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The nonlinear fin equation in cylindrical coordinates is considered. Assuming a radial variable heat transfer coefficient and
temperature dependent thermal conductivity, a complete classification of these two functions is obtained via Lie symmetry analysis.
Using these Lie symmetries, we carry out reduction of the fin equation and whenever possible exact solutions are obtained.

1. Introduction

A heat exchange in industrial applications such as com-
pressors, air conditioners, and air craft engines is achieved
through the surfaces called fins. Fins which are of different
shapes are described by a variety of mathematical models
[1]. Moitsheki [2] has recently discussed the problem of
temperature profiles and heat transfer per fin length by
considering 2-dimensional Laplace equation given in the
following form:

𝜕
2
𝜃

𝜕𝑥2
+

𝜕
2
𝜃

𝜕𝑦2
= 0. (1)

In this problem, the author uses the method of separation of
variables and the Newton Raphson method for computing
the temperature profile and heat transfer. More recently,
Pakdemirli and Sahin [3, 4] have studied the problem

𝜕

𝜕𝑥
(𝑘 (𝜃)

𝜕𝜃

𝜕𝑥
) − 𝑁

2
𝑓 (𝑥) 𝜃 = 𝜃

𝑡
, (2)

where 𝑘(𝜃) is conductivity, 𝑁 is the fin constant, and 𝑓(𝑥)

is heat transfer coefficient using the Lie symmetries of
the above governing partial differential equation (2). This
method was introduced by Lie [5] to find exact solutions of a
number of linear and nonlinear PDEs arising in engineering,
mathematical, and biological sciences. A good account of
the Lie approach and its applications to the differential

equations can be found in [6–9]. Bokhari et al. [10] have
recently studied the above nonlinear fin equation (2) using
Lie symmetry approach and give some new interesting exact
solutions. Moitsheki et al. [11] obtained some exact solutions
of (2) by considering a power law form of the thermal
conductivity. Moitsheki [2] has also considered a radial one-
dimensional steady state heat transfer problem by assuming
the fin equation in the following form:

𝐴
𝑝

𝑟

𝑑

𝑑𝑟
(𝑟𝑓 (𝑟) 𝑘 (𝑢)

𝑑𝑢

𝑑𝑟
) = 𝜙 (𝑢) (𝑢 − 𝑢

𝑎
) , 𝑟

𝑏
< 𝑟 < 𝑟

𝑎
,

(3)

where 𝑘 and ℎ are the nonuniform thermal conductivity
and heat transfer coefficients, respectively, depending on the
temperature. Some exact solutions are obtained for thermal
diffusion fin with a rectangular profile and a hyperbolic
profile. Continuing their investigation, Moitsheki [12] has
also studied a steady heat transfer problem of a longitudinal
fin with triangular and parabolic shapes by considering the
following problem:

𝐴
𝑝

𝑑

𝑑𝑥
(𝐹 (𝑥) 𝑘 (𝑢)

𝑑𝑢

𝑑𝑥
) = 𝜙 (𝑢) (𝑢 − 𝑢

𝑎
) , 0 < 𝑥 < 𝐿,

(4)

where 𝐴
𝑝
represents the profile area, 𝐹(𝑥) represents fin

profile, and 𝑘 and ℎ, respectively, represent nonuniform
thermal conductivity and heat transfer coefficient depending
on the temperature.
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Vaneeva et al. [13] have performed a Lie group classifi-
cation of the nonlinear (1 + 1) dimensional fin equation and
presented exact solutions considering the steady state heat
transfer problem for a rectangular fin. Moitsheki and Rowjee
[14] have discussed the (1 + 1) dimensional problem

𝜕

𝜕𝑦
(𝑘 (𝑢)

𝜕𝑢

𝜕𝑦
) +

𝜕

𝜕𝑥
(𝑘 (𝑢)

𝜕𝑢

𝜕𝑥
) = 𝑠 (𝑢) (5)

in which 𝑢 is the dimensionless temperature, 𝑠 is the internal
heat generation function, and 𝑘 is the thermal conductivity.
Employing the Lie symmetry analysis to classify the internal
heat generating function, they obtained some reductions of
the fin equation as well as exact solutions. Some authors have
also considered the two-dimensional problem with 𝑠 = 0

in (5) by assuming constant thermal conductivity [15, 16].
In the same series of studies Moitsheki and Harley [17] have
considered a two-dimensional pin fin equation with length 𝐿

and radius 𝑅, having the form

1

𝑅

𝜕

𝜕𝑅
(𝑅𝑘 (𝑢)

𝜕𝑢

𝜕𝑅
) +

𝜕

𝜕𝑥
(𝑘 (𝑢)

𝜕𝑢

𝜕𝑥
) = 𝑠 (𝑢) . (6)

Using Lie symmetry approach, they give certain solutions
of this equation for different cases of 𝑠(𝑢). Extending this
work in this area, we present a complete classification of
the nonlinear (2 + 1) fin equation by considering cylindrical
fins with a temperature dependent thermal conductivity and
variable heat transfer coefficient. The fin equation, in this
case, can be written as

1

𝑥

𝜕

𝜕𝑥
(𝑥𝑘 (𝑢) 𝑢

𝑥
) +

1

𝑥

𝜕

𝜕𝑦
(

1

𝑥
𝑘 (𝑢) 𝑢

𝑦
) − 𝑁

2
𝑓 (𝑥) 𝑢 = 𝑢

𝑡
,

(7)

which can be rewritten in the form

𝑥
2
𝑘 (𝑢) 𝑢

𝑥𝑥
+ 𝑥
2
𝑘(𝑢)
𝑢
𝑢
2

𝑥
+ 𝑥𝑘 (𝑢) 𝑢

𝑥
+ 𝑘(𝑢)

𝑢
𝑢
2

𝑦

+ 𝑘 (𝑢) 𝑢
𝑦𝑦

− 𝑥
2
𝑁
2
𝑓 (𝑥) 𝑢 − 𝑥

2
𝑢
𝑡

= 0,

(8)

where 𝑥 and 𝑦, respectively, represent radial and angular
coordinates. Also 𝑢, 𝑘,𝑓, and𝑁 in (8), respectively, represent
the dimensionless temperature, the thermal conductivity, the
heat transfer, and the fin parameter. Using Lie symmetry
analysis, we present a complete classification of 𝑘(𝑢) and𝑓(𝑥)

and obtain exact solutions in cases of interest. The results
presented in this paper are more general than previously
studied cases in the literature [2–4, 10–12, 14–17]. The plan
of this paper is as follows. In the next section, we perform a
complete symmetry analysis of the fin equation. In Section 3,
we present classification of 𝑘 and 𝑓 according to Lie point
symmetries. In Section 4, we present exact solutions when-
ever possible and in other cases reduce the fin equation to
ODE.Abrief summary of thiswork is given in the last section.

2. Symmetry Analysis of the Fin Equation

In order to classify solutions of the Fin equation, we use
the well-known Lie symmetry method [8]. This method is

based upon finding Lie point symmetries of the PDEs that
leave them invariant. In order to derive symmetry generators
of the Fin equation, we consider one parameter Lie point
transformation that leaves it invariant. The transformation
[16]

𝑥
𝑖
= 𝑥
𝑖
+ 𝜀𝜉
𝑖
(𝑥, 𝑦, 𝑡, 𝑢) + 𝑂 (𝜀

2
) , 𝑖 = 1, . . . , 4, (9)

where 𝜉
𝑖

= 𝜕𝑥
𝑖
/𝜕𝜀|
𝜀=0

defines the symmetry generator
associated with (9) given by

𝑋 = 𝜉
𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜏

𝜕

𝜕𝑡
+ 𝜙

𝜕

𝜕𝑢
. (10)

The prolonged symmetry generator associated with (8) has
the following form:

X(2) = 𝑋 +

2

∑

𝐼=0

𝜙
𝐽 𝜕

𝜕𝑢
𝐽

+

2

∑

𝐼,𝐽=0

𝜙
𝐼𝐽 𝜕

𝜕𝑢
𝐼𝐽

, 𝐼, 𝐽 = 0, . . . , 2,

(11)

where 0 represents 𝑡 and 1 and 2, respectively, represent 𝑥

and 𝑦, and the coefficients, 𝜙𝐽 and 𝜙
𝐽𝐾, of the derivatives with

respect to dependent variables in (11) are evaluated using the
expressions

𝜙
𝐽

= 𝐷
𝑖
(𝜙 − 𝜉

𝑗
𝑢
𝑗𝑖

) + 𝜉
𝑗
𝑢
𝑗,𝑖

,

𝜙
𝐽𝐾

= 𝐷
𝑖
𝐷
𝑗
(𝜙 − 𝜉

𝑗
𝑢
𝑗𝑖

) + 𝜉
𝑘
𝑢
𝑘,𝑖𝑗

.

(12)

At this stage we use the Lie symmetry criterion by requiring
that (8) is invariant under the prolonged symmetry generator
given in (11) modulu Equation (8) itself. Mathematically, this
requirement is given by

X(2) [𝑥
2
𝑘 (𝑢) 𝑢

𝑥𝑥
+ 𝑥
2
𝑘(𝑢)
𝑢
𝑢
2

𝑥
+ 𝑥𝑘 (𝑢) 𝑢

𝑥

+ 𝑘(𝑢)
𝑢
𝑢
2

𝑦
+ 𝑘 (𝑢) 𝑢

𝑦𝑦
− 𝑥
2
𝑁
2
𝑓 (𝑥) 𝑢 − 𝑥

2
𝑢
𝑡
]
󵄨󵄨󵄨󵄨󵄨(8)

= 0.

(13)

Using (12) and comparing terms involving derivatives of the
dependent function 𝑢, we obtain the following determining
equations:

𝜉
𝑢

= 0 = 𝜂
𝑢

= 𝜏
𝑢

= 𝜙
𝑢𝑢

= 𝜏
𝑦

= 𝜏
𝑥
, (14)

𝑥
2
𝜂
𝑡
− 𝑘 (𝑢) 𝑥𝜂

𝑥
− 𝑘 (𝑢) 𝑥

2
𝜂
𝑥𝑥

− 𝑘 (𝑢) 𝜂
𝑦𝑦

+ 2𝑘 (𝑢) 𝜙
𝑢𝑦

= 0,

(15)

− 𝑘 (𝑢) 𝜉 + 𝑥𝜙(𝑘 (𝑢))
𝑢

− 𝑘 (𝑢) 𝑥𝜉
𝑥

+ 𝑘 (𝑢) 𝑥𝜏
𝑡

+ 𝑥
2
𝜉
𝑡
+ 2𝑘 (𝑢) 𝑥

2
𝜙
𝑥𝑢

− 𝑘 (𝑢) 𝑥
2
𝜉
𝑥𝑥

− 𝑘 (𝑢) 𝜉
𝑦𝑦

= 0,

(16)
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𝑓 (𝑥) 𝑁
2
𝑥
2
𝜙 + 𝑁

2
𝑢𝑥
2
𝜉(𝑓 (𝑥))

𝑥
+ 𝑥
2
𝜙
𝑡

− 𝑓 (𝑥) 𝑁
2
𝑢𝑥
2
𝜙
𝑢

− 𝑘 (𝑢) 𝑥𝜙
𝑥

+ 𝑓 (𝑥) 𝑁
2
𝑢𝑥
2
𝜏
𝑡

− 𝑘 (𝑢) 𝑥
2
𝜙
𝑥𝑥

− 𝑘 (𝑢) 𝜙
𝑦𝑦

= 0,

(17)

𝑥
2
𝜂
𝑥

+ 𝜉
𝑦

= 0, (18)

𝜙𝑘(𝑢)
𝑢

− 2𝑘 (𝑢) 𝜉
𝑥

+ 𝑘 (𝑢) 𝜏
𝑡

= 0, (19)

−2𝑘 (𝑢) 𝜉 + 𝑥𝜙𝑘(𝑢)
𝑢

− 2𝑥𝑘 (𝑢) 𝜂
𝑦

+ 𝑘 (𝑢) 𝑥𝜏
𝑡

= 0. (20)

To determine the unknown functions, 𝜂, 𝜏, and 𝜙, we solve
the above coupled system of differential equations by first
considering (19). Differentiating this equation twice with
respect to 𝑢 leads to the following expression:

𝜙
𝑢𝑢

= (
𝑘

𝑘
𝑢

)

𝑢𝑢

(2𝜉
𝑥

− 𝜏
𝑡
) . (21)

Using (14) into (21), it reduces to

(
𝑘

𝑘
𝑢

)

𝑢𝑢

(2𝜉
𝑥

− 𝜏
𝑡
) = 0. (22)

We proceed from above equation to obtain complete classifi-
cation of both 𝑘 and 𝑓 as shown in the next section.

3. Classification

In order to find a complete classification of solutions of (8),
we note that the following three cases arise from (22):

(1) (𝑘/𝑘
𝑢
)
𝑢𝑢

= 0,
(2) 2𝜉

𝑥
− 𝜏
𝑡

= 0,
(3) 2𝜉

𝑥
− 𝜏
𝑡

= 0 = (𝑘/𝑘
𝑢
)
𝑢𝑢
.

For obtaining a complete classification, we consider all the
three cases one by one. Since procedure of classification in
all the three cases is similar, we give detailed procedure in the
first case and only give results in the remaining cases. To begin
the classification, we proceed as follows.

Case 1. Solving equation (𝑘/𝑘
𝑢
)
𝑢𝑢

= 0, for 𝑘(𝑢) instantly
yields

𝑘 (𝑢) = 𝛾(𝛼𝑢 + 𝛽)
1/𝛼

, (23)

where 𝛾, 𝛼, and 𝛽 are integration constants. Using (23) into
(19) immediately gives

𝜙 = (𝛼𝑢 + 𝛽) (2𝜉
𝑥

− 𝜏
𝑡
) . (24)

Using (23) and (24) in (20), we obtain a differential relation
in 𝜉 and 𝜂 given by

𝜂
𝑦

= 𝜉
𝑥

−
1

𝑥
𝜉. (25)

Differentiating (24) twice and (25) once with respect to 𝑦 and
using (18) in the resulting expressions give

𝜙
𝑢𝑦

= −2𝛼𝑥
2
𝜂
𝑥𝑥

− 4𝛼𝑥𝜂
𝑥
, (26)

𝜂
𝑦𝑦

= −𝑥
2
𝜂
𝑥𝑥

− 𝑥𝜂
𝑥
. (27)

At this stage we use (27) and (26) into (20), to get

𝑥
2
𝜂
𝑡
− 4𝛼𝑘𝑥

2
𝜂
𝑥𝑥

− 8𝛼𝑘𝑥𝜂
𝑥

= 0. (28)

Differentiating (28) with respect to “𝑢,” while keeping (23) in
mind, we obtain

−4𝛼𝛾 (𝛼𝑢 + 𝛽) (
1

𝛼
− 1) 𝑥 [𝑥𝜂

𝑥𝑥
+ 2𝜂
𝑥
] = 0. (29)

Keeping in mind that 𝛼, 𝛽, and 𝛾 in the above equation are
nonzero, we conclude that the above equation is satisfied only
when

𝑥𝜂
𝑥𝑥

+ 2𝜂
𝑥

= 0 (30)

(the case 𝛼 = 1 is not to be considered as it becomes a
special case of (1.3) that is dealt with later). Note that (30) is a
separable DE and can be easily solved to find 𝜂 given by

𝜂 (𝑥, 𝑦, 𝑡) = −𝑐 (𝑦, 𝑡) 𝑥
−1

+ 𝑑 (𝑦, 𝑡) . (31)

To require consistency of 𝜂 found above, we use (31) into
(28). This suggests that (28) is satisfied when the following
differential constraint is met:

−𝑐
𝑡
(𝑦, 𝑡) + 𝑥𝑑

𝑡
(𝑦, 𝑡) = 0. (32)

The above equation implies that 𝑑
𝑡
(𝑦, 𝑡) = 𝛾(𝑦) and 𝑐(𝑦, 𝑡) =

𝜆(𝑦). Using these results into (32) gives

𝜂 (𝑥, 𝑦, 𝑡) = −𝜆 (𝑦) 𝑥
−1

+ 𝛾 (𝑦) . (33)

To determine 𝛾 we use (33) into (27). This leads to the
following second-order differential constraint:

𝑥𝛾
𝑦𝑦

(𝑦) − 𝜆
𝑦𝑦

(𝑦) − 𝜆 (𝑦) = 0. (34)

To solve the above equation, we differentiate it with respect to
𝑥 to get

𝛾 (𝑦) = 𝑐
1
𝑦 + 𝑐
2
. (35)

We then put (35) into (34), to get a second-order linear
differential equation,

𝜆
𝑦𝑦

(𝑦) + 𝜆 (𝑦) = 0. (36)

The above equation is solved to get

𝜆 (𝑦) = 𝑐
3
cos𝑦 + 𝑐

4
sin𝑦. (37)

At this stage we use (35) and (37) into (33), to infer that

𝜂 (𝑥, 𝑦) =
−1

𝑥
[𝑐
3
cos𝑦 + 𝑐

4
sin𝑦] + 𝑐

1
𝑦 + 𝑐
2
. (38)
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Having determined 𝜂 completely, we now find 𝜉. For this
purpose, we use (38) there. This yields an expression for 𝜉 as
given below:

𝜉 (𝑥, 𝑦, 𝑡) = −𝑐
3
sin𝑦 + 𝑐

4
cos𝑦 + 𝛾

1
(𝑥, 𝑡) . (39)

To determine 𝛾
1
, we use (39) and (38) into (25) to obtain

𝛾
1

(𝑥, 𝑡) = 𝑐
1
𝑥 ln𝑥 + 𝑥𝜆

1
(𝑡) . (40)

Using above value of 𝛾
1
into (39) and (24), respectively,

becomes

𝜉 (𝑥, 𝑦, 𝑡) = −𝑐
3
sin𝑦 + 𝑐

4
cos𝑦 + 𝑐

1
𝑥 ln𝑥 + 𝑥𝜆

1
(𝑡) , (41)

𝜙 = (𝛼𝑢 + 𝛽) (2𝑐
1

+ 2𝑐
1
ln𝑥 + 2𝜆

1
(𝑡) − 𝜏

𝑡
) . (42)

We now use all the above results into (4), which suggests that
it is satisfied if the following condition is met:

𝑥
3
𝜆
1

(𝑡) + 4𝛾𝛼𝑐
1
(𝛼𝑢 + 𝛽)

1/𝛼

= 0. (43)

From the above equation, we immediately infer that 𝜆
1
(𝑡) =

𝑐
5
and 𝑐
1

= 0. Therefore, (38), (41), and (42) take the form

𝜉 (𝑥, 𝑦, 𝑡) = −𝑐
3
sin𝑦 + 𝑐

4
cos𝑦 + 𝑐

5
𝑥,

𝜂 (𝑥, 𝑦) =
−1

𝑥
[𝑐
3
cos𝑦 + 𝑐

4
sin𝑦] + 𝑐

2
,

𝜙 = (𝛼𝑢 + 𝛽) (2𝑐
5

− 𝜏
𝑡
) .

(44)

To determine consistency, we now use the last of the deter-
mining equations, that is, (17). This requirement gives

𝛽𝑓 (𝑥) 𝑁
2

(2𝑐
5

− 𝜏
𝑡
) + 𝑁

2
𝑢𝑓
𝑥

(−𝑐
3
sin𝑦 + 𝑐

4
cos𝑦 + 𝑐

5
𝑥)

− (𝛼𝑢 + 𝛽) 𝜏
𝑡𝑡

+ 𝑓𝑁
2
𝑢𝜏
𝑡

= 0.

(45)

In order for (45) to be satisfied, we proceed as follows:
comparing coefficients of 𝑓(𝑥), this equation gives

−𝛽𝑓 (𝑥) 𝑁
2
𝜏
𝑡𝑡

− (𝛼𝑢 + 𝛽) 𝜏
𝑡𝑡𝑡

+ 𝑓 (𝑥) 𝑁
2
𝑢𝜏
𝑡𝑡

= 0. (46)

Differentiation of the above equation with respect to 𝑢 gives

−𝛼𝜏
𝑡𝑡𝑡

+ 𝑓 (𝑥) 𝑁
2
𝜏
𝑡𝑡

= 0. (47)

The above equation is a separable DE in 𝑥 and 𝑡 and can be
written as

𝜏
𝑡𝑡𝑡

𝜏
𝑡𝑡

=
𝑓 (𝑥) 𝑁

2

𝛼
; (48)

solving (48) implies that 𝑓(𝑥) = 𝑐 (𝑐 a constant) whereas the
𝜏 becomes

𝜏 (𝑡) =
𝑐
6
𝛼
2

𝑐2𝑁4
exp(

𝑐𝑁
2

𝛼
𝑡) + 𝑐

7
𝑡 + 𝑐
8
. (49)

To require consistency, we use (49) with 𝑓(𝑥) = 𝑐 ̸= 0 in (46),
to obtain

𝛽𝑐
6

(𝛼 + 1) = 0. (50)

From (50) four cases arise, namely,

(1.1) 𝛼 = −1, 𝛽 ̸= 0, 𝑐
6

̸= 0,

(1.2) 𝛼 ̸= − 1, 𝛽 = 0, 𝑐
6

̸= 0,

(1.3) 𝛼 ̸= − 1, 𝛽 ̸= 0, 𝑐
6

= 0,

(1.4) 𝛼 = −1, 𝛽 = 0, 𝑐
6

= 0.

We first consider Case 1.1

Case 1.1 (𝑘(𝑢) = 𝛾/(𝛽 − 𝑢) and 𝑓(𝑥) = 𝑐). Using these
conditions arising in this case into ((49), (45), and (44))
the infinitesimal symmetry generators 𝜉, 𝜂, 𝜏, 𝜙, and 𝑘 are
determined as

𝜉 = − 𝑐
3
sin𝑦 + 𝑐

4
cos𝑦,

𝜂 = − 𝑐
3

cos𝑦

𝑥
− 𝑐
4

sin𝑦

𝑥
+ 𝑐
2
,

𝜏 =
𝑐
6

𝑐2𝑁4
exp (−𝑐𝑁

2
𝑡) + 𝑐
8
,

𝜙 =
𝑐
6

𝑐𝑁2
(−𝑢 + 𝛽) exp (−𝑐𝑁

2
𝑡) .

(51)

The five symmetry generators associatedwith above infinites-
imals are given by

𝑋
1

= − sin𝑦
𝜕

𝜕𝑥
−
cos𝑦

𝑥

𝜕

𝜕𝑦
,

𝑋
2

= cos𝑦
𝜕

𝜕𝑥
−
sin𝑦

𝑥

𝜕

𝜕𝑦
,

𝑋
3

=
1

𝑐2𝑁4
exp (−𝑐𝑁

2
𝑡)

𝜕

𝜕𝑡
+

𝛽 − 𝑢

𝑐𝑁2
exp (−𝑐𝑁

2
𝑡)

𝜕

𝜕𝑢
,

𝑋
4

=
𝜕

𝜕𝑡
,

𝑋
5

=
𝜕

𝜕𝑦
.

(52)

The commutation relations for each of the above symmetry
generators are listed in Table 1.

Case 1.2 (𝑘(𝑢) = 𝛾(𝛼𝑢)
1/𝛼 and𝑓(𝑥) = 𝑐). Using the values of

𝑘 and 𝑓 of this case into (49), (45), and (44), the expressions
for 𝜉, 𝜂, 𝜏, and 𝜙 take the forms

𝜉 = − 𝑐
3
sin𝑦 + 𝑐

4
cos𝑦 + 𝑐

5
𝑥,

𝜂 = − 𝑐
3

cos𝑦

𝑥
− 𝑐
4

sin𝑦

𝑥
+ 𝑐
2
,

𝜏 =
𝑐
6
𝛼
2

𝑐2𝑁4
exp (−𝑐𝑁

2
𝑡) + 𝑐
8
,

𝜙 = 𝛼𝑢 (2𝑐
5

−
𝑐
6
𝛼

𝑐𝑁2
exp (−𝑐𝑁

2
𝑡)) .

(53)
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Table 1: Case 1.1: commutation relations satisfied by symmetry
generators.

[𝑋
𝑖
, 𝑋
𝑗
] 𝑋

1
𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
1

0 0 0 0 𝑋
2

𝑋
2

0 0 0 0 𝑋
1

𝑋
3

0 0 0 𝑐𝑁
2
𝑋
3

0

𝑋
4

0 0 −𝑐𝑁
2
𝑋
3

0 0

𝑋
5

−𝑋
2

−𝑋
1

0 0 0

Table 2: Commutation relations in Case 1.2.

[𝑋
𝑖
, 𝑋
𝑗
] 𝑋

1
𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑋
1

0 0 𝑋
1

0 0 𝑋
2

𝑋
2

0 0 𝑋
2

0 0 −𝑋
1

𝑋
3

−𝑋
1

−𝑋
2

0 0 0 0

𝑋
4

0 0 0 0
𝑐𝑁
2

𝛼
𝑋
4

0

𝑋
5

0 0 0
−𝑐𝑁
2

𝛼
𝑋
4

0 0

𝑋
6

−𝑋
2

𝑋
1

0 0 0 0

Accordingly, the 𝑠𝑖𝑥 symmetry generators associated with
above infinitesimals are given by

𝑋
1

= − sin𝑦
𝜕

𝜕𝑥
−
cos𝑦

𝑥

𝜕

𝜕𝑦
,

𝑋
2

= cos𝑦
𝜕

𝜕𝑥
−
sin𝑦

𝑥

𝜕

𝜕𝑦
,

𝑋
3

= 𝑥
𝜕

𝜕𝑥
+ 2𝛼𝑢

𝜕

𝜕𝑢
,

𝑋
4

=
𝛼
2

𝑐2𝑁4
exp(

𝑐𝑁
2

𝛼
𝑡)

𝜕

𝜕𝑡
−

𝛼
2
𝑢

𝑐𝑁2
exp(

𝑐𝑁
2

𝛼
𝑡)

𝜕

𝜕𝑢
,

𝑋
5

=
𝜕

𝜕𝑡
,

𝑋
6

=
𝜕

𝜕𝑦
.

(54)

The commutation relations for these generators are given in
Table 2.

Case 1.3 (𝑘(𝑢) = 𝛾(𝛼𝑢 + 𝛽)
1/𝛼 and 𝑓(𝑥) = 𝑐). Using the

conditions with the values of 𝑘 and 𝑓 of this case into (49),
(45), and (44), the expressions for 𝜉, 𝜂, 𝜏, and 𝜙 take the forms

𝜉 = −𝑐
3
sin𝑦 + 𝑐

4
cos𝑦, 𝜂 = −𝑐

3

cos𝑦

𝑥
− 𝑐
4

sin𝑦

𝑥
+ 𝑐
2
,

𝜏 = 𝑐
8
, 𝜙 = 0

(55)

Table 3: Commutation relations in Case 1.3.

[𝑋
𝑖
, 𝑋
𝑗
] 𝑋

1
𝑋
2

𝑋
3

𝑋
4

𝑋
1

0 0 0 𝑋
2

𝑋
2

0 0 0 −𝑋
1

𝑋
3

0 0 0 0

𝑋
4

−𝑋
2

𝑋
1

0 0

and the corresponding generators are

𝑋
1

= − sin𝑦
𝜕

𝜕𝑥
−
cos𝑦

𝑥

𝜕

𝜕𝑦
,

𝑋
2

= cos𝑦
𝜕

𝜕𝑥
−
sin𝑦

𝑥

𝜕

𝜕𝑦
,

𝑋
3

=
𝜕

𝜕𝑡
,

𝑋
4

=
𝜕

𝜕𝑦
.

(56)

As before the commutation relations form a closed algebra
and are represented in Table 3.

Case 1.4 (𝑘(𝑢) = −𝛾/𝑢 and 𝑓(𝑥) = 𝑐). Similarly, using the
conditions with the values of 𝑘 and 𝑓 of this case into (49),
(45), and (44), the expressions for 𝜉, 𝜂, 𝜏, and 𝜙 take the forms

𝜉 = −𝑐
3
sin𝑦 + 𝑐

4
cos𝑦 + 𝑐

5
𝑥,

𝜂 = −𝑐
3

cos𝑦

𝑥
− 𝑐
4

sin𝑦

𝑥
+ 𝑐
2
,

𝜏 = 𝑐
8
, 𝜙 = −2𝑐

5
𝑢.

(57)

With the above infinitesimals there are five generators asso-
ciated:

𝑋
1

= − sin𝑦
𝜕

𝜕𝑥
−
cos𝑦

𝑥

𝜕

𝜕𝑦
,

𝑋
2

= cos𝑦
𝜕

𝜕𝑥
−
sin𝑦

𝑥

𝜕

𝜕𝑦
,

𝑋
3

= 𝑥
𝜕

𝜕𝑥
− 2𝑢

𝜕

𝜕𝑢

𝑋
4

=
𝜕

𝜕𝑡
,

𝑋
5

=
𝜕

𝜕𝑦
.

(58)

The commutation relation satisfied by the above five genera-
tors is given in Table 4.
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Table 4: Commutation relations in Case 1.4.

[𝑋
𝑖
, 𝑋
𝑗
] 𝑋

1
𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
1

0 0 𝑋
1

0 𝑋
2

𝑋
2

0 0 𝑋
2

0 −𝑋
1

𝑋
3

−𝑋
1

−𝑋
2

0 0 0

𝑋
4

0 0 0 0 0

𝑋
5

−𝑋
2

𝑋
1

0 0 0

Case 2 (2𝜉
𝑥

− 𝜏
𝑡

= 0). In this case the system of determining
equations given by (14)–(20) becomes

𝜉
𝑢

= 0 = 𝜂
𝑢

= 𝜏
𝑢

= 𝜙 = 𝜏
𝑦

= 𝜏
𝑥
,

𝑥
2
𝜂
𝑡
− 𝑘 (𝑢) 𝑥𝜂

𝑥
− 𝑘 (𝑢) 𝑥

2
𝜂
𝑥𝑥

− 𝑘 (𝑢) 𝜂
𝑦𝑦

= 0,

−𝑘 (𝑢) 𝜉 + 𝑘 (𝑢) 𝑥𝜉
𝑥

+ 𝑥
2
𝜉
𝑡
− 𝑘 (𝑢) 𝑥

2
𝜉
𝑥𝑥

− 𝑘 (𝑢) 𝜉
𝑦𝑦

= 0,

𝑁
2
𝑢𝑥
2
𝜉(𝑓 (𝑥))

𝑥
+ 2𝑓 (𝑥) 𝑁

2
𝑢𝑥
2
𝜉
𝑥

= 0,

𝑥
2
𝜂
𝑥

+ 𝜉
𝑦

= 0,

−2𝑘 (𝑢) 𝜉 − 2𝑥𝑘 (𝑢) 𝜂
𝑦

+ 2𝑘 (𝑢) 𝑥𝜉
𝑥

= 0.

(59)

Following the procedure adopted in Case 1, we easily find that

𝜉 = 𝑐
1
𝑥, 𝜂 = 𝑐

3
, 𝜏 = 2𝑐

1
+ 𝑐
2
, 𝜙 = 0. (60)

The above infinitesimals satisfy all the equations in the system
(59) except (iv). Using (60) in (59)-(iv), we obtain,

𝑐
1
𝑁
2
𝑥
3
𝑢𝑓
𝑥

+ 2𝑐
1
𝑁
2
𝑥
2
𝑢𝑓 = 0. (61)

From (61) two cases arise:

(2.1) 𝑐
1

= 0,
(2.2) 𝑐

1
̸= 0.

Case 2.1. In this case 𝑘(𝑢) and 𝑓(𝑥) in system (59) are
arbitrary functions and the general expressions of 𝜉, 𝜂, 𝜏, and
𝜙 take the forms

𝜉 = 0, 𝜂 = 𝑐
4
, 𝜏 = 𝑐

5
, 𝜙 = 0. (62)

The two commuting symmetry generators in this case are

𝑋
1

=
𝜕

𝜕𝑦
, 𝑋

2
=

𝜕

𝜕𝑡
. (63)

Case 2.2. Here 𝑘(𝑢) is an arbitrary function and 𝑓(𝑥) = 𝑐/𝑥
2.

The general expressions of 𝜉, 𝜂, 𝜏, and 𝜙 are

𝜏 = 2𝑐
1
𝑡 + 𝑐
2
, 𝜉 = 𝑐

1
𝑥, 𝜂 = 𝑐

3
, 𝜙 = 0. (64)

Table 5: Commutation relations in Case 2.2.

[𝑋
𝑖
, 𝑋
𝑗
] 𝑋

1
𝑋
2

𝑋
3

𝑋
1

0 −2𝑋
2

0

𝑋
2

2𝑋
2

0 0

𝑋
3

0 0 0

The three symmetry generators associated with (64) are

𝑋
1

= 𝑥
𝜕

𝜕𝑥
+ 2𝑡

𝜕

𝜕𝑡
, 𝑋

2
=

𝜕

𝜕𝑡
, 𝑋

3
=

𝜕

𝜕𝑦
. (65)

The commutation relation satisfied by three generators is
presented in Table 5.

Case 3 (2𝜉
𝑥

− 𝜏
𝑡

= 0 = (𝑘/𝑘
𝑢
)
𝑢𝑢
). This case gives

𝑘 (𝑢) = 𝛾(𝛼𝑢 + 𝛽)
1/𝛼

, 𝜙 = 0, 𝜏
𝑡

= 2𝜉
𝑥
. (66)

Consequently, the system of determining equations given by
(14)–(20) becomes

𝜉
𝑢

= 0 = 𝜂
𝑢

= 𝜏
𝑢

= 𝜙 = 𝜏
𝑦

= 𝜏
𝑥
,

𝑥
2
𝜂
𝑡
− 𝛾(𝛼𝑢 + 𝛽)

1/𝛼

𝑥𝜂
𝑥

− 𝛾(𝛼𝑢 + 𝛽)
1/𝛼

𝑥
2
𝜂
𝑥𝑥

− 𝛾(𝛼𝑢 + 𝛽)
1/𝛼

𝜂
𝑦𝑦

= 0,

− 𝛾(𝛼𝑢 + 𝛽)
1/𝛼

𝜉 + 𝛾(𝛼𝑢 + 𝛽)
1/𝛼

𝑥𝜉
𝑥

+ 𝑥
2
𝜉
𝑡

− 𝛾(𝛼𝑢 + 𝛽)
1/𝛼

𝑥
2
𝜉
𝑥𝑥

− 𝛾(𝛼𝑢 + 𝛽)
1/𝛼

𝜉
𝑦𝑦

= 0,

𝑁
2
𝑢𝑥
2
𝜉(𝑓 (𝑥))

𝑥
+ 2𝑓 (𝑥) 𝑁

2
𝑢𝑥
2
𝜉
𝑥

= 0,

𝑥
2
𝜂
𝑥

+ 𝜉
𝑦

= 0,

− 2𝛾(𝛼𝑢 + 𝛽)
1/𝛼

𝜉 − 2𝑥𝛾(𝛼𝑢 + 𝛽)
1/𝛼

𝜂
𝑦

+ 2𝛾(𝛼𝑢 + 𝛽)
1/𝛼

𝑥𝜉
𝑥

= 0.

(67)

Following the procedure adopted in earlier cases for the
system (67), we obtain same symmetry generators in Cases 2
and 3.The difference though is that in Case 2 𝑘(𝑢) is arbitrary
while in Case 3 𝑘(𝑢) = 𝛾(𝛼𝑢 + 𝛽)

1/𝛼.

4. Reduction under Two-Dimensional
Subalgebra and Exact Invariant Solutions

Case 1. In this section, we present solutions of (8) via
reductions. These reductions are obtained by the similarity
variables obtained through symmetry generators. To perform
reductions of (8), we first consider two symmetry generators
from Table 1, X

1
and X

2
, that span an abelian subalgebra.
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To start reduction, we first consider X
1
. The characteristic

equation corresponding to this generator is

𝑑𝑥

− sin𝑦
=

−𝑥𝑑𝑦

cos𝑦
=

𝑑𝑡

0
=

𝑑𝑢

0
. (68)

Solving the above equation, it is straight forward [6] to find
that it yields the similarity variables 𝑟 = 𝑥 cos𝑦 and 𝑠 = 𝑡

with 𝑤(𝑟, 𝑠) = 𝑢. Replacing 𝑢 in (8) in terms of new variables
becomes

𝛾

𝛽 − 𝑤
𝑤
𝑟𝑟

+
𝛾

(𝛽 − 𝑤)
2
𝑤
2

𝑟
− 𝑁
2
𝑐𝑤 − 𝑤

𝑠
= 0. (69)

To proceed further, we first transform X
2
in terms of new

variables 𝑟, 𝑠, and 𝑤. Thus, X̂
2

= 𝜕/𝜕𝑟. The similarities
corresponding to this generator are 𝑧 = 𝑠 and V(𝑧) = 𝑤. This
reduces (69) to a first-order differential equation given by

V
𝑧

+ 𝑁
2
𝑐V = 0. (70)

Solving this equation, we immediately find that V(𝑧) =

exp(−𝑁
2
𝑐𝑧), which in original coordinates becomes

𝑢 (𝑥, 𝑦, 𝑡) = exp (−𝑁
2
𝑐𝑡) . (71)

Case 2. Here, we first consider the generators X
1
and X

3

given in Table 3, satisfying [X
1
,X
3
] = 0. Following procedure

followed in the previous case, the generator X
1
reduces (8)

to (69). In the light of X
1
, the X

3
transforms to X̂

3
=

(1/𝑐
2
𝑁
4
) exp(−𝑐𝑁

2
𝑠)(𝜕/𝜕𝑠)+(𝛽−𝑤/𝑐𝑁

2
) exp(−𝑐𝑁

2
𝑠)(𝜕/𝜕𝑤),

which gives 𝑧 = 𝑟with𝑤 = 𝛽−exp(−𝑐𝑁
2
𝑠)V(𝑧). In the light of

these similarity variables, (69) reduces to the following ODE:

V
𝑧𝑧

−
1

V
V2
𝑧

+
𝑁
2
𝑐𝛽

𝛾
V = 0. (72)

Choosing 𝛾 = 𝑁
2
𝑐𝛽, the above solution takes the form

V (𝑧) = 𝑐
2
exp(𝑐

1
𝑧 −

1

2
𝑧
2
) . (73)

Writing above in original coordinates, it becomes

𝑢 (𝑥, 𝑦, 𝑡)=𝛽 − 𝑐
2
exp (−𝑁

2
𝑐𝑡) exp(𝑐

1
𝑥 cos𝑦 −

1

2
𝑥
2cos2𝑦) .

(74)

The graphical profile of the above solution is given in
Figure 1.

For constant 𝑡 the same solution is plotted and the
solution depicts a saddle point behavior as shown in Figure 2.

Case 3. In this case, we consider the two generators X
3
and

X
6
that satisfy [X

3
,X
6
] = 0 as shown in Table 2. Since the two

generators commute, we can start reduction by either X
3
or

X
6
. First consideringX

3
, the characteristic equation becomes

𝑑𝑥

𝑥
=

𝑑𝑦

0
=

𝑑𝑡

0
=

𝑑𝑢

2𝛼𝑢
. (75)

Figure 1

Figure 2

The similarity variables corresponding to above equation
become 𝑟 = 𝑦, 𝑠 = 𝑡, and 𝑢 = 𝑥

2𝛼
𝑤. These variables reduce

(8) to a PDE of the form

4𝛾𝛼
(1/𝛼)+1

(𝛼 + 1) 𝑤
(1/𝛼)+1

+ 𝛾𝛼
(1/𝛼)−1

𝑤
(1/𝛼)−1

𝑤
2

𝑟

+ 𝛾𝛼
1/𝛼

𝑤
1/𝛼

𝑤
𝑟𝑟

− 𝑁
2
𝑐𝑤 − 𝑤

𝑠
= 0.

(76)

Using similarity variables transformation obtained from X
3
,

X
6
transforms to X̂

6
= 𝜕/𝜕𝑟.This leads to the new coordinates

𝑠 = 𝑧 and V(𝑧) = 𝑤. In the light of these similarities, (76)
transforms to

4𝛾𝛼
(1/𝛼)+1

(𝛼 + 1) V(1/𝛼)+1 − 𝑁
2
𝑐V − V

𝑧
= 0. (77)

Choosing 𝑁
2
𝑐 = 1, 𝛾 = 1, and 𝛼 = −1, the above equation

takes the form

V
𝑧

+ 2V = 0, (78)

giving exact solution 𝑢(𝑥, 𝑦, 𝑡) = exp 2𝑡.
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Case 4. Here, we consider the two generators X
3
, X
4
given in

Table 4 that satisfy [X
3
,X
4
] = 0. First considering 𝑋

3
and its

characteristic equation

𝑑𝑥

𝑥
=

𝑑𝑦

0
=

𝑑𝑡

0
=

𝑑𝑢

−2𝑢
. (79)

This gives similarity variables 𝑟 = 𝑦, 𝑠 = 𝑡, and 𝑢 = 𝑥
−2

𝑤.
These variables reduce (8) to a PDE given below:

𝛾𝑤
−2

𝑤
2

𝑟
− 𝛾𝑤
−1

𝑤
𝑟𝑟

− 𝑁
2
𝑐𝑤 − 𝑤

𝑠
= 0. (80)

To reduce the above equation further, we use𝑋
3
, to transform

𝑋
4
to 𝑋
4

= 𝜕/𝜕𝑠. This leads to the similarity variables 𝑟 = 𝑧

and V(𝑧) = 𝑤. Using these similarities, (80) becomes anODE,

V
𝑧𝑧

− V−1V2
𝑧

+
𝑁
2
𝑐

𝛾
V2 = 0. (81)

Choosing 𝛾 = 𝑁
2
𝑐, (81) can be solved to obtain

V (𝑧) =
1 − tanh ((𝑧 + 𝑐

2
) /2𝑐
1
)
2

𝑐2
1

. (82)

Recasting above in its original coordinates, the exact solution
of (8) becomes

𝑢 (𝑥, 𝑦, 𝑡) =
1 − tanh ((𝑦 + 𝑐

2
) /2𝑐
1
)
2

𝑐2
1
𝑥2

. (83)

The graph of this solution is plotted in Figure 3.

Case 5. In this case, we consider the two symmetry generators
X
1
,X
3
which satisfy a commutative relationship [X

1
,X
3
] = 0

as shown in Table 3.
First considering X

1
, we obtain the similarity variables

𝑟 = 𝑦, 𝑠 = 𝑥𝑡
−1/2, and 𝑤 = 𝑢. Equation (8) in these variables

reduces to

𝑠
2
𝑘 (𝑤) 𝑤

𝑠𝑠
+ 𝑠
2
𝑘
𝑤

(𝑤
𝑠
)
2

+ 𝑠𝑘𝑤
𝑠
+ 𝑘
𝑤

(𝑤
𝑟
)
2

+ 𝑘𝑤
𝑟𝑟

− 𝑐𝑁
2
𝑤 +

1

2
𝑠
3
𝑤
𝑠

= 0.

(84)

First writing 𝑋
3
into 𝑋

3
= 𝜕/𝜕𝑟 and solving the resulting

characteristic equation the similarity variables are given by
𝑠 = 𝑧 and V(𝑧) = 𝑤. These variables can be used to recast (84)
to an ODE,

𝑧
2
𝑘 (V) V

𝑧𝑧
+ 𝑧
2
𝑘V(V𝑧)

2

+ 𝑧𝑘 (V) V
𝑧

− 𝑐𝑁
2V +

1

2
𝑧
3V
𝑧

= 0.

(85)

Figure 3

Choosing 𝑘(V) = 1, the solution of (85) becomes

V (𝑧)

= 𝐶
1
exp (−

1

8
𝑧
2
)

× 𝑧 (Bessel 𝐼 (0,
1

8
𝑧
2
) + Bessel 𝐼 (1,

1

8
𝑧
2
))

+ 𝐶
2
exp(−

1

8
𝑧
2
)

× 𝑧 (−Bessel𝐾 (0,
1

8
𝑧
2
) + Bessel𝐾 (1,

1

8
𝑧
2
)) .

(86)

Therefore, solution of (8) becomes

𝑢 (𝑥, 𝑦, 𝑡)

= 𝐶
1
exp(−

1

8

𝑥
2

𝑡
)

𝑥

√𝑡

× (Bessel 𝐼 (0,
1

8

𝑥
2

𝑡
) + Bessel 𝐼 (1,

1

8

𝑥
2

𝑡
))

+ 𝐶
2
exp(−

1

8

𝑥
2

𝑡
)

𝑥

√𝑡

× (−Bessel𝐾 (0,
1

8

𝑥
2

𝑡
)+Bessel𝐾 (1,

1

8

𝑥
2

𝑡
)) .

(87)

Reduction in all the remaining cases is given in the form of
Tables 6, 7, and 8.

5. Summary and Discussion

A complete classification of the Lie point symmetries of the
nonlinear fin equation in cylindrical coordinates according to
thermal diffusivity and heat transfer coefficient is obtained.
Using an exhaustive procedure, the determining equations
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Table 6: Reduction: Case 1.1.

Algebra Reduction 𝑧 V
[𝑋
1
, 𝑋
2
] = 0 V

𝑧
+ 𝑁
2
𝑐V = 0 𝑡 𝑢

[𝑋
1
, 𝑋
3
] = 0 V

𝑧𝑧
−

1

V
V2
𝑧

+
𝑁
2
𝑐𝛽

𝛾
V = 0 𝑥 cos𝑦 (𝛽 − 𝑢) exp(−𝑁

2
𝑐𝑡)

[𝑋
1
, 𝑋
4
] = 0

𝛾

𝛽 − V
V
𝑧𝑧

+
𝛾

(𝛽 − V)2
V2
𝑧

− 𝑁
2
𝑐V = 0 𝑥 cos𝑦 𝑢

[𝑋
2
, 𝑋
3
] = 0 V

𝑧𝑧
−

1

V
V2
𝑧

+
𝑁
2
𝑐𝛽

𝛾
V = 0 𝑥 sin𝑦 (𝛽 − 𝑢) exp(−𝑁

2
𝑐𝑡)

[𝑋
2
, 𝑋
4
] = 0

𝛾

𝛽 − V
V
𝑧𝑧

+
𝛾

(𝛽 − V)2
V2
𝑧

− 𝑁
2
𝑐V = 0 𝑥 sin𝑦 𝑢

[𝑋
3
, 𝑋
5
] = 0 𝑧

2V
𝑧𝑧

−
𝑧
2

V
V2
𝑧

+ 𝑧V
𝑧

+
𝑁
2
𝑐𝛽

𝛾
𝑧
2V = 0 𝑥 (𝛽 − 𝑢) exp(𝑁

2
𝑐𝑡)

[𝑋
4
, 𝑋
5
] = 0

𝛾

𝛽 − V
𝑧
2V
𝑧𝑧

+
𝛾

(𝛽 − V)2
𝑧
2V2
𝑧

+
𝛾

𝛽 − V
𝑧V
𝑧

− 𝑁
2
𝑐V𝑧2 = 0 𝑥 𝑢

Table 7: Reduction: Case 1.2.

Algebra Reduction 𝑧 V

[𝑋
1
, 𝑋
2
] = 0 V

𝑧
+ 𝑁
2
𝑐V = 0 𝑡 𝑢

[𝑋
1
, 𝑋
3
] = 𝑋

1
V
𝑧

− 2𝛾𝛼
(1+𝛼)/𝛼

(2𝛼 + 1)V(1/𝛼)+1 + 𝑁
2
𝑐V = 0 𝑡 (𝑥 cos𝑦)

2𝛼

𝑢

[𝑋
1
, 𝑋
4
] = 0 V

𝑧𝑧
+

1

𝛼

1

V
V2
𝑧

= 0 𝑥 cos𝑦 exp(𝑁
2
𝑐𝑡)𝑢

[𝑋
1
, 𝑋
5
] = 0 𝛾(𝛼V)1/𝛼V

𝑧𝑧
+ 𝛾(𝛼V)(1/𝛼)−1V2

𝑧
− 𝑁
2
𝑐V = 0 𝑥 cos𝑦 𝑢

[𝑋
2
, 𝑋
3
] = 𝑋

2
2𝛾𝛼
(1/𝛼)+1

(2𝛼 + 1)V(1/𝛼)+1 − 𝑁
2
𝑐V − V

𝑧
= 0 𝑡 (𝑥 sin𝑦)

−2𝛼

𝑢

[𝑋
2
, 𝑋
4
] = 0 𝛾𝛼

1/𝛼V1/𝛼V
𝑧𝑧

+ 𝛾𝛼
1/𝛼V(1/𝛼)−1V2

𝑧
= 0 𝑥 sin𝑦 exp(𝑁

2
𝑐𝑡)𝑢

[𝑋
3
, 𝑋
4
] = 0 V

𝑧𝑧
+

1

𝛼
V2
𝑧

+ 4𝛼(𝛼 + 1)V(1/𝛼)+1 = 0 𝑦 𝑒
𝑁
2
𝑐𝑡

𝑥
−2𝛼

𝑢

[𝑋
3
, 𝑋
5
] = 0 𝛾𝛼

1/𝛼V1/𝛼V
𝑧𝑧

+ 𝛾𝛼
(1/𝛼)−1V(1/𝛼)−1V2

𝑧
+ 4𝛾𝛼

(1/𝛼)+1
(𝛼 + 1)V(1/𝛼)+1 = 0 𝑦 𝑥

−2𝛼
𝑢

[𝑋
3
, 𝑋
6
] = 0 V

𝑧
− 4𝛾𝛼

(1/𝛼)+1V(1/𝛼)+1 + 𝑁
2
𝑐V = 0 𝑡 𝑥

−2𝛼
𝑢

[𝑋
5
, 𝑋
6
] = 0 𝛾𝑧

2
(𝛼V)1/𝛼V

𝑧𝑧
+ 𝛾𝑧
2
(𝛼V)(1/𝛼)−1V2

𝑧
− 𝑁
2
𝑐𝑧
2V = 0 𝑥 𝑢

Table 8: Reduction: Case 2.2.

Algebra Reduction 𝑧 V
[𝑋
1
, 𝑋
2
] = −2𝑋

2
𝑘(V)V
𝑧𝑧

+ 𝑘VV
2

𝑧
− 𝑁
2
𝑐V = 0 𝑦 𝑢

[𝑋
1
, 𝑋
3
] = 0 𝑧

2
𝑘(V)V
𝑧𝑧

+ 𝑧
2
𝑘VV
2

𝑧
+ 𝑧𝑘(V)V

𝑧
+

1

2
𝑧
3V
𝑧

− 𝑁
2
𝑐V = 0 𝑥𝑡

−1/2
𝑢

[𝑋
2
, 𝑋
3
] = 0 𝑧

2
𝑘(V)V
𝑧𝑧

+ 𝑧
2
𝑘VV
2

𝑧
+ 𝑧𝑘(V)V

𝑧
− 𝑁
2
𝑐V = 0 𝑥 𝑢

obtained in the process are completely solved for all possible
forms of thermal diffusivity and heat transfer. In all cases
reduction of the fin equation is performed. In some cases,
the nonlinear fin equation is solved for its exact solutions and
solutions plotted. As far as symmetry groups are concerned,
it is found that the fin equation admits the maximal Lie
symmetry group 𝐺⟨6⟩ while the minimal Lie symmetry
group is 𝐺⟨3⟩. The other intermediate groups are 𝐺⟨5⟩ and
𝐺⟨4⟩. It is hoped that the nonlinear fin equation may yield
interesting results if the study is extended beyond cylindrical
symmetry.
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