥ 2) (29)

which was proved by Robertson [15].

By setting 𝜆 = 0, 𝑏 = 1, and 𝛿 = 1 inTheorem 5, we obtain
the result in [10].

Corollary 8. If 𝑓(𝑧) ∈ 𝐾𝐷(𝛼, 𝛽), then

𝑎2
 ≤

(1 − 𝛽)

|1 − 𝛼|
,

𝑎𝑛
 ≤

2 (1 − 𝛽)

𝑛 (𝑛 − 1) |1 − 𝛼|

𝑛−2

∏

𝑗=1

(1 +
2 (1 − 𝛽)

𝑗 |1 − 𝛼|
) , (𝑛 ≥ 3) .

(30)

Remark 9. Letting 𝛼 = 0 in Corollary 8, we have

𝑎𝑛
 ≤

1

𝑛!

𝑛

∏

𝑗=2

(𝑗 − 2𝛽) , (𝑛 ≥ 2) (31)

given by Robertson [15].

Acknowledgment

The principle author would like to thank Prof. Dr. Ihsan Ali,
Vice Chancellor Abdul Wali Khan University Mardan for
providing excellent research facilities and financial support.

References

[1] S. Ruscheweyh, “New criteria for univalent functions,” Proceed-
ings of the AmericanMathematical Society, vol. 49, no. 1, pp. 109–
115, 1975.

[2] E. Aqlan, J. M. Jahangiri, and S. R. Kulkarni, “New classes of 𝑘-
uniformly convex and starlike functions,” Tamkang Journal of
Mathematics, vol. 35, no. 3, pp. 261–266, 2004.

[3] S. Kanas and A. Wisniowska, “Conic regions and 𝑘-uniform
convexity,” Journal of Computational and Applied Mathematics,
vol. 105, no. 1-2, pp. 327–336, 1999.
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