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This paper describes the design and implementation of high
performance numerical software in Java. Our primary goals
are to characterize the performance of object-oriented nu-
merical software written in Java and to investigate whether
Java is a suitable language for such endeavors. We have im-
plemented JLAPACK, a subset of the LAPACK library in
Java. LAPACK is a high-performance Fortran 77 library used
to solve common linear algebra problems. JLAPACK is an
object-oriented library, using encapsulation, inheritance, and
exception handling. It performs within a factor of four of
the optimized Fortran version for certain platforms and test
cases. When used with the native BLAS library, JLAPACK
performs comparably with the Fortran version using the na-
tive BLAS library. We conclude that high-performance nu-
merical software could be written in Java if a handful of con-
cerns about language features and compilation strategies are
adequately addressed.

1. Introduction

The Java programming language [4] achieved rapid
success due to several features key to the language.
Java bytecodes are portable, which means that pro-
grams can be run on any machine that has an im-
plementation of the Java Virtual Machine (JVM).
Java provides garbage collection, freeing programmers
from concerns about memory management and mem-
ory leaks. The language contains no pointers and dy-
namically checks array accesses, which help avoid
common bugs in C programs. Because of such reasons,
Java is establishing itself as a language of choice for
many software developers.

Java is attractive to the scientific computing com-
munity for the very same reasons. However, several
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factors limit Java’s inroads into this community. First,
the performance of Java has been a continuous source
of concern. Many of the attractive features of Java
caused early interpreted versions of the JVM to per-
form poorly, especially when compared with compiled
languages like Fortran and C. Second, the absence of
a primitive complex type presents another obstacle, as
many numeric codes make extensive use of complex
numbers. Finally, several language features that make
numeric codes less cumbersome to write, such as op-
erator overloading and parametric polymorphism, are
absent in Java.

Despite these issues, we believe that Java may
be suitable for writing high-performance numerical
software. The problems discussed above can be par-
tially circumvented by careful programming tech-
niques. Furthermore, certain language features, such
as primitive complex types, may be included in future
versions of Java. To test our hypothesis that good per-
formance can be achieved in Java, we designed and
implemented JLAPACK, a proof-of-concept version of
LAPACK [3] in Java. LAPACK is a high-performance
Fortran 77 library that solves common linear algebra
problems. This library is well-suited for our study for
several reasons: it is a standard library accepted and
used by the scientific community; it is used to solve
common and useful problems; and it is highly opti-
mized, giving us a hard performance bound.

Our implementation of JLAPACK follows the For-
tran version closely in spirit and structure. However,
we did not write Fortran-style code in Java. JLA-
PACK employs object-oriented techniques such as in-
heritance, dynamic dispatch, and exception handling.
We use classes to represent vectors, matrices, and other
objects. We use exceptions to perform error handling.
For performance analysis, we executed our model us-
ing a fully compliant JVM, with bounds checking
and garbage collection enabled. JLAPACK performs
within a factor of four of the optimized Fortran version
for certain platforms and test cases.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the LAPACK library in more depth,
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and lists the portions of the library we have imple-
mented in JLAPACK. Section 3 describes the design
of JLAPACK. Section 4 presents the performance re-
sults of JLAPACK. Section 5 describes related work.
Finally, Section 6 presents conclusions and directions
for future work.

2. LAPACK

LAPACK [3] is a library of Fortran 77 routines for
common linear algebra problems. The library contains
driver routines, which are used to solve standard types
of problems, and auxiliary routines, which are used to
perform subtasks and provide common functionality.
LAPACK provides driver routines for systems of lin-
ear equations, linear least square problems, eigenvalue
problems, and singular value problems. Driver routines
handle both real and complex numbers, with versions
for both single and double precision representations.
There are specialized routines for different types of
matrices, such as banded matrices, tridiagonal matri-
ces, and symmetric positive-definite matrices.

LAPACK uses the Basic Linear Algebra Subrou-
tines (BLAS) [13–16,24,25] for many of its time-
critical inner loops. Most vendors of high perfor-
mance machines supply BLAS libraries with machine-
specific optimizations, callednative BLAS. Generic
Fortran 77 BLAS code is available and is distributed
with LAPACK. For JLAPACK, we provided two ver-
sions: one implemented in Java, and the other employ-
ing vender-supplied native BLAS. The latter version
provides Java wrappers around the Fortran BLAS rou-
tines, using thenative method call mechanism of
Java. Bik and Gannon [7] have shown that native meth-
ods can be used to achieve good performance, and our
findings support their results.

LAPACK uses block-oriented algorithms for many
of its operations. A block-oriented algorithm is one
that operates on blocks or submatrices of the original
matrix. This provides more locality of reference and
allows LAPACK to use Level 3 BLAS routines. The
optimal block size varies based on both the problem
size and on the architecture of the machine used. Both
LAPACK and JLAPACK allow the block size to be set
explicitly.

Two different types of driver routines are provided
for solving systems of linear equations in LAPACK.
One driver, the simple driver, solves the systemAX =
B by factoring the coefficient matrixA and overwrit-
ing the right hand sideB with the solutionX . The

other driver, the expert driver, provides additional func-
tionality such as solvingATX = B or AHX = B,
estimating the condition number ofA, and checking
for near singularity. Because of time constraints, JLA-
PACK currently implements only the simple linear
equation solver for general matrices (i.e., xGESV and
the routines they require).

3. JLAPACK

JLAPACK and JBLAS are our Java implementations
of the LAPACK and BLAS libraries, currently imple-
menting the subset of the subroutines in both libraries
that are used by thesimple general equation solver.
We follow the Fortran version in spirit and in struc-
ture, with every Java method corresponding to a For-
tran subroutine. We retain the Fortran naming conven-
tions, providing implementations for four data types:
single precision real (S), double precision real (D), sin-
gle precision complex (C), and double precision com-
plex (Z).

Another project, the F2J [18] project, is also gen-
erating LAPACK and BLAS libraries in Java. They
have developed a Fortran to Java translator, and are us-
ing this translator to transcribe the Fortran LAPACK
source code into Java source code. This approach is
very different from ours, as it does not take design
issues into account when generating Java LAPACK
code. We compare the performance of our version with
the version generated by their translator in Section 5.5.

Several goals influenced the design of JLAPACK.
Some of these goals are well established in object-
oriented design [20]; others are specific to Java.

(1) Encapsulate all of the information specifying a
vector or matrix into a class. This information
fits into two categories: the data and its shape.
This information should be kept orthogonal.

(2) Store matrix data in a one-dimensional array.
The reasons for this are twofold. First, two-
dimensional arrays in Java are not guaranteed to
be contiguous in memory, so a one-dimensional
array provides more locality of reference. The
second reason involves bounds checking. Ac-
cessing an element in a two-dimensional array
requires bounds checks on both indices, dou-
bling this overhead.

(3) Allow matrices and vectors to share data. A vec-
tor object that represents a column of a matrix
should be able to use the same data as the matrix
itself.
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(4) Limit the number of constructor calls. Ex-
cessive memory allocation is usually a large
source of overhead in naive object-oriented pro-
grams. Gratuitous memory allocation should be
avoided as much as possible.

In the rest of this section, we discuss in detail the
design of JLAPACK and how it achieves these goals.

3.1. The components of JLAPACK

Our design contains three separate components: the
JLASTRUCTpackage, theJBLAS package, and the
JLAPACKpackage.

(1) TheJLASTRUCTpackage supplies the vector,
matrix, and shape classes used by the library.
These are discussed in detail in Section 3.2.

(2) TheJBLAS package contains the BLAS library
code. It contains four classes, one for each data
type. Because there are no instance members
in this class, all the methods are static. Each
method in theJBLAS classes corresponds to a
subroutine in the BLAS library.

(3) The JLAPACK package contains the code for
the general equation solvers. Like theJBLAS
package, there are separate classes for the four
data types and all methods in these classes are
static. Again, each method in theJLAPACK
classes corresponds to a subroutine in the For-
tran 77 version of LAPACK.

3.2. The Vector, Matrix, and Shape classes

In Fortran 77, information about the shapes of vec-
tors and matrices must be represented with multiple
scalar variables, and be passed as extra arguments to
every routine manipulating vectors and matrices. The
vector and matrix classes in our design encapsulate all
this information into the abstraction ofshape. There
are vector and matrix classes for each of the four data
types.

The classJLASTRUCT.Vector implements two
methods.

(1) double eltAt(int i) : This returns theith element
in the vector.

(2) void assignAt(double val, int i): This storesval
as theith element of the vector.

The classJLASTRUCT.Matrix implements these
methods.

(1) double eltAt(int i, int j) : This returns the ele-
ment at location (i, j) of the matrix.

(2) void assignAt(double val, int i, int j): This
storesval at location (i, j) of the matrix.

(3) void colAt(int i, Vector v) : This aliases the vec-
tor v to theith column of the matrix.

(4) void rowAt(int i, Vector v) : This aliases the
vectorv to theith row of the matrix.

(5) void submatrix(int i, int j, int r, int c, Matrix
m): This aliases the matrixm to the submatrix
of size (r, c) starting at location (i, j).

These classes contain two members:dataandshape.
The data member is a one-dimensional array of the ap-
propriate type that is guaranteed to contain all the el-
ements of the vector or the matrix. Note that the ele-
ments of the vector or matrix do not have to be dense
within this array. The shape member of a vector is
of type JLASTRUCT.VShape, and the shape mem-
ber of a matrix is of typeJLASTRUCT.MShape. The
classesJLASTRUCT.VShape and JLASTRUCT.
MShape are subclasses of the abstract classJLA-
STRUCT.Shape. The shape object defines the layout
of the vector or matrix elements in the data array.

An object of typeJLASTRUCT.VShape contains
the following members.

(1) start: The index indataof the first element of
the vector.

(2) len: The number of elements in the vector.
(3) inc: The step size indatabetween any two con-

secutive elements of the vector.

Thus, elementi of a vector resides in slotj of its
data array, where

j = start+ i ∗ inc. (1)

Note that elements of a vector are evenly spaced in the
data array.

An object of typeJLASTRUCT.MShapecontains
the following members.

(1) start: The index indataof the first element of
the matrix.

(2) rows: The number of rows in the matrix.
(3) cols:The number of columns in the matrix.
(4) ld: The leading dimension of the array. This is

the distance indata between the first elements
in two consecutive columns.

Therefore, element (i, j) of a matrix resides in loca-
tion k of its data array, where
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Fig. 1. Sharing of data among multiple matrices and vectors.

k = start + ld ∗ j + i. (2)

Note that the matrix is stored in column-major order
and is addressed with zero-based indexing of arrays.
This fits the Fortran model, allowing JLAPACK to use
the same optimizations as the Fortran version and en-
abling native BLAS to be incorporated easily.

This implementation allows objects to share data ar-
rays. The example in Fig. 1 demonstrates how this may
occur. The 4× 4 matrixA uses all 16 elements of its
data array. MatrixB is assigned to be a submatrix of
A. It shares the same data object asA, but only uses
4 elements of the array. VectorC represents one row
of matrix B. Again, it shares the data object withA
andB, but only uses 2 elements. Note how the shape
parameters specify exactly where the data is stored.

The ability to share member objects improves the
performance of methods used to obtain rows, columns,
and sub-matrices of matrices. We will use thecolAt()
method as an example, as its implementation applies to
the other two. A naive implementation of this method
would allocate new memory for the vector and new
memory for its shape. Instead, thecolAt() takes as
a parameter a vector that has already been allocated.
Then, all the method does is supply the vector’s data

member (by giving it a reference to its own data), and
update its shape object. This approach eliminates un-
necessary copying of data elements and allows reuse
of storage for temporary vectors and matrices.

Boisvert et al. [8] discuss an implementation for nu-
merical libraries in Java that does not encapsulate vec-
tors and matrices in classes. They use two-dimensional
arrays to represent matrices, and store information de-
scribing the shape of vectors and matrices in local vari-
ables, similar to the Fortran version. This approach has
a significant side effect: they require several versions
of each vector operation. One version must handle the
case where a vector is stored in a one-dimensional ar-
ray, and another must handle the case where a vec-
tor is a column of a matrix, and is stored in a two-
dimensional array. They also discuss versions for spe-
cial cases, such as when a vector is dense within a one-
dimensional array. They claim [8, p. 41].

If we are to provide the same level of functionality
as the Fortran and C BLAS then we must provide
severalversions of each vector operation.

While this may be true ofimplementationsof BLAS
primitives, this should not clutter up theinterfacevis-
ible to the programmer. Our shape abstraction unifies
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and encapsulates these various cases. For efficiency, an
implementation can still provide specialized routines
for common cases.

3.3. Limiting constructor calls

Excessive object creation is often a substantial
source of performance loss in object-oriented pro-
grams. Therefore, we use a technique (similar to that
described by Dingle and Hildebrandt [12]) that limits
the number of temporary vectors and matrices created.
Such objects are used locally in methods of the JBLAS
and JLAPACK classes, so it is natural to place them
within the methods. However, we make them private
static class members. Thus, they are created once, in-
stead of at every method invocation. Note that this ap-
proach works only because none of the methods in the
library are recursive and because we are ignoring is-
sues of thread safety.

3.4. Method granularity

Most of the work in the BLAS routines involves
looping through columns of a matrix, accessing and
modifying elements. An example is thescale rou-
tine, which scales a vector by a constant factor. Here is
a natural implementation of this routine:

// Scale the vector col by the factor a
for(i = col.length(); i > 0; i--) {

tmp = a * col.eltAt(i);
col.assignAt(tmp, i);

}

Unfortunately, every call toeltAt() andassignAt()
must use the shape object to calculate the address of
an element from scratch. Equations (1) and (2) demon-
strate the cost of these calculations. Boisvert et al. [8]
observe that the use of such methods is five times
slower than an ordinary array access. The vector and
matrix classes employ two mechanisms to overcome
this overhead: aggregate operations and incremental
access methods.

3.4.1. Aggregate operations
We converted operations that were often performed

to entire vector or matrix objects into methods in the
the vector and matrix classes. These methods exploit
the bulk nature of the updates to access successive el-
ements using incremental address computations. The
code for the scale method in the vector class is below.
Note how the calculation of the indexi consists only
of an increment, instead of the multiplication and ad-
dition performed repeatedly in theeltAt() method.

//This is the scale method in the vector
class public void
scale(double a)
{

int i = shape.start;
int inc = shape.inc;
int len = shape.len;
int j;

for(j = len; j > 0; j--) {
data[i] *= a;
i += inc;

}
}

3.4.2. Incremental access methods
Another common type of operation in the library is

to loop over a vector, accessing but not modifying its
elements. Because the elements are being used instead
of being modified, aggregate methods do not apply. An
example of such an operation is the scaling of columns
of a matrix by elements of a vector. Code for such an
operation follows:

// A is a Matrix.
// v and col are Vectors.
for(j = v.length(); j > 0; j--) {

tmp = v.eltAt(j);
A.colAt(j, col);
col.scale(tmp);

}

To limit the number of calculations in determining
the index of an element, we include incremental ac-
cess methods. The Vector class contains the following
incremental methods:

(1) beginning(), end(): These methods tell the vec-
tor that incremental access is about to occur, and
that access will start at the beginning or end of
the vector.

(2) next(), prev(): These methods return the next or
previous element in the vector.

The Matrix class contains similar methods to access
columns and rows incrementally. Using these methods,
the code above becomes:

// A is a Matrix.
// v and col are Vectors.
v.beginning();
A.beginningCol();
for(j = v.length(); j > 0; j--) {

tmp = v.next();
A.nextCol(col);
col.scale(tmp);

}



102 B. Blount and S. Chatterjee / An evaluation of Java for numerical computing

These methods are similar to the methods defined
by the java.lang.Enumeration [19] interface.
However,Enumeration does not handle primitive
types, so we could not implement this functionality
with theEnumeration interface. In JDK 1.2, our in-
cremental operations are similar to the methods of the
java.util.Iterator interface [29].

3.5. Error handling

Every routine in LAPACK provides error checking
of its parameters. Parameter values are checked to de-
termine if they are appropriate for the given routine. If
an error is discovered, an error value is returned. Iden-
tical error handling occurs in JLAPACK. Each param-
eter value is checked, and if it is not valid, an exception
of classJLASTRUCT.ParamException is thrown.

3.6. Complex numbers

Currently, Java does not provide a primitive type
for complex numbers. However, complex numbers are
required within the LAPACK library, so we provide
two implementations for them. The first approach uses
a classJLASTRUCT.Complex , encapsulating com-
plex values and arithmetic operations on them. While
this object-oriented approach is attractive, the overhead
of using many small objects and calling a method for
every arithmetic operation makes it unusably slow.

Our second implementation of complex numbers
simply inlines them, by making the data arrays of the
vector and matrix classes twice as long, and storing the
real and imaginary components contiguously in the ar-
ray. Access methods change fromeltAt() to realAt()
and imgAt(), and all arithmetic is performed inline.
While this is an unattractive approach from a software
engineering point of view, it demonstrates the perfor-
mance achievable with a primitive complex type.

3.7. Discussion

Certain aspects of Java made the development of
JLAPACK difficult. In this section we discuss these as-
pects and how JLAPACK addresses them.

3.7.1. Language issues
Two language issues hinder the development of

JLAPACK: the absence of parametric polymorphism
and the absence of operator overloading. The absence
of parametric polymorphism required us to create a
version of the JLAPACK library for each data type,

which results in code bloat and extra programmer ef-
fort. Several projects [2,27,28] have examined meth-
ods for providing parametric polymorphism, either by
modifying the JVM or by a adding a preprocessing
phase, and it is possible that the feature will be avail-
able in future versions of Java.

The lack of operator overloading required us to write
many methods in unnatural forms. For example, the
colAt() method intuitively should return a Vector ob-
ject. Because we could not overload the assignment op-
erator, we had to pass in the Vector object as a param-
eter to the method. Likewise, we had to write out in
full detail mathematical operations such as scaling of
vectors, instead of using a more natural and compact
mnemonic form, such as the*= operator.

It is true that neither of these language features is
fundamental, and that both represent “syntactic sugar”
that would be removed in a preprocessing step. We ig-
nored these issues while implementing JLAPACK, as
our goal was to test our hypothesis about performance.
However, the general user does not want to deal with
such issues and is less apt to use a library that has
such unnatural syntax. (Witness the success of Matlab,
which virtually removes the difference between the lin-
ear algebraic description of an algorithm and its real-
ization in code.) We feel that Java will not be attrac-
tive to the numerical computing community until these
features are integrated into the language.

3.7.2. Multithreaded programming
Java provides full support for multithreading, and

supplies a monitor locking mechanism for performing
mutual exclusion with thesynchronized keyword.
A synchronized method must obtain a lock on its
object in order to execute, so only onesynchro-
nized method can be executing on an object at any
time. However, that does not guarantee that a method
that is notsynchronized will not modify data be-
ing used by thesynchronized method. One way to
ensure thread-safety is to make all methods that access
datasynchronized and to make all members pri-
vate, so that subclasses cannot manipulate these mem-
bers in methods that are notsynchronized . Such
a scheme introduces a huge overhead. Another way to
ensure thread-safety is to make local copies of instance
variables inside methods. This technique, while legal
under current Java concurrency semantics, may not be
the most intuitive. Further, Java’s memory consistency
model [21, Ch. 17], if implemented aggressively, could
result in further unexpected behavior. In JLAPACK,
we ignore the issues of thread safety.



B. Blount and S. Chatterjee / An evaluation of Java for numerical computing 103

3.7.3. Complex numbers
Complex numbers must be integrated into the Java

environment before the language becomes commonly
used for numerical computing. We have presented two
methods of implementing complex numbers, and our
results document the overhead of encapsulating com-
plex numbers in classes. Manual inlining is not the
correct solution either, as this detracts from the read-
ability of the code, replicates common operations, and
presents a common source of bugs. Thus, complex
numbers must become part of the Java environment.
This could take place at any of three points: compile
time, load time, or run time.

• Compile time: Complex numbers could be in-
troduced at the language level, leaving the JVM
specification unchanged. The language would de-
fine a primitive complex type and all arithmetic
operations on that type. At compile time, the oper-
ations on complex types would be translated into
operations on real types, inlining the code in the
same method we did by hand.
• Load time: Complex numbers could be intro-

duced through load time transformations, using
a bytecode restructuring tool such as JOIE [10].
Complex numbers would be represented using a
Complex class at the language level. At load time,
the class loader would modify classes using ob-
jects of type Complex, inlining the code. This
method is attractive because it requires no modi-
fication to the Java language or the JVM.
• Run time: Another approach to introducing prim-

itive complex numbers would be in both the lan-
guage and the JVM. Complex types would be-
come part of the JVM specification. This causes
two problems. First, since all arithmetic instruc-
tions are specific to a primitive type, many new
bytecodes would have to be introduced. Second,
double precision complex types would require
four words of memory, and current bytecodes
only support single- and double-word arguments.
The JVM would have to be modified to support
extra long arguments.

Orthogonal to the above issue is the matter of ex-
actly how best to integrate complex numbers. The For-
tran approach introduces a single typeComplex , with
real and imaginary numbers being represented as spe-
cial cases of this type with the appropriate compo-
nent equal to zero. An alternate approach, similar to
that under consideration for ANSI C, would introduce
three typesReal , Imaginary , andComplex . This

latter scheme has the advantage of providing greater
type discrimination, which allows for more optimiza-
tion possibilities.

All of these approaches have strengths and weak-
nesses. While it is beyond the scope of this paper to
determine the best mechanism for including primitive
complex numbers in Java, this issue is under consider-
ation by the Java Grande Forum [22], and must be re-
solved satisfactorily if Java is to be viable for numeri-
cal computing.

4. Related Work

Several other projects are investigating the use of
Java in numerical computing. The Java Numerical
Toolkit [8] is a set of libraries for numerical comput-
ing in Java. Its initial version contains functionality
such as elementary matrix and vector operations, ma-
trix factorization, and the solution of linear systems.
HPJava [31] is an extension to Java that allows parallel
programming. HPJava is somewhat similar to HPF and
is designed for SPMD programming.

Several projects are developing optimizers for Java.
Moreira et al. [26] are developing a static compiler that
optimizes array bounds checks and null pointer checks
within loops. Adl-Tabatabai et al. [1] have developed a
JIT compiler that performs a set of optimizations, in-
cluding subexpression elimination, register allocation,
and the elimination of array bounds checking. Such
optimizations may allow us to bridge the performance
gap between our version with bounds checking and our
version without bounds checking.

The F2J [18] project is also generating LAPACK
and BLAS libraries in Java. They have developed a
Fortran to Java translator, which they use to transcribe
Fortran LAPACK source code into Java source code.
They have experienced some difficulties handling dif-
ferences in the languages, such as the absence of a
goto statement in Java. Currently, f2j has generated
Java class files for all of the double precision routines
in the LAPACK and BLAS libraries.

5. Performance

Performance is an overarching concern for scien-
tific computation. The Fortran version of LAPACK
has been highly optimized and represents our target
level of performance. Therefore, we compare JLA-
PACK with the optimized Fortran version (compiled
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on the test platform with the vendor’s optimizing For-
tran77 compiler from LAPACK 2.0 source distribution
downloaded from www.netlib.org) in all our results. In
this section, we present the results from our experi-
ments and discuss the reasons for both good and poor
performance.

5.1. Test cases

We present performance results for solving the sys-
tem of linear equationsAX = B, using a coefficient
matrix A and a right hand side matrixB whose en-
tries are generated using a pseudorandom number gen-
erator from a uniform distribution in the range [0, 1].
The same seeds are used in both the Fortran and Java
versions, to guarantee that both versions solve iden-
tical problems. The square matrixA has between 10
and 1000 columns. The matrixB has from 1 to 50
columns. In every case, the leading dimension of the
matrix equals the number of rows of the matrix. We
separately timed the triangular factorization (xGETRF)
and triangular solution (xGETRS) stages. The two data
types used in timing were double precision real num-
bers (x=D) and double precision complex numbers
(x=Z). For the factorization stage, we used block sizes
between 1 and 64.

5.2. Testing environment

Table 1 lists the platforms we used for timing.
We ran Fortran versions for all Unix platforms, us-
ing the-fast optimization flag when compiling the
Fortran library. We ran the version generated by the
F2J translator on both the UltraSparc and the Pen-
tium II. On the DEC, where native BLAS libraries

were available through thedxml library [11], we
measured performance with both the JBLAS classes
and the native library. On the Sparcs, we ran two
versions withkaffe [5,30]: one with dynamic ar-
ray bounds checking turned on and the other with
this feature turned off. We turned off array bounds
checking inkaffe by modifying the native instruc-
tions that its JIT compiler emits. We measured per-
formance without array bounds checking for two rea-
sons. First, we wanted to quantify the cost of perform-
ing bounds checks, and to determine if it introduces
significant overheads into the computation. Second,
global analysis of our code could prove that instances
of java.lang.ArrayIndexOutOfBoundsEx-
ception could never be thrown. While this can-
not always be determined from the structure of the
program, and no current implementation of the JVM
systematically eliminates runtime bounds checking
in this manner, such an optimization is likely to
appear in future generations of JVM implementa-
tions.

All of our test platforms are run in JIT mode rather
than interpretive mode. The trend, as exemplified by
current and short-term future releases of the JVM, is to
replace interpretive implementations of the JVM with
JIT-based implementations. We expect this trend to
continue. While interpretation-based implementations
will be useful for debugging, their performance is far
too poor to be competitive.

We also measured the performance of JLAPACK
when compiled with the High Performance Compiler
for Java (HPCJ) [26] developed at IBM Watson. HPCJ
is a static compiler that optimizes away some array
bounds checks and null pointer checks within loops.
It also has the capability of utilizing a fused multiply

Table 1

Testing environment

SPARCstation 5 UltraSparc 170 DEC Personal Pentium II

Workstation

Processor SPARC Ultra 1 Alpha 21164 Pentium II

Processor Speed 110 MHz 170 MHz 500 MHz 300 MHz

Memory 40 MB 64 MB 512 MB 128 MB

Operating System Solaris 2.5.1 Solaris 2.5.1 Digital Unix 4.0D Windows 95

JVM kaffe v0.9.2 kaffe v0.9.2 JDK 1.1.4 Visual Cafe

JDK 1.2beta4 JDK 1.2beta4

JIT Enabled Yes Yes Yes Yes

F77 Compiler Switches -fast -fast -fast N/A

ILP No Yes Yes Yes

Out-of-order execution No No No Yes
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and add (FMA) operation. While this operation is cur-
rently illegal under Java semantics, it will become le-
gal if a current proposal [23] dealing with numerics is
adopted.

5.3. Performance optimizations

We manually compensated for certain deficiencies
in javac to boost the performance of our code. The
first modification was loop unrolling, a common tech-
nique used by optimizing compilers to achieve better
performance. In our experiments, an unrolling depth
of four gave the best performance. Unrolling does in-
troduce a cost in code size. Unrolling loops in the
JLASTRUCT.Vector class by factors of two, four,
and eight increased class file sizes by 41%, 62%, and
104%.

The second technique optimizes field access. When-
ever a member of an object is accessed, agetfieldop-
eration is performed. This operation has considerable
overhead, as it must check access permissions. If a
certain field is accessed repeatedly in a method, the
getfield operation is performed repeatedly. The Java
compiler did not optimize this away by leaving the
reference in a local variable, so we did it by hand
in the Java source code. This modification made lit-
tle difference inkaffe , which uses JIT compila-
tion, but made a significant difference for interpreted
code.

5.4. Results

Table 2 shows the performance results for the four
platforms listed in Table 1. Table 3 shows the perfor-
mance results with the HPJC compiler.

5.5. Discussion

Analysis of the results reveals several interesting
facts.

(1) The Java version with bounds checking enabled
and inlined complex numbers performs within
a factor of three of the Fortran version for cer-
tain architectures and problem sizes. On the
SparcStation 5, the Java version is about two or
three times worse than the Fortran version on
the larger problem sizes for both the factoriza-
tion and the triangular solve. As a side note, the
interpreted Java implementation was unusably
slow.

(2) On the UltraSparc, for most of the cases with
bounds checking enabled and inlined complex
numbers, there is less than a factor of four dif-
ference between the two versions. However, for
the factorization with double precision num-
bers and blocking, the Fortran version performs
about six times better than the Java version.
This is because blocking significantly improves

Table 2

Performance results for double precision real (D) and double precision complex (Z) values. Entries represent the ratio of the
JLAPACK running time to the LAPACK running time (lower is better). Results for the complex version that uses inlined complex
numbers are denoted by (I), and results for the version that used classes for complex numbers are denoted by (C). The results
for the triangular factorization without blocking are denoted by F(nb), the results for the triangular factorization with a blocking
factor of 16 are denoted by F(b), and the results for the solve are by denoted S. The label r indicates a small matrix (100 by 100)
was used so that the program could take advantage of caching. The label R indicates a large matrix (600 by 600) that could not
fit into the system cache was used. A — label denotes a missing entry. (a) Performance on a SPARCstation 5. (b) Performance on
an UltraSparc 170. (c) Performance on a DEC Personal Workstation. (d) Performance on a Pentium II.
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Table 3

Performance results for double precision real (D) and double precision complex (Z) values using the HPCJ system. Entries
represent the ratio of the JLAPACK running time to the LAPACK running time (lower is better). Results for the complex
version that uses inlined complex numbers are denoted by (I), and results for the version that used classes for complex numbers
are denoted by (C). The results for the triangular factorization without blocking are denoted by F(nb), the results for the
triangular factorization with a blocking factor of 16 are denoted by F(b), and the results for the solve are by denoted S. The label
r indicates a small matrix (100 by 100) was used so that the program could take advantage of caching. The label R indicates a
large matrix (600 by 600) that could not fit into the system cache was used. (a) Performance on a PowerPC. (b) Performance
on a Power2.

Fig. 2. The performance with double precision complex numbers. The performance with inlined complex numbers and with complex classes is
shown.

the performance of the Fortran version, but not
of the Java version. Our hypothesis is that the
variations in performance represent instruction
scheduling effects. We examined the assembly
code generated by the Fortran compiler on the
SparcStation 5 and on the UltraSparc, which
represent different implementations of the same
instruction set architecture. The code generated
for the inner loops of several routines varied
considerably, using different degrees of loop
unrolling and different schedules. Thekaffe
andJDK JIT compilers generated identical in-
struction sequences for both platforms. We be-
lieve that the sub-optimal instruction schedule
increases pipeline stalls and nullifies the im-

provements in spatial locality due to block-
ing.

(3) Figure 2 shows that using classes to represent
complex numbers performs very poorly. On all
the platforms tested, the version that uses the
Complex class is more than twice as slow as
the version that inlined complex numbers.

(4) The impact of bounds checking is shown in
Fig. 3. Removing bounds checking increased
performance by 15% to 25%. This figure is in
line with the corresponding figure reported by
Boisvert et al. [8]. While this impact is not
significant, it has been shown by Moreira et
al. [26] that removing bounds checks enables
further optimizations, such as reordering loop
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Fig. 3. The impact of bounds checking.

Fig. 4. Architectural effects. The ratio of the performance with blocking to the performance without blocking is shown for two platforms.

iterations, that do have a significant impact on
performance.

(5) Figure 4 demonstrates the impact of blocking
on both the Pentium II and the UltraSparc plat-
forms. On the Pentium II, which provides in-
struction re-ordering in the hardware, blocking
makes an impact. However, on the UltraSparc,
which does not perform dynamic scheduling,
blocking has no impact on performance.

(6) Figure 5 shows the performance when the native

BLAS library was used. The native BLAS li-
brary made a significant impact on performance,
especially for the cases where blocking was
used. Because LAPACK heavily relies on BLAS
for its computations, using the native BLAS
library brought the performance of JLAPACK
close to the performance of LAPACK (within
15% for sufficiently large problem sizes). This
demonstrates that the object-oriented wrappers
provided by JLAPACK were efficient. It also
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Fig. 5. Performance using the native BLAS library.

Fig. 6. Comparision of JLAPACK and F2J generated LAPACK code. The ratio of the performance of our version to the performance of the F2J
version is shown for two platforms.

supports our hypothesis that poor instruction
scheduling hurt performance in the pure Java
version.

(7) Figure 6 compares the performance of our ver-
sion with the performance of the version using
the f2j translator. On the UltraSparc, our ver-
sion performs around 3 times better. On the Pen-
tium II, our version performs around 1.5 times
better. This demonstrates that design issues are
critical when developing high performance nu-
merical software.

6. Conclusions and future work

Portability, security, and ease of use make Java an
attractive programming environment for software de-
velopment. Performance problems and the absence
of several language features have hindered its use in
high-performance numerical computing. While opera-
tor overloading and parametric polymorphism are in-
deed “syntactic sugar”, they will contribute signifi-
cantly to the usability of the language and to the will-
ingness of the numerical computing community to use



B. Blount and S. Chatterjee / An evaluation of Java for numerical computing 109

Java. We have quantified the difference between using
a primitive type for complex numbers, which we have
simulated, and using a class for complex numbers. As
expected, there is strong evidence that a primitive type
is needed.

Future work in the development of high-performance
object-oriented numerical libraries in Java can be di-
vided into the following categories.

(1) Programming model changes.The algorithms
implemented in most numerical libraries to-
day were designed for the Fortran programming
model. These may not be the best algorithms
when run under the object model of Java. We
have discussed several object-oriented program-
ming idioms to implement numerical libraries
efficiently. Future work needs to explore these
and other techniques such as expression tem-
plates [6].

(2) Compiler changes.We noted in Section 5 sev-
eral desirable optimizations thatjavac does
not perform. Much work remains to be done
here to develop better compilation techniques
for Java. Budimlic and Kennedy [9] are ex-
ploring such optimizations using object inlining
techniques.

(3) Just-In-Time compilation. Current JIT com-
pilers are in their early version, and have not
been heavily optimized. As we discussed in Sec-
tion 5, some do not take advantage of machine-
specific optimizations and do not appear to
schedule code effectively.

(4) Architectural issues.Current trends in proces-
sor implementation adds significant instruction
re-ordering capabilities to the hardware. En-
gler [17] conjectures that this may reduce or
obviate the need for instruction scheduling by
JIT compilers. This is a reasonable conjecture
whose range of applicability needs to be tested.

(5) Experimentation with other codes.LAPACK
is obviously not representative of all numerical
software. Further work needs to be done to de-
termine if Java implementations of other numer-
ical software behave similarly. We are currently
investigating the performance of the expert gen-
eral equation solver in LAPACK and plan to in-
vestigate the performance of sparse matrices in
Java.

Our results demonstrate that Java may perform well
enough to be used for numerical computing, if a hand-
ful of concerns about language features and compi-

lation strategies are adequately addressed. While we
have not yet met the goal of having Java perform as
well as Fortran, we are beginning to get reasonably
close. We speculate that a combination of techniques
will narrow this gap considerably over the next few
years, making Java a competitor for numerical comput-
ing in the near future.
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