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The method of approximate transformation groups, which was proposed by Baikov et al. (1988 and 1996), is extended on
Hamiltonian and bi-Hamiltonian systems of evolution equations. Indeed, as a main consequence, this extended procedure is
applied in order to compute the approximate conservation laws and approximate recursion operators corresponding to these
types of equations. In particular, as an application, a comprehensive analysis of the problem of approximate conservation laws
and approximate recursion operators associated to the Gardner equation with the small parameters is presented.

1. Introduction

The investigation of the exact solutions of nonlinear evolution
equations has a fundamental role in the nonlinear physical
phenomena. One of the significant and systematic meth-
ods for obtaining special solutions of systems of nonlinear
differential equations is the classical symmetries method,
also called Lie group analysis. This well-known approach
originated at the end of nineteenth century from the pioneer-
ing work of Lie [1]. The fact that symmetry reductions for
many PDEs cannot be determined, via the classical symmetry
method, motivated the creation of several generalizations of
the classical Lie group approach for symmetry reductions.
Consequently, several alternative reduction methods have
been proposed, going beyond Lie’s classical procedure and
providing further solutions. One of these techniques which
is extremely applied particularly for nonlinear problems is
perturbation analysis. It is worth mentioning that sometimes
differential equations which appear in mathematical model-
ings are presented with terms involving a parameter called
the perturbed term. Because of the instability of the Lie point
symmetries with respect to perturbation of coefficients of
differential equations, a new class of symmetries has been
created for such equations, which are known as approximate

(perturbed) symmetries. In the last century, in order to have
the utmost result from themethods, combination of Lie sym-
metry method and perturbations are investigated and two
different so-called approximate symmetry methods (ASMs)
have been developed. The first method is due to Baikov et al.
[2, 3]. The second procedure was proposed by Fushchich and
Shtelen [4] and later was followed by Euler et al. [5, 6]. This
method is generally based on the perturbation of dependent
variables. In [7, 8], a comprehensive comparison of these two
methods is presented.

As it is well known, Hamiltonian systems of differential
equations are one of the famous and significant concepts in
physics. These important systems appear in the various fields
of physics such asmotion of rigid bodies, celestial mechanics,
quantization theory, fluid mechanics, plasma physics, and
so forth. Due to the significance of Hamiltonian structures,
in this paper, by applying the linear behavior of the Euler
operator, characteristics, prolongation, andFréchet derivative
of vector fields, we have extended ASM on the Hamiltonian
and bi-Hamiltonian systems of evolution equations, in order
to investigate the interplay between approximate symmetry
groups, approximate conservation laws, and approximate
recursion operators.
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The structure of the present paper is as follows. In
Section 2, some necessary preliminaries regarding to the
Hamiltonian structures are presented. In Section 3, a com-
prehensive investigation of the approximate Hamiltonian
symmetries and approximate conservation laws associated
to the perturbed evolution equations is proposed. Also, as
an application of this procedure, approximate Hamiltonian
symmetry groups, approximate bi-Hamiltonian structures,
and approximate conservation laws of the Gardner equation
are computed. In Section 4, the approximate recursion oper-
ators are studied and the proposed technique is implemented
for the Gardner equation as an application. Finally, some
concluding remarks are mentioned at the end of the paper.

2. Preliminaries

In this section, we will mention some necessary preliminaries
regarding Hamiltonian structures. In order to be familiar
with the general concepts of the ASM, refer to [9]. It is
also worth mentioning that most of this paper’s definitions,
theorems and techniques regarding Hamiltonian and bi-
Hamiltonian structures are inspired from [10].

Let 𝑀 ⊂ 𝑋 × 𝑈 denote a fixed connected open subset
of the space of independent and dependent variables 𝑥 =

(𝑥
1
, . . . , 𝑥

𝑝
) and 𝑢 = (𝑢

1
, . . . , 𝑢

𝑞
). The algebra of differential

functions 𝑃(𝑥, 𝑢
(𝑛)
) = 𝑝[𝑢] over 𝑀 is denoted by A.

We further define A𝑙 to be the vector space of 𝑙-tuples of
differential functions, 𝑃[𝑢] = (𝑃

1
[𝑢], . . . , 𝑃

𝑙
[𝑢]), where each

𝑃
𝑗
∈ A.
A generalized vector field will be a (formal) expression of

the form

v =

𝑝

∑

𝑖=1

𝜉
𝑖
[𝑢]

𝜕

𝜕𝑥𝑖
+

𝑞

∑

𝛼=1

𝜙
𝛼 [𝑢]

𝜕

𝜕𝑢𝛼
(1)

in which 𝜉
𝑖 and 𝜙

𝛼
are smooth differential functions. The

Prolonged generalized vector field can be defined as follows:

pr(n) v = v +
𝑞

∑

𝛼=1

∑

♯𝐽≤𝑛

𝜙
𝐽

𝛼
[𝑢]

𝜕

𝜕𝑢
𝛼

𝐽

, (2)

whose coefficients are determined by the formula

𝜙
𝐽

𝛼
= 𝐷
𝐽
(𝜙
𝛼
−

𝑝

∑

𝑖=1

𝜉
𝑖
𝑢
𝛼

𝑖
) +

𝑝

∑

𝑖=1

𝜉
𝑖
𝑢
𝛼

𝐽,𝑖
, (3)

with the same notation as before. Given a generalized vector
field v, its infinite prolongation (or briefly prolongation) is the
formally infinite sum as follows:

pr v =

𝑝

∑

𝑖=1

𝜉
𝑖 𝜕

𝜕𝑥𝑖
+

𝑞

∑

𝛼=1

∑

𝐽

𝜙
𝐽

𝛼

𝜕

𝜕𝑢
𝛼

𝐽

, (4)

where each 𝜙𝐽
𝛼
is given by (3), and the sum in (4) now extends

over all multi-indices 𝐽 = (𝑗
1
, . . . , 𝑗

𝑘
) for 𝑘 ≥ 0, 1 ≤ 𝑗

𝑘
≤ 𝑝.

A generalized vector field v is a generalized infinitesimal
symmetry of a system of differential equations as follows:

Δ
𝜈 [𝑢] = Δ

𝜈
(𝑥, 𝑢
(𝑛)
) = 0, 𝜈 = 1, . . . , 𝑙, (5)

if and only if

pr v [Δ
𝜈
] = 0, 𝜈 = 1, . . . , 𝑙, (6)

for every smooth solution 𝑢 = 𝑓(𝑥).
Among all the generalized vector fields, those in which

the coefficients 𝜉𝑖[𝑢] of the 𝜕/𝜕𝑥𝑖 are zero play a distinguished
role. Let 𝑄[𝑢] = (𝑄

1
[𝑢], . . . , 𝑄

𝑞
[𝑢]) ∈ A𝑞 be a 𝑞-tuple of

differential functions. The generalized vector field

v
𝑄
=

𝑞

∑

𝛼=1

𝑄
𝛼 [𝑢]

𝜕

𝜕𝑢𝛼
(7)

is called an evolutionary vector field, and 𝑄 is called its
characteristic.

A manifold 𝑀 with a Poisson bracket is called a Poisson
manifold, the bracket defining a Poisson structure on 𝑀. Let
𝑀 be a Poisson manifold and 𝐻 : 𝑀 → R be a smooth
function. The Hamiltonian vector field associated with 𝐻

is the unique smooth vector field v̂H on 𝑀 satisfying the
following identity:

v̂H = {𝐹,𝐻} = − {𝐻, 𝐹} (8)

for every smooth function 𝐹 : 𝑀 → R. The equations
governing the flow of v̂H are referred to as Hamilton’s
equations for the “Hamiltonian” function𝐻.

Let 𝑥 = (𝑥
1
, . . . , 𝑥

𝑚
) be local coordinates on𝑀 and𝐻(𝑥)

be a real-valued function.The following basic formula can be
obtained for the Poisson bracket:

{𝐹,𝐻} =

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

{𝑥
𝑖
, 𝑥
𝑗
}
𝜕𝐹

𝜕𝑥𝑖

𝜕𝐻

𝜕𝑥𝑗
. (9)

In other words, in order to compute the Poisson bracket of
any pair of functions in some given set of local coordinates, it
suffices to know the Poisson brackets between the coordinate
functions themselves. These basic brackets,

𝐽
𝑖𝑗
(𝑥) = {𝑥

𝑖
, 𝑥
𝑗
} , 𝑖, 𝑗 = 1, . . . , 𝑚, (10)

are called the structure functions of the Poisson manifold 𝑀

relative to the given local coordinates and serve to uniquely
determine the Poisson structure itself. For convenience, we
assemble the structure functions into a skew-symmetric𝑚 ×

𝑚 matrix 𝐽(𝑥), called the structure matrix of 𝑀. Using ∇𝐻

to denote the (column) gradient vector for 𝐻, the local
coordinate form (9) for the Poisson bracket can be written
as

{𝐹,𝐻} = ∇𝐹 ⋅ 𝐽∇𝐻. (11)

Therefore, in the given coordinate chart, Hamilton’s
equations take the form of

𝑑𝑥

𝑑𝑡
= 𝐽 (𝑥) ∇𝐻 (𝑥) . (12)

Alternatively, using (9), we could write this in the “bracket
form” as follows:

𝑑𝑥

𝑑𝑡
= {𝑥,𝐻} , (13)
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the 𝑖th component of the right-hand side being {𝑥
𝑖
, 𝐻}. A

system of first-order ordinary differential equations is said to
be a Hamiltonian system if there is a Hamiltonian function
𝐻(𝑥) and a matrix of functions 𝐽(𝑥) determining a Poisson
bracket (11) whereby the system takes the form (12).

If

D = ∑

𝐽

𝑃
𝐽 [𝑢]𝐷𝐽, 𝑃

𝐽
∈ A (14)

is a differential operator, its (formal) adjoint is the differential
operatorD∗ which satisfies

∫
Ω

𝑃 ⋅D𝑄𝑑𝑥 = ∫
Ω

𝑄 ⋅D
∗
𝑃𝑑𝑥 (15)

for every pair of differential functions𝑃,𝑄 ∈ Awhich vanish
when 𝑢 ≡ 0. Also, for every domain Ω ⊂ R𝑝 and every
function 𝑢 = 𝑓(𝑥) of compact support in Ω. An operator D
is self-adjoint ifD∗ = D; it is skew-adjoint ifD∗ = −D.

The principal innovations needed to convert a Hamil-
tonian system of ordinary differential equations (12) to a
Hamiltonian system of evolution equations are as follows
(refer to [10] for more details):

(i) replacing theHamiltonian function𝐻(𝑥) by aHamil-
tonian functionalH[𝑢],

(ii) replacing the vector gradient operation ∇𝐻 by the
variational derivative 𝛿H of the Hamiltonian func-
tional, and

(iii) replacing the skew-symmetric matrix 𝐽(𝑥) by a skew-
adjoint differential operatorD which may depend on
𝑢.

The resulting Hamiltonian system will take the form of

𝜕𝑢

𝜕𝑡
= D ⋅ 𝛿H [𝑢] . (16)

Clearly, for a candidate Hamiltonian operator D the correct
expression for the corresponding Poison bracket has the form
of

{P,L} = ∫ 𝛿P ⋅D𝛿L 𝑑𝑥, (17)

wheneverP,L ∈ F are functionals. Off course, the Hamil-
tonian operatorDmust satisfy certain further restrictions in
order that (17) be a true Poisson bracket. A linear operator
D : A𝑞 → A𝑞 is called Hamiltonian if its Poisson bracket
(17) satisfies the conditions of skew-symmetry and the Jacobi
identity.

Proposition 1. LetD be a Hamiltonian operator with Poisson
bracket (17). To each functionalH = ∫𝐻𝑑𝑥 ∈ F, there is an
evolutionary vector field pr v̂H, called the Hamiltonian vector
field associated with H, which for all functionals P ∈ F
satisfies the following identity:

pr v̂H (P) = {P,H} . (18)

Indeed, v̂H has characteristic D𝛿H = DE(𝐻), in which E is
Euler operator (Proposition 7.2 of [10]).

3. Approximate Hamiltonian Symmetries and
Approximate Conservation Laws

Consider a system of perturbed evolution equations:

𝜕𝑢

𝜕𝑡
= 𝑃 [𝑢, 𝜀] (19)

in which 𝑃[𝑢, 𝜀] = 𝑃(𝑥, 𝑢
(𝑛)
, 𝜀) ∈ A𝑞, 𝑥 ∈ R𝑝, 𝑢 ∈ R𝑞 and 𝜀

is a parameter.
Substituting according to (19) and its derivatives, we see

that any evolutionary symmetry must be equivalent to one
whose characteristic 𝑄[𝑢, 𝜀] = 𝑄(𝑥, 𝑡, 𝑢

(𝑚)
, 𝜀) depends only

on 𝑥, 𝑡, 𝑢, 𝜀 and the 𝑥-derivatives of 𝑢. On the other hand,
(19) itself can be considered as the equations corresponding
to the flow exp(𝑡v

𝑝
) of the evolutionary vector field with

characteristic 𝑃. The symmetry criterion (6), which in this
case is

𝐷
𝑡
𝑄
𝜈
= pr v

𝑄
(𝑃
𝜈
) + 𝑜 (𝜀

𝑝
) , 𝜈 = 1, . . . , 𝑞, (20)

can be readily seen to be equivalent to the following Lie
bracket condition on the two approximate generalized vector
fields. Indeed, this point generalizes the correspondence
between symmetries of systems of first-order perturbed
ordinary differential equations and the Lie bracket of the
corresponding vector fields.

Considering the above assumptions, some useful relevant
theorems and definitions could be rewritten as follows.

Proposition 2. An approximate evolutionary vector field v
𝑄

is a symmetry of the system of perturbed evolution equations
𝑢
𝑡
= 𝑃[𝑢, 𝜀] if and only if

𝜕v
𝑄

𝜕𝑡
+ [v
𝑃
, v
𝑄
] = 𝑜 (𝜀

𝑝
) (21)

holds identically in (𝑥, 𝑡, 𝑢
(𝑚)

, 𝜀). (Here 𝜕v
𝑄
/𝜕𝑡 denotes the

evolutionary vector field with characteristic 𝜕𝑄/𝜕𝑡.).

Any approximate conservation law of a system of per-
turbed evolution equations takes the form of

𝐷
𝑡
𝑇 +Div𝑋 = 𝑜 (𝜀

𝑝
) , (22)

in whichDiv denotes spatial divergence.Without loss of gen-
erality, the conserved density𝑇(𝑥, 𝑡, 𝑢(𝑛), 𝜀) can be assumed to
depend only on 𝑥-derivatives of 𝑢. Equivalently, for Ω ⊂ 𝑋,
the functional

T [𝑡; 𝑢, 𝜀] = ∫
Ω

𝑇 (𝑥, 𝑡, 𝑢
(𝑛)
, 𝜀) 𝑑𝑥 (23)

is a constant, independent of 𝑡, for all solutions 𝑢 such that
𝑇(𝑥, 𝑡, 𝑢

(𝑛)
, 𝜀) → 0 as 𝑥 → 𝜕Ω. Note that if 𝑇(𝑥, 𝑡, 𝑢(𝑛), 𝜀)

is any such differential function, and 𝑢 is a solution of the
perturbed evolutionary system 𝑢

𝑡
= 𝑃[𝑢, 𝜀], then

𝐷
𝑡
𝑇 ≈ 𝜕
𝑡
𝑇 + pr v

𝑝
(𝑇) , (24)
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where 𝜕
𝑡
= 𝜕/𝜕𝑡 denotes the partial 𝑡-derivative.Thus𝑇 is the

density for a conservation law of the system if and only if its
associated functionalT satisfies the following identity:

𝜕T

𝜕𝑡
+ pr v

𝑝
(T) = 𝑜 (𝜀

𝑝
) . (25)

In the case that our system is of Hamiltonian form, the
bracket relation (18) immediately leads to the Noether
relation between approximate Hamiltonian symmetries and
approximate conservation laws.

Definition 3. Let D be a 𝑞 × 𝑞 approximate Hamiltonian
differential operator. An approximate distinguished functional
for D is a functional G ∈ F satisfying D𝛿G = 𝑜(𝜀

𝑝
) for all

𝑥, 𝑢.

In other words, theHamiltonian system corresponding to
a distinguished functional is completely trivial: 𝑢

𝑡
= 0.

Now, according to [10], the perturbed Hamiltonian ver-
sion of Noether’s theorem can be presented as follows.

Theorem 4. Let 𝑢
𝑡

= D𝛿H be a Hamiltonian system of
perturbed evolution equations. An approximate Hamiltonian
vector field v̂P with characteristicD𝛿P,P ∈ F determines an
approximate generalized symmetry group of the system if and
only if there is an equivalent functional P̃ ≈ P − G differing
only from P by a time-dependent approximate distinguished
functional G[𝑡; 𝑢, 𝜀], such that P̃ determines an approximate
conservation law.

Example 5. The Gardner equation

𝑢
𝑡
= 6 (𝑢 + 𝜀𝑢

2
) 𝑢
𝑥
− 𝑢
𝑥𝑥𝑥

, (26)

can in fact be written in Hamiltonian form in two distinct
ways. Firstly, we see

𝑢
𝑡
= 𝐷
𝑥
(3𝑢
2
+ 2𝜀𝑢
3
− 𝑢
𝑥𝑥
) = D𝛿H

1
, (27)

whereD = 𝐷
𝑥
and

H
1 [𝑢, 𝜀] = ∫(𝑢

3
+
𝜀

2
𝑢
4
+
𝑢
2

𝑥

2
)𝑑𝑥 (28)

is an approximate conservation law. Note that D is certainly
skew-adjoint and Hamiltonian. The Poisson bracket is

{P,L} = ∫ 𝛿P ⋅ 𝐷
𝑥
(𝛿L) 𝑑𝑥. (29)

The second Hamiltonian form is

𝑢
𝑡
= (4𝑢𝐷

𝑥
+ 2𝑢
𝑥
+ 3𝜀 (𝑢𝑢

𝑥
+ 𝑢
2
𝐷
𝑥
) − 𝐷

3

𝑥
) 𝑢 = E𝛿H

0
,

(30)

in which

H
0 [𝑢, 𝜀] = ∫

1

2
𝑢
2
𝑑𝑥 (31)

E is skew-adjoint and satisfies the Jacobi identity. Therefore
it is Hamiltonian.

In [11], we have comprehensively analyzed the problem
of approximate symmetries for the Gardner equation. We
have shown that the approximate symmetries of the Gardner
equation are given by the following generators:

v
1
= 𝜕
𝑥
,

v
2
= 𝜕
𝑡
,

v
3
= 6𝑡𝜕
𝑥
+ (2𝜀𝑢 − 1) 𝜕

𝑢
,

v
4
= 𝜀v
1
,

v
5
= 𝜀v
2
,

v
6
= 𝜀 (6𝑡𝜕

𝑥
− 𝜕
𝑢
) = 𝜀v

3
,

v
7
= 𝜀 (𝑥𝜕

𝑥
+ 3𝑡𝜕
𝑡
− 2𝑢𝜕

𝑢
) ,

(32)

with corresponding characteristics

𝑄
1
= 𝑢
𝑥
,

𝑄
2
= 6 (𝑢 + 𝜀𝑢

2
) 𝑢
𝑥
− 𝑢
𝑥𝑥𝑥

,

𝑄
3
= 6𝑡𝑢
𝑥
+ 1 − 2𝜀𝑢,

𝑄
4
= 𝜀𝑄
1
= 𝜀𝑢
𝑥
,

𝑄
5
= 𝜀𝑄
2
= 𝜀 (6𝑢𝑢

𝑥
− 𝑢
𝑥𝑥𝑥

) ,

𝑄
6
= 𝜀𝑄
3
= 𝜀 (6𝑡𝑢

𝑥
+ 1) ,

𝑄
7
= 𝜀 (2𝑢 + 𝑥𝑢

𝑥
+ 3𝑡 (6𝑢𝑢

𝑥
− 𝑢
𝑥𝑥𝑥

)) ,

(33)

(up to sign).
For the first Hamiltonian operator D = 𝐷

𝑥
, there is one

independent nontrivial approximate distinguished func-
tional, the mass P

0
= M = ∫𝑢𝑑𝑥 which is consequently

approximately conserved.
For the above seven characteristics, we have

𝑄
𝑖
≈ 𝐷
𝑥
𝛿P
𝑖
, 𝑖 = 1, 2, 4, 5, 6, (34)

with the following approximately conserved functionals:

P
1
= H
0 [𝑢, 𝜀] = ∫

1

2
𝑢
2
𝑑𝑥,

P
2
= H
1 [𝑢, 𝜀] = ∫(𝑢

3
+
𝜀

2
𝑢
4
+
1

2
𝑢
2

𝑥
)𝑑𝑥,

P
4
= 𝜀P
1
= ∫

𝜀

2
𝑢
2
𝑑𝑥,

P
5
= 𝜀P
2
= 𝜀∫(𝑢

3
+
1

2
𝑢
2

𝑥
)𝑑𝑥,

P
6
= 𝜀∫ (3𝑡𝑢

2
+ 𝑥𝑢) 𝑑𝑥.

(35)
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For the second Hamiltonian operator E = 4𝑢𝐷
𝑥
+ 2𝑢
𝑥
+

3𝜀(𝑢𝑢
𝑥
+ 𝑢
2
𝐷
𝑥
) − 𝐷
3

𝑥
,

𝑄
𝑖
≈ E𝛿P̃

𝑖
, 𝑖 = 2, 4, 5, 7, (36)

the following approximately conserved functionals are the
corresponding approximate conservation laws:

P̃
2
= P
1
= ∫

1

2
𝑢
2
𝑑𝑥,

P̃
4
=

𝜀

2
P
0
=

𝜀

2
∫𝑢𝑑𝑥,

P̃
5
= 𝜀P̃
2
= 𝜀∫

1

2
𝑢
2
𝑑𝑥,

P̃
7
=

1

2
P
6
=

𝜀

2
∫ (3𝑡𝑢

2
+ 𝑥𝑢) 𝑑𝑥.

(37)

In this case, nothing new is obtained. Note that the other
approximate conservation law P

5
did not arise from one

of the geometrical symmetries. According to Theorem 4,
however, there is an approximate Hamiltonian symmetry
which gives rises to it, namely v̂P

5

. The characteristic of this
approximate generalized symmetry is

𝑄
5
≈ E𝛿P

5
= E𝜀 (3𝑢

2
− 𝑢
𝑥𝑥
)

≈ 𝜀 (𝑢
𝑥𝑥𝑥𝑥𝑥

− 10𝑢𝑢
𝑥𝑥𝑥

− 20𝑢
𝑥
𝑢
𝑥𝑥

+ 30𝑢
2
𝑢
𝑥
) .

(38)

Note that 𝑄
5
happens to satisfy the Hamiltonian condition

(34) forD with the following functional:

P
5
=

𝜀

2
∫ (𝑢
2

𝑥𝑥
− 5𝑢
2
𝑢
𝑥𝑥

+ 5𝑢
4
) 𝑑𝑥. (39)

Consequently, another approximate conservation law is pro-
vided for the Gardner equation.

Keeping on this procedure recursively, further approxi-
mate conservation laws could be generated. But, this proce-
dure will be done in the next section by applying approximate
recursion operators.

4. Approximate Recursion Operators

Definition 6. LetΔ be a system of perturbed differential equa-
tions.An approximate recursion operator forΔ is a linear oper-
ator R : A𝑞 → A𝑞 in the space of 𝑞-tuples of differential
functions with the property that whenever v

𝑄
is an approxi-

mate evolutionary symmetry of Δ, so v
�̃�
is with 𝑄 ≈ R𝑄.

For nonlinear perturbed systems, there is an analogous
criterion for a differential operator to be an approximate
recursion operator, but to state it we need to introduce the
notion of the (formal) Fréchet derivative of a differential
function.

Definition 7. Let 𝑃[𝑢, 𝜀] = 𝑃(𝑥, 𝑢
(𝑛)
, 𝜀) ∈ A𝑟 be an 𝑟-tuple

of differential functions. The Fréchet derivative of 𝑃 is the

perturbed differential operator D
𝑃

: A𝑞 → A𝑟 defined so
that

D
𝑃
(𝑄) =

𝑑

𝑑𝜖

𝜖=0

𝑃 [𝑢 + 𝜖𝑄 [𝑢, 𝜀]] (40)

for any 𝑄 ∈ A𝑞.

Proposition 8. If 𝑃 ∈ A𝑟 and 𝑄 ∈ A𝑞 then

D
𝑃
(𝑄) ≈ pr v

𝑄
(𝑃) . (41)

Theorem 9. Suppose that Δ[𝑢, 𝜀] = 0 be a system of perturbed
differential equations. If R : A𝑞 → A𝑞 is a linear operator
such that for all solutions 𝑢 of Δ,

D
Δ
⋅R ≈ R̃ ⋅D

Δ
, (42)

whereR : A𝑞 → A𝑞 is a linear differential operator, thenR
is an approximate recursion operator for the system.

Suppose that Δ[𝑢, 𝜀] = 𝑢
𝑡
− 𝐾[𝑢, 𝜀] is a perturbed evolut-

ion equation. Then D
Δ
= 𝐷
𝑡
− D
𝐾
. If R is an approximate

recursion operator, then it is not hard to observe that the
operator R̃ in (42) must be the same as R. Therefore,
the condition (42) in this case reduces to the commutator
condition

R
𝑡
≈ [D
𝐾
,R]

for an approximate recursion operator of a perturbed evolu-
tion equation.

From (4), we can conclude that if R is an approximate
recursion operator, then for all 𝑙 ≥ 1 in which 𝜀

𝑙R ̸= 0, 𝜀𝑙R is
an approximate recursion operator as follows:

(𝜀
𝑙
R)
𝑡
= 𝜀
𝑙
R
𝑡
≈ 𝜀
𝑙
[D
𝐾
,R] ≈ [D

𝐾
, 𝜀
𝑙
R] .

In order to illustrate the significance of the above theorem, we
discuss a couple of examples, including the potential Burgers’
equation and the Gardner equation. In the first example, we
apply some technical methods, used in Examples 5.8 and 5.30
of [10].

Example 10. Consider the potential Burgers’ equation

𝑢
𝑡
= 𝑢
𝑥𝑥

+ 𝜀𝑢
2

𝑥
. (43)
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Asmentioned in [7], approximate symmetries of the potential
Burgers’ equation are given by the following twelve vector
fields

v
1
= 𝜕
𝑥
,

v
2
= 𝜕
𝑡
,

v
3
= 𝑥𝜕
𝑥
+ 2𝑡𝜕
𝑡
,

v
4
= 2𝑡𝜕
𝑥
− (𝑥𝑢 − 𝜀𝑡

𝑢
2

2
) 𝜕
𝑢
,

v
5
= (𝑢 − 𝜀𝑡

𝑢
2

2
) 𝜕
𝑢
,

v
6
= 4𝑥𝑡𝜕

𝑥
+ 4𝑡
2
𝜕
𝑡
− (𝑥
2
+ 2𝑡) (𝑢 − 𝜀𝑡

𝑢
2

2
) 𝜕
𝑢
,

v
7
= 𝜀v
1
,

v
8
= 𝜀v
2
,

v
9
= 𝜀 (𝑥𝜕

𝑥
+ 2𝑡𝜕
𝑡
) = 𝜀v

3
,

v
10

= 𝜀 (2𝑡𝜕
𝑥
− 𝑥𝑢𝜕

𝑢
) = 𝜀v

4
,

v
11

= 𝜀𝑢𝜕
𝑢
= 𝜀v
5
,

v
12

= 𝜀 (4𝑥𝑡𝜕
𝑥
+ 4𝑡
2
𝜕
𝑡
− (𝑥
2
+ 2𝑡) 𝑢𝜕

𝑢
) = 𝜀v

6
,

(44)

plus the infinite family of vector fields

v
𝑓,𝑔

= (𝑓 (𝑥, 𝑡) (1 − 𝜀𝑢) + 𝜀𝑔 (𝑥, 𝑡)) 𝜕
𝑢
, (45)

where 𝑓, 𝑔 are arbitrary solutions of the heat equation 𝑢
𝑡
=

𝑢
𝑥𝑥
.

The corresponding characteristics of the first twelve
approximate symmetries are

𝑄
1
= 𝑢
𝑥
,

𝑄
2
= 𝑢
𝑥𝑥

+ 𝜀𝑢
2

𝑥
,

𝑄
3
= 𝑥𝑢
𝑥
+ 2𝑡 (𝑢

𝑥𝑥
+ 𝜀𝑢
2

𝑥
) ,

𝑄
4
= 𝑥𝑢 + 2𝑡𝑢

𝑥
− 𝜀𝑡

𝑢
2

2
,

(46)

𝑄
5
= 𝑢 − 𝜀𝑡

𝑢
2

2
,

𝑄
6
= (𝑥
2
+ 2𝑡) (𝑢 − 𝜀𝑡

𝑢
2

2
) + 4𝑥𝑡𝑢

𝑥
+ 4𝑡
2
(𝑢
𝑥𝑥

+ 𝜀𝑢
2

𝑥
) ,

𝑄
7
= 𝜀𝑄
1
= 𝜀𝑢
𝑥
,

𝑄
8
= 𝜀𝑄
2
= 𝜀𝑢
𝑥𝑥
,

𝑄
9
= 𝜀𝑄
3
= 𝜀 (𝑥𝑢

𝑥
+ 2𝑡𝑢
𝑥𝑥
) ,

𝑄
10

= 𝜀𝑄
4
= 𝜀 (𝑥𝑢 + 2𝑡𝑢

𝑥
) ,

𝑄
11

= 𝜀𝑄
5
= 𝜀𝑢,

𝑄
12

= 𝜀𝑄
6
= 𝜀 ((𝑥

2
+ 2𝑡) 𝑢 + 4𝑥𝑡𝑢

𝑥
+ 4𝑡
2
𝑢
𝑥𝑥
) ,

(47)

(up to sign).

Inspection of 𝑄
1
, 𝑄
2
, 𝑄
7
, 𝑄
8
leads us to the conjecture

that R
1
= 𝐷
𝑥
+ 𝜀𝑢
𝑥
is an approximate recursion operator,

since 𝑄
3
= R
1
𝑄
1
, 𝑄
8
= R
1
𝑄
7
, and so forth. To prove this,

we note that the Fréchet derivative for the right-hand side of
potential Burgers’ equation is

𝐷
𝐾
= 𝐷
2

𝑥
+ 2𝜀𝑢
𝑥
𝐷
𝑥
. (48)

We must verify (4). The time derivative of the first approxi-
mate recursion operatorR

1
on the solutions of the potential

Burgers’ equation is the multiplication operator as follows:

(R
1
)
𝑡
= (𝐷
𝑥
+ 𝜀𝑢
𝑥
)
𝑡
= 𝜀𝑢
𝑥𝑡
= 𝜀 (𝑢

𝑥𝑥𝑥
+ 2𝜀𝑢
𝑥
𝑢
𝑥𝑥
) = 𝜀𝑢

𝑥𝑥𝑥
.

(49)

On the other hand, the commutator is computed using
Leibniz’ rule for differential operators:

[𝐷
𝐾
,R
1
] = 𝜀𝑢

𝑥𝑥𝑥
. (50)

Comparing these two verifies (4) and proves that R
1
is an

approximate recursion operator for the potential Burgers’
equation.

There is thus an infinite hierarchy of approximate symme-
tries, with characteristics R𝑘

1
𝑄
1
, 𝑘 = 0, 1, 2, . . . For example,

the next characteristic after 𝑄
12
in the sequence is

R
1
𝑄
12

= 𝜀 ((𝑥
2
+ 6𝑡) 𝑢

𝑥
+ 2𝑥 (𝑢 + 2𝑡𝑢

𝑥𝑥
) + 4𝑡
2
𝑢
𝑥𝑥𝑥

) . (51)

To obtain the characteristics depending on 𝑥 and 𝑡, we
require a second approximate recursion operator, which by
inspection, we guess to be

R
2
= 𝑡R
1
+
𝑥

2
. (52)

Using the fact thatR
1
satisfies (4), we readily find

(R
2
)
𝑡
= 𝑡(R

1
)
𝑡
+R
1
= 𝑡 [𝐷

𝐾
,R
1
] +R

1
, (53)

whereas

[𝐷
𝐾
,R
2
] = 𝑡 [𝐷

𝐾
,R
1
] + [𝐷

2

𝑥
+ 2𝜀𝑢
𝑥
𝐷
𝑥
,
1

2
𝑥]

= 𝑡 [𝐷
𝐾
,R
1
] + (𝐷

𝑥
+ 𝜀𝑢
𝑥
) = 𝑡 [𝐷

𝐾
,R
1
] +R

1
,

(54)

proving that R
2
is also an approximate recursion operator.

There is thus a doubly infinite hierarchy of approximate
generalized symmetries of potential Burgers’ equation, with
characteristicsR𝑙

2
R𝑘
1
𝑄
1
, 𝑘, 𝑙 ≥ 0. For instance, 𝑄

2
= R
1
𝑄
1
,

𝑄
3
= 2R

2
R
1
𝑄
1
and so on.

Example 11. Consider the Gardner equation, which was
shown to have two Hamiltonian structures with

D = 𝐷
𝑥
, E = 4𝑢𝐷

𝑥
+ 2𝑢
𝑥
+ 3𝜀 (𝑢𝑢

𝑥
+ 𝑢
2
𝐷
𝑥
) − 𝐷

3

𝑥
.

(55)

Hence, the operator connecting our hierarchy of approximate
Hamiltonian symmetries is

R = E ⋅D
−1

= 4𝑢 + 3𝜀𝑢
2
+ (2 + 3𝜀𝑢) 𝑢

𝑥
𝐷
−1

𝑥
− 𝐷
2

𝑥
. (56)
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Therefore, our results on approximate bi-Hamiltonian sys-
tems will provide ready-made proofs of the existence of
infinitely many approximate conservation laws and approx-
imate symmetries for the Gardner equation.

Note that the Fréchet derivative for the right-hand side of
Gardner’s equation is

D
𝐾
= 6 (1 + 2𝜀𝑢) 𝑢

𝑥
+ 6 (𝑢 + 𝜀𝑢

2
)𝐷
𝑥
− 𝐷
3

𝑥
,

R
𝑡
= (4 + 6𝜀𝑢) 𝑢

𝑡
+ (2𝑢
𝑥𝑡
+ 3𝜀𝑢
𝑡
𝑢
𝑥
+ 3𝜀𝑢𝑢

𝑥𝑡
)𝐷
−1

𝑥

= 12𝑢𝑢
𝑥
(2 + 5𝜀𝑢) − (4 + 6𝜀𝑢) 𝑢

𝑥𝑥𝑥

+ (6𝑢𝑢
𝑥𝑥

(2 + 5𝜀𝑢) + 12𝑢
2

𝑥
(1 + 5𝜀𝑢)

−𝑢
𝑥𝑥𝑥𝑥

(2 + 3𝜀𝑢) − 3𝜀𝑢
𝑥
𝑢
𝑥𝑥𝑥

)𝐷
−1

𝑥
.

(57)

Theorem 12. Let 𝑄
0
= 𝜀𝑢
𝑥
. For each 𝑘 ≥ 0, the differential

polynomial 𝑄
𝑘
= R𝑘𝑄

0
is a total 𝑥-derivative, 𝑄

𝑘
= 𝐷
𝑥
𝑅
𝑘
,

and hence we can recursively define 𝑄
𝑘+1

= R𝑄
𝑘
. Each 𝑄

𝑘
is

the characteristic of an approximate symmetry of the Gardner
equation.

Proof. To prove this theorem, we apply the similar method
applied inTheorem 5.31 of [10].

We proceed by induction on 𝑘, so suppose that 𝑄
𝑘

=

R𝑘𝑄
0
for some 𝑅

𝑘
∈ A. From the form of the approximate

recursion operator,

𝑄
𝑘+1

= 𝜀 (4𝑢𝑄
𝑘
+ 2𝑢
𝑥
𝐷
−1

𝑥
𝑄
𝑘
− 𝐷
2

𝑥
𝑄
𝑘
)

= 𝜀𝐷
𝑥
(2𝑢𝐷
−1

𝑥
𝑄
𝑘
+ 2𝐷
−1

𝑥
(𝑢𝑄
𝑘
) − 𝐷
𝑥
𝑄
𝑘
) .

(58)

If we can prove that for some differential polynomial 𝑆
𝑘
∈ A,

𝑢𝑄
𝑘
= 𝐷
𝑥
𝑆
𝑘
, we will indeed have proved that𝑄

𝑘+1
= 𝐷
𝑥
𝑅
𝑘+1

,
where𝑅

𝑘+1
is the above expression in brackets. Consequently,

the induction step will be completed.
To prove this fact, note that the formal adjoint of the

approximate recursion operator 𝜀R is

𝜀R
∗
= 𝜀 (4𝑢 − 2𝐷

−1

𝑥
⋅ 𝑢
𝑥
− 𝐷
2

𝑥
) = 𝐷

−1

𝑥
𝜀R𝐷
𝑥
. (59)

We apply this in order to integrate the expression 𝑢𝑄
𝑘
, by

parts, so

𝑄
𝑘
= 𝑢R

𝑘
[𝜀𝑢
𝑥
] = 𝑢
𝑥
⋅ (𝜀R
∗
)
𝑘

[𝑢] + 𝐷
𝑥
𝐴
𝑘

(60)

for some differential function 𝐴
𝑘
∈ A. On the other hand,

using a further integration by parts, for some 𝐵
𝑘
∈ A the

following identity holds:

𝑢
𝑥
⋅ (𝜀R
∗
)
𝑘

[𝑢] = 𝑢
𝑥
⋅ 𝐷
−1

𝑥
𝜀R [𝑢

𝑥
]

= 𝑢
𝑥
⋅ 𝐷
−1

𝑥
𝑄
𝑘

= −𝑢𝑄
𝑘
+ 𝐷
𝑥
𝐵
𝑘
.

(61)

Substituting into the previous identity, we conclude

𝑢𝑄
𝑘
= 𝐷
𝑥
𝑆
𝑘
, where 𝑆

𝑘
=

1

2
(𝐴
𝑘
+ 𝐵
𝑘
) , (62)

which proves our claim.

Definition 13. A pair of skew-adjoint 𝑞 × 𝑞 matrix of
differential operators D and E is said to form an approxi-
mately Hamiltonian pair if every linear combination 𝑎D +

𝑏E, 𝑎, 𝑏 ∈ R, is an approximate Hamiltonian operator. A
systemof perturbed evolution equations is an approximate bi-
Hamiltonian system if it can be written in the form of

𝜕𝑢

𝜕𝑡
= 𝐾
1 [𝑢, 𝜀] ≈ D𝛿H

1
≈ E𝛿H

0
, (63)

whereD,E forman approximatelyHamiltonian pair, andH
0

andH
1
are appropriate Hamiltonian functionals.

Lemma 14. IfD,E are skew-adjoint operators, then they form
an approximately Hamiltonian pair if and only if D, E and
D +E are all approximate Hamiltonian operators.

Corollary 15. Let D and E be Hamiltonian differential
operators.ThenD,E form an approximately Hamiltonian pair
if and only if

pr vD𝜃 (ΘE) + pr vE𝜃 (ΘD) = 𝑜 (𝜀
𝑝
) , (64)

where

ΘD =
1

2
∫ {𝜃 ∧D𝜃} 𝑑𝑥, ΘE =

1

2
∫ {𝜃 ∧E𝜃} 𝑑𝑥 (65)

are the functional bi-vectors representing the respective Poisson
brackets.

Example 16. Consider the approximate Hamiltonian opera-
torsD, E associated with the Gardner equation. We have

pr vD𝜃 = ∑

𝛼,𝐽

𝐷
𝐽
(D𝜃)
𝛼

𝜕

𝜕𝑢
𝛼

𝐽

= ∑

𝛼,𝐽

𝐷
𝐽
(

𝑞

∑

𝛽=1

D
𝛼𝛽
𝜃
𝛽
)

𝜕

𝜕𝑢
𝛼

𝐽

(66)

in the case of the second approximate Hamiltonian operator
for the Gardner equation, we have

pr vE𝜃 (𝑢) = E𝜃, pr vE𝜃 (𝑢
2
) = 2𝑢E𝜃,

pr vE𝜃 (ΘD) = pr vE𝜃 ∫
1

2
{𝜃 ∧ 𝜃

𝑥
} 𝑑𝑥 = 𝑜 (𝜀

𝑝
)

(67)

trivially, by the properties of the wedge product, it is deduced
that

pr vD𝜃 (ΘE)

= pr vD𝜃 ∫{(2𝑢 +
3𝜀

2
𝑢
2
) 𝜃 ∧ 𝜃

𝑥
+
1

2
𝜃
𝑥
∧ 𝜃} 𝑑𝑥

≈ ∫ {(2 + 3𝜀𝑢) 𝜃
𝑥
∧ 𝜃 ∧ 𝜃

𝑥
} = 𝑜 (𝜀

𝑝
) .

(68)

ThusD and E form an approximately Hamiltonian pair.

Definition 17. A differential operator D : A𝑟 → A𝑠 is
approximately degenerate if there is a nonzero differential
operator D̃ : A𝑠 → A such that D̃ ⋅D ≡ 𝑜(𝜀

𝑝
).
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Now, according to [10], we are in a situation to state the
main theorem on approximate bi-Hamiltonian systems.

Theorem 18. Let

𝑢
𝑡
= 𝐾
1 [𝑢, 𝜀] ≈ D𝛿H

1
≈ E𝛿H

0 (69)

be an approximate bi-Hamiltonian system of perturbed evo-
lution equations. Assume that the operator D of the approx-
imately Hamiltonian pair is approximate nondegenerate. Let
R = E ⋅ D−1 be the corresponding approximate recursion
operator, and let 𝐾

0
≈ D𝛿H

0
. Assume that for each 𝑛 =

1, 2, . . . one can recursively define

𝐾
𝑛
≈ R𝐾

𝑛−1
, 𝑛 ≥ 1, (70)

meaning that for each 𝑛,𝐾
𝑛−1

lies in the image ofD.Then there
exists a sequence of functionalsH

0
,H
1
,H
2
, . . . such that

(i) for each 𝑛 ≥ 1 the perturbed evolution equation

𝑢
𝑡
= 𝐾
𝑛 [𝑢, 𝜀] ≈ D𝛿H

𝑛
≈ E𝛿H

𝑛−1 (71)

is an approximate bi-Hamiltonian system;
(ii) the corresponding approximate evolutionary vector

fields v
𝑛
= v
𝐾
𝑛

all mutually commute

[v
𝑛
, v
𝑚
] = 𝑜 (𝜀

𝑝
) , 𝑛, 𝑚 ≥ 0; (72)

(iii) the approximate Hamiltonian functionalsH
𝑛
are all in

involution with respect to either Poisson bracket:

{H
𝑛
,H
𝑛
}
D
= 𝑜 (𝜀

𝑝
) = {H

𝑛
,H
𝑛
}
E
, 𝑛, 𝑚 ≥ 0, (73)

and hence provide an infinite collection of approximate
conservation laws for each of the approximate bi-
Hamiltonian systems (63).

We have seen that given an approximate bi-Hamiltonian
system, the operatorR = E ⋅D−1, when applied successively
to the initial equation 𝐾

0
= D𝛿H

0
, produces an infinite

sequence of approximate generalized symmetries of the origi-
nal system (subject to the technical assumptions contained in
Theorem 18). It is still not clear thatR is a true approximate
recursion operator for the system, in the sense that whenever
v
𝑄
is an approximate generalized symmetry, so is vR𝑄. So far,

we only know it for approximate symmetries with𝑄 = 𝐾
𝑛
for

some 𝑛. In order to establish this more general result, we need
a formula for the infinitesimal change of the approximate
Hamiltonian operator itself under a Hamiltonian flow.

Lemma 19. Let 𝑢
𝑡

= 𝐾 ≈ D𝛿H be an approximate
Hamiltonian system of perturbed evolution equations with
corresponding vector field v

𝐾
= v̂H. Then

pr v̂H (D) ≈ D
𝐾
⋅D +D ⋅D∗

𝐾
. (74)

Theorem 20. Let 𝑢
𝑡

= 𝐾 ≈ D𝛿H
1

≈ E𝛿H
0
be an

approximate bi-Hamiltonian system of perturbed evolution
equations. Then the operators R

𝑙
= 𝜀
𝑙E ⋅ D−1, 0 ≤ 𝑙 ≤ 𝑝,

are approximate recursion operators for the system.

Judging fromR
𝑝

𝑙
= 𝑜(𝜀
𝑝
), when 𝑙 ̸= 0, this type of appro-

ximate recursion operators have less significance thanR
0
.

Example 21. The approximate recursion operators of the
Gardner equation are

R
0
= E ⋅D

−1
= 4𝑢 + 2𝑢

𝑥
𝐷
−1

𝑥
+ 3𝜀 (𝑢𝑢

𝑥
𝐷
−1

𝑥
+ 𝑢
2
) − 𝐷

2

𝑥
,

R
1
= 𝜀 (4𝑢 + 2𝑢

𝑥
𝐷
−1

𝑥
− 𝐷
2

𝑥
)

(75)

and we can apply R
0
to the right-hand side of the Gardner

equation to obtain the approximate symmetries.The first step
in this recursion is the flow

𝑢
𝑡
≈ E𝛿H

1
≈ D𝛿H

2

≈ 𝑢
𝑥𝑥𝑥𝑥𝑥

− 10𝑢𝑢
𝑥𝑥𝑥

− 20𝑢
𝑥
𝑢
𝑥𝑥

+ 30𝑢
2
𝑢
𝑥

+ 𝜀 (55𝑢
3
𝑢
𝑥
− 39𝑢𝑢

𝑥
𝑢
𝑥𝑥

− 9𝑢
2
𝑢
𝑥𝑥𝑥

− 12𝑢
3

𝑥
) ,

(76)

which is not approximately total derivative, so we cannot
reapply the approximate recursion operator to get a mean-
ingful approximate generalized symmetry.

But if we set

𝐾
1 [𝑢, 𝜀] = 𝑄

5
= 𝜀𝐾
1 [𝑢, 𝜀] = 𝜀 (6𝑢𝑢

𝑥
− 𝑢
𝑥𝑥𝑥

) ,

H
0
= P̃
5
= 𝜀H

0
, H

1
= P
5
= 𝜀H

1
,

(77)

then we can apply R
0
successively to 𝐾

1
in order to obtain

the approximate symmetries. The first phase become

𝑢
𝑡
≈ E𝛿H

1
≈ D𝛿H

2
≈ R
0
𝐾
1

≈ 𝜀 (𝑢
𝑥𝑥𝑥𝑥𝑥

− 10𝑢𝑢
𝑥𝑥𝑥

− 20𝑢
𝑥
𝑢
𝑥𝑥

+ 30𝑢
2
𝑢
𝑥
)

(78)

in which

H
2
= P
5
=

𝜀

2
∫ (𝑢
2

𝑥𝑥
− 5𝑢
2
𝑢
𝑥𝑥

+ 5𝑢
4
) 𝑑𝑥 (79)

is another approximate conservation law.
Now, for𝐾

2
= R
0
𝐾
1
we have

𝑢
𝑡
≈ E𝛿H

2
≈ D𝛿H

3
≈ R
0
𝐾
2

≈ 𝜀 (−𝑢
𝑥𝑥𝑥𝑥𝑥𝑥𝑥

+ 14𝑢𝑢
𝑥𝑥𝑥𝑥𝑥

+ 42𝑢
𝑥
𝑢
𝑥𝑥𝑥𝑥

)

+ 70𝜀 (𝑢
𝑥𝑥
𝑢
𝑥𝑥𝑥

− 𝑢
2
𝑢
𝑥𝑥𝑥

+ 2𝑢
3
𝑢
𝑥
− 4𝑢𝑢

𝑥
𝑢
𝑥𝑥

− 𝑢
3

𝑥
) ,

(80)

where

H
3
= 7𝜀∫(

𝑢
2

𝑥𝑥𝑥

14
+ 𝑢𝑢
2

𝑥𝑥
+ 5𝑢
2
𝑢
2

𝑥
+ 𝑢
5
)𝑑𝑥 (81)

is a further approximate conservation law.
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5. Concluding Remarks

Sometimes, differential equations appearing in mathematical
modelings are writtenwith terms involving a small parameter
which is known as the perturbed term. Taking into account
the instability of the Lie point symmetries with respect
to perturbation of coefficients of differential equations, the
approximate (perturbed) symmetries for such equations are
obtained. Different methods for computing the approximate
symmetries of a system of differential equations are available
in the literature [2–4].

The approximate symmetry method proposed by
Fushchich and Shtelen [4] is based on a perturbation of
dependent variables. This method has so many advantages
such as producing more approximate group-invariant
solutions, consistence with the perturbation theory, solving
singular perturbation problems [7, 8], and close relationship
with approximate homotopy symmetry method [12]. But
despite the above-mentioned benefits, this procedure
converts a perturbed evolution equation to an equivalent
perturbed evolutionary system. In his case, obtaining the
corresponding Hamiltonian formulation will be hard. Due
to the increase of the dimensions of Hamiltonian operators
D,E, computation of the approximate recursion operator
R = E ⋅D−1 is difficult.

Since prolongation and Fréchet derivative of vector fields
are linear, both of the approximate symmetry methods can
be extended on the Hamiltonian structures. But due to
the significance of vector fields in Hamiltonian and bi-
Hamiltonian systems, the approximate symmetry method
proposed by Baikov et al. [2, 3] seems to be more consis-
tent.
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