
111

The AppLeS Parameter Sweep Template:
User-level middleware for the Grid1

Henri Casanovaa, Graziano Obertellia,
Francine Bermana,∗ and Richard Wolskib
aComputer Science and Engineering Department,
University of California, San Diego, LaJolla, CA
92093, USA
E-mail: {casanova,graziano,berman}@cs.ucsd.edu
bComputer Science Department, University of
Tennessee, Knoxville, TN 37996, USA
E-mail: rich@cs.utk.edu

The Computational Grid is a promising platform for the ef-
ficient execution of parameter sweep applications over large
parameter spaces. To achieve performance on the Grid, such
applications must be scheduled so that shared data files are
strategically placed to maximize re-use, and so that the ap-
plication execution can adapt to the deliverable performance
potential of target heterogeneous, distributed and shared re-
sources. Parameter sweep applications are an important class
of applications and would greatly benefit from the develop-
ment of Grid middleware that embeds a scheduler for perfor-
mance and targets Grid resources transparently.

In this paper we describe a user-level Grid middleware
project, the AppLeS Parameter Sweep Template (APST), that
uses application-level scheduling techniques [1] and various
Grid technologies to allow the efficient deployment of pa-
rameter sweep applications over the Grid. We discuss several
possible scheduling algorithms and detail our software de-
sign. We then describe our current implementation of APST
using systems like Globus [2], NetSolve [3] and the Network
Weather Service [4], and present experimental results.

Keywords: Application level scheduling, adaptive runtime
scheduling, computational grid, grid middleware, parameter
sweeps applications, scheduling heuristics, distributed stor-
age

∗Corresponding author.
1This research was supported in part by NSF Grant ASC-9701333,

NASA/NPACI Contract AD-435-5790, DARPA/ITO under contract
#N66001-97-C-8531.

1. Introduction

Fast networks make it possible to aggregate CPU,
network and storage resources into Computational
Grids [5,6]. Such environments can be used effectively
to support large-scale runs of distributed applications.
An ideal class of applications for the Grid is the class
of parameter sweep applications (PSAs) that arise in
many scientific and engineering contexts [7–13]. These
applications are typically structured as sets of “exper-
iments”, each of which is executed with a distinct set
of parameters. There are many technical challenges in-
volved when deploying large-scale applications over a
distributed computing environment. Although param-
eter sweep experiments are independent (i.e. do not
communicate), many PSAs are structured so that dis-
tinct experiments share large input files, and produce
large output files. To achieve efficiency for large-scale
runs, shared data files must be co-located with experi-
ments, and the PSA must be scheduled to adapt to the
dynamically fluctuating delays and qualities of service
of shared Grid resources. Previous work [1,14,15] has
demonstrated that run-time, adaptive scheduling is a
fundamental approach for achieving performance for
such applications on the Grid.

PSAs are of great interest to the scientific community
and user-level middleware targeted to the efficient exe-
cution and deployment of large-scale parameter sweeps
would be enormously helpful for users. In this paper we
describe the design and implementation of such middle-
ware: the AppLeS Parameter Sweep Template (APST).
The purpose of the template is to provide a framework
for easily and efficiently developing, scheduling, and
executing large-scale PSAs on Computational Grids.

Our work complements the Nimrod project [16]
which also targets PSAs, as well as the work on de-
veloping high-throughput Condor Monte Carlo simu-
lations [17]. Nimrod’s scheduling approach is different
from ours in that it is based on deadlines and on a Grid
economy model, while our work focuses on the effi-
cient co-location of data and experiments and adaptive
scheduling. The Condor work also does not consider

Scientific Programming 8 (2000) 111–126
ISSN 1058-9244 / $8.00 2000, IEEE. Reprinted with permission from Proceedings of IEEE Supercomputing 2000, 4–10 November 2000,
Dallas, Texas, USA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192694251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

112 H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid

Output
files

.

Input
files

Tasks Storage

Host

Network

User’s host
and storage

Site

Fig. 1. Application and Grid model.

distributed data constraints. Moreover, our work differs
from both Nimrod and Condor in that it is designed to
target multiple Grid infrastructure environments simul-
taneously (following the example of EveryWare [18]).

In Section 2.1, we describe our application and Grid
model. In Sections 2.2 and 2.3, we provide context
by describing previous work on PSA scheduling algo-
rithms. In Section 3, we describe new work on the
design and implementation of the AppLeS Parameter
Sweep Template. Section 4 presents experimental re-
sults and an evaluation of the APST software. We
conclude with and discuss future work in Section 5.

2. Scheduling parameter-sweep applications

2.1. Application and Grid model

We define a parameter sweep application as a set
of “independent” sequential tasks (i.e. with no task
precedences). We assume that the input to each task is
a set of files and that a single file might be input to more
than one task. In our model, we assume without loss of
generality that each task produces exactly one output
file. This model is motivated by real-world PSAs (see
Section 4.1).

We assume that the Computational Grid available
to the application consists of network-accessible sites
that contain computing resources called hosts (work-
stations, multi-processors, etc.), as well as local stor-
age resources called disks. In the case of large-scale
PSAs, it is critical for performance that hosts within a
site can share data in local disks efficiently. Typically
the number of computational tasks in the application
will be orders of magnitude larger than the number of
available processors.

The implementation of APST aims at leveraging
whatever software infrastructure is available in the dis-
tributed environment. Access to remote computational
resources can be facilitated by various Grid infrastruc-
ture projects [2,3,19–22], and several approaches can
be used for implementing the distributed storage infras-
tructure (e.g. low-level systems such as GASS [23] and
IBP [24], or distributed file systems such as AFS).

Figure 1 depicts both our application model and our
Grid model. We do not impose any constraints on the
performance characteristics of the resources. However,
some of the scheduling algorithms described hereafter
will require estimates of computation and file transfer
times. Such estimates can be provided by the user,
analytical models or historical information, by facili-
ties such as the Network Weather Service (NWS) [4],
ENV [25], Remos [26], and/or Grid services such as
those found in Globus [2], or computed from a com-
bination of the previous. Our models and assumptions
are discussed in more detail in [27].

2.2. The self-scheduled workqueue

A straightforward and popular adaptive scheduling
algorithm for scheduling sets of independent tasks is the
self-scheduled workqueue [28] (workqueue for short).
The algorithm assigns work to hosts as soon as they
become available in a greedy fashion. Even though it
is very adaptive, it may fail to capture many idiosyn-
crasies of the application with respect to the comput-
ing environment such as data storage requirements and
data sharing patterns. In the context of our application
model (see Fig. 1), a workqueue strategy is appropri-
ate for certain application scenarios: if there are no
large shared input files, or if large input files are shared
by a very large number of tasks making file transfer

H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid 113

costs negligible compared to computational costs. The
topology and nature of the Grid available to the user can
also justify the use of a workqueue (e.g. large clusters
interconnected with high-speed networks).

However, there are many instances in which the
workqueue algorithm leads to poor schedules, typically
when large files are shared by a relatively small number
of tasks, or by many tasks that have relatively small
computational costs. These situations arise in many
real-world PSAs where the user explores ranges of pa-
rameters for multiple scenarios, each scenario being
described in a large input file (see Section 4.3). Also, it
may be that the relatively slow networks interconnect-
ing the different sites combined with relatively large
file sizes make it critical for the application that file
transfer costs be minimized. This will certainly be true
for future Grid-wide PSAs that make use of large data-
sets stored in distributed digital libraries over the In-
ternet. Finally, and most importantly, the workqueue
algorithm does not perform any resource selection on
behalf of the application. Given the sheer amount of
resources that will soon be available on the national
Computational Grid, it will be necessary to determine
subsets of resources that can be used effectively for
running a PSA.

Thus, there is a need for a more sophisticated adap-
tive scheduling algorithm that can automatically per-
form on-the-fly resource selection and co-allocation of
data and computation when needed. The following
section describes our first approach at designing and
implementing such an algorithm.

2.3. Adaptive scheduling with heuristics for task-host
assignment

Efficient deployment of PSAs on the Computational
Grid requires the use of scheduling algorithms specially
designed for, and adapted to the structure and the re-
quirements of PSAs. Given the dynamic nature of Grid
environments, adaptive algorithms provide the flexibil-
ity to react to changing resource conditions at run-time.
In a previous paper [27], we described a scheduling al-
gorithm which provides a fundamental building block
of the AppLeS Parameter Sweep Template. In this sub-
section, we review those results in order to make this
paper self-contained.

For PSAs, we focus on scheduling algorithms whose
objective is to minimize the application’s makespan
(as defined in [29]). In [27] we proposed an adap-
tive scheduling algorithm that we call sched(). The
general strategy is that sched() takes into account re-

source performance estimates to generate a plan for
assigning file transfers to network links and tasks to
hosts. To account for the Grid’s dynamic nature, our
algorithm can be called repeatedly so that the sched-
ule can be modified and refined. We denote the points
in time at which sched() is called scheduling events,
according to the terminology in [30]. Having multi-
ple scheduling events makes it possible to have achieve
adaptive scheduling. The more frequent the events, the
more adaptive the algorithm.

Figure 2 shows the general skeleton for sched().
Step (1) takes care of setting the scheduling even inter-
vals dynamically. In Step (2), sched() creates a Gantt
chart [31] that will be used to build the scheduling plan.
The chart contains one column for each network link
and one for each host. Each column is a time line that
can be filled with blocks to indicate resource usage.
Step (3) inserts blocks corresponding to ongoing file
transfers and computations. Step (4) is the core of the
algorithm as it assigns tasks and file transfers to hosts
and network links. Finally, in step (5), the Gantt chart
is converted into a schedule that can be implemented
on Grid resources.

The problem of deciding on an optimal assignment of
file transfers to network links and computation to hosts
is NP-complete. It is therefore usual to use heuristics
to make those decisions and step (4) in the algorithm
is where such heuristics can be implemented. Simple
heuristics for scheduling independent tasks were pro-
posed in [30,32]: Min-min, Max-min, and Sufferage.
These heuristics iteratively assign tasks to processors
by considering tasks not yet scheduled and computing
expected Minimum Completion Times (MCTs). For
each task, this is done by tentatively scheduling it to
each resource, estimating the task’s completion time,
and computing the minimum completion time over all
resources. For each task, a metric is computed using
these MCTs, and the task with the “best” metric is
assigned to the resource that lets it achieve its MCT.
The process is then repeated until all tasks have been
scheduled. The way of computing and evaluating the
metric entirely defines the heuristic’s behavior, and Ap-
pendix A gives the basic algorithm of the heuristics and
succinct descriptions of four different metrics.

These base heuristics are effective in environments
where tasks and hosts exhibit affinities, that is where
some hosts are best for some tasks but not for others
(e.g. due to specialized hardware, optimized software
libraries, etc.). Our key idea here is that the presence of
some input files in a disk “close” to some host is akin to
the idea of task/host affinities. This is why we expect

114 H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid

Fig. 2. Scheduling algorithm skeleton.

the heuristics to be effective in our setting. We adapted
all three base heuristics so that they take into account
such file location constraints. Note that step (4) only
fills the Gantt chart until “enough” work has been as-
signed to resources. Indeed, sched() will be called
at the next scheduling event, and new assignments will
then be made. Typically, step (4) assigns work to re-
sources until the next scheduling event plus some fixed
amount of time to be conservative (i.e. to account for
prediction inaccuracies).

Intuitively, the rationale behind Sufferage seems to
be most applicable to our setting: a task should be
scheduled to a host when that task is the one that would
“suffer” the most if not scheduled to that host. We
expect the sufferage idea to be a simple, elegant, yet
effective way to capture data distribution patterns. We
proposed an extension to the Sufferage heuristic and
adapted it to our Grid model to create the XSufferage
heuristics (see Appendix A). All the heuristics men-
tioned here have been evaluated in simulation environ-
ments and XSufferage proved to be the most promising
heuristic (see [27]).

We also conducted simulations to study the impact
of inaccurate performance estimates as perfect predic-
tive accuracy is rarely found in real programming en-
vironments. Increasing the frequency of the calls to
the scheduling algorithm (in other words, increasing its
adaptivity) makes it possible to tolerate these inaccu-
racies and simulations show that XSufferage performs
particularly well in the context of multiple scheduling
events and poor information. All the heuristics are de-
signed to have low computational complexity. Further-
more, it is possible to reduce the set of tasks that are
considered by the heuristics. Section 4.3 describes a
first simple approach at such a task space reduction.

It is therefore possible to run sched() frequently.
Note that a self-scheduled workqueue algorithm does
not make use of any performance estimates. In the
case of a single scheduling event (at the beginning of

execution), the workqueue is the most performance-
efficient scheduling algorithm when the accuracy of
performance estimates is poor.

3. The AppLeS Parameter-Sweep Template

3.1. Motivation and goals

The AppLeS project [1,33] focuses on the design and
development of Grid-enabled high-performance sched-
ulers for distributed applications. The first generation
of AppLeS schedulers [34] demonstrated that simulta-
neously taking into account application- and system-
level information makes it possible to effectively sched-
ule applications onto computational environments as
heterogeneous and dynamic as the Grid. However, each
scheduler was embedded within the application itself
and thus difficult to re-use for other applications. The
next logical step was to consider classes of applications
that are structurally similar and to develop independent
software frameworks, i.e. templates, that can sched-
ule applications within a class. This paper focuses on
the AppLeS Parameter-Sweep Template (APST) which
targets PSAs.

Our goal is twofold. First, we seek to use APST to
investigate the difficult problems of adaptive schedul-
ing and deployment of PSAs. Second, we seek to pro-
vide users with a convenient and efficient way of run-
ning PSAs over most available Grid resources. APST
and projects like SciRun [35] and Nimrod/G [16] pro-
vide initial examples of user-level Grid middleware.
The development of such user-level middleware will
be critical to the wide-spread use of and application
performance on the Computational Grid.

To achieve both our goals, we must design the soft-
ware so that it is possible for the user to enable/disable
different features (e.g. using Globus resources or not),
and tune various parameters of the scheduling algo-

H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid 115

rithm (e.g. choosing a scheduling heuristic). Ulti-
mately, most tuning should occur automatically as de-
scribed in Section 5. The following section describes
and justifies our design choices.

3.2. Software design

Figure 3 shows the overall design of the AppLeS Pa-
rameter Sweep Template. The software is composed of
a client and a daemon. At the moment, the client is an
executable that takes various command-line arguments
and can be used by the user to interact with the daemon.
It is possible to use the client to submit new compu-
tational tasks, cancel tasks previously submitted, and
inquire about the status of an ongoing computation. To
submit new tasks, the user must provide a task descrip-
tion file which contains one task description per line.
Each task description specifies which program to run
as well as the required command-line arguments, the
location of input files, and where output files should be
created (i.e. written to local disks or left in place in re-
mote storage). The user also has the option to provide
an estimate of the task’s relative computational cost.
We focus on the scheduling algorithm rather than on
developing user interfaces. However, we expect that
the APST client in its current form can serve as a build-
ing block for more sophisticated user interfaces (e.g.
within a PSE such as SCIRun [35] or Nimrod [16], or
from a Web/CGI interface). Current APST users gen-
erally use the client from the shell and generate task
description files with simple Perl scripts. The current
implementation of the daemon assumes a single client
(i.e. user) at the moment.

As seen in Fig. 3 the APST daemon consists of four
distinct sub-systems: the Controller, the Scheduler, the
Actuator, and the Meta-data Bookkeeper. Each sub-
system defines its own API. Those APIs are used for
communication/notification among sub-systems. Pro-
viding multiple implementations of these APIs makes
it possible to plug in different functionalities and algo-
rithms into each APST sub-system. For instance, writ-
ing multiple implementations of the Scheduler’s API is
the way to provide multiple scheduling algorithms.

The Scheduler is the central component of the APST
daemon. Its API (sched api) is used for notification
of events concerning the application’s structure (new
tasks, task cancellations), the status of computational
resources (new disk, new host, host/disk/network fail-
ures), and the status of running tasks (task completions
or failures). The behavior of the scheduler is entirely
defined by the implementation of this API. The Con-

troller relays information between the client and the
daemon and notifies the Scheduler of new tasks to per-
form or of task cancellations. It uses the Scheduler’s
API and communicates with the client using a simple
wire protocol. The Actuator implements all interaction
with Grid infrastructure software for accessing storage,
network, and computation resources. It also interacts
with the Grid security infrastructure on behalf of the
user when needed. There are two parts to the Actua-
tor’s API: (i) the transport api handles file transfer and
storage; (ii) the env api handles task launching, polling,
and cancellation. The Scheduler can place calls to both
these APIs to have the Actuator implement a given
schedule on Grid resources. The Actuator’s implemen-
tation makes use of standard APIs to Grid infrastructure
softwares to interact with resources. Each sub-system
API consists of less than 15 functions.

Our design ensures that it is possible to mix and
match different implementations of the APIs. In par-
ticular, the implementation of a given scheduling algo-
rithm is completely isolated from the actual Grid soft-
ware used to deploy the application’s tasks. Section 3.3
describes the implementations that are currently avail-
able.

The intent of our design is that a constant control
cycle between the Scheduler and the Actuator is nec-
essary for effective scheduling. Using the env api, the
Scheduler periodically polls the Actuator for task com-
pletions, failures, or other events (e.g. newly avail-
able computing resources). This leads the Actuator to
place calls to the sched api to notify the Scheduler of
these events. The Scheduler has then the opportunity
to react by making decisions and placing calls to the
env api and the transport api. Such a design makes it
very easy to implement straightforward algorithms like
a self-scheduled workqueue, as well as more complex
algorithms as the one presented in Section 2.3.

As seen in Section 2.3, promising scheduling algo-
rithms base their decisions in part on forecasted com-
putation and file transfer times. The Meta-data Book-
keeper is in charge of keeping track of static and dy-
namic meta-data concerning both the resources and the
application. It is also responsible for performing or ob-
taining forecasts for various types of meta-data. Its API
(meta api) contains two functions: one to store meta-
data local to the application inside the Bookkeeper; the
other to obtain a forecast for (dynamic) meta-data. Dy-
namic and static meta-data concerning Grid resources
are available via Grid Information Services (GISs) and
accessible via standard Grid APIs. In addition, the
Actuator stores meta-data for the application (e.g. ob-

116 H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid

NetSolveIBPGASS NFS NWS local

(meta_api impl.)

MetaData
Bookkeepers

t
o
r
e

MaxMin MinMin Sufferage XSufferage

actuate report actuate

transfer

Ninf

LegionNWS

IBP

GASSNetSolve

env_api impl.transport_api impl.

Actuator

Scheduler (sched_api impl.)

algorithm
workqueue

Controller wire protocol
daemon/client

???

 Gantt chartbased algorithms

Grid Infrastructure

execute query

GSI

GRAM

GRAM

APST Daemon

APST Client

retrieve

Fig. 3. The AppLeS APST software design.

served file transfer duration on some given network
link) inside the Bookkeeper. The Scheduler requests
forecasts for dynamic meta-data on which it can base
scheduling decisions. The following section gives more
details on the implementation of the forecasting facility.

3.3. Current implementation

A beta prototype implementation of APST was
demonstrated during the Supercomputing’99 confer-
ence (running over 200 hosts). This document de-
scribes APST v1.0. The software has been developed
on Linux and ported to most UNIX platforms. Let us
review the implementation of each of the sub-systems
presented in the previous section.

We have implemented multiple versions of the
sched api for each of the following scheduling algo-
rithms: a standard workqueue algorithm, a workqueue
algorithm with work-stealing and task-duplication, and
a Gantt chart algorithm that can use any of the heuris-
tics introduced in Section 2.3. At the moment, the algo-
rithm and its parameters are chosen when starting the
APST daemon, and stays effective for the life-cycle of
the daemon. As described in Section 5, we plan to per-

form further investigation to allow for automatic and
dynamic scheduling algorithm selection without user
intervention.

The Bookkeeper interacts with the Network Weather
Service (NWS) [4,36] for obtaining dynamic Grid re-
source information concerning CPU loads, as well as
network latencies and bandwidths. Forecasting is done
using the NWS forecasting module directly linked in
with the APST daemon (we use NWS version 2.0).
The alternative would be to query remote NWS fore-
casters for NWS-generated meta-data, and still use the
linked-in NWS forecaster for APST-generated meta-
data. The use of remote forecasters would minimize
forecast-related network traffic as potentially large time
series need not be transmitted over the network. On
the other hand, the use of a linked-in NWS forecaster
makes the implementation simpler as it does not re-
quire a distinction between the two types of meta-data.
We will make a final decision on that trade-off once we
gain more experience with the current implementation.

The Actuator handles all interaction with Grid soft-
ware for moving files and launching jobs. Currently,
we provide three implementations of the transport api.
Two are on top of Grid storage software: GASS [23]

H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid 117

which is part of the Globus toolkit, and the Internet
Backplane Protocol (IBP) [24] developed at the Uni-
versity of Tennessee. Both these projects provide some
level of abstraction for handling remote/distributed
storage devices. The third implementation of the trans-
port api is on top of NFS. It can be used when a host
used for computation can directly access the user’s file
system. We currently have 2 implementations of the
env api: one on top of Globus’ GRAM [37], and one on
top of NetSolve [3]. NetSolve is a client-agent-server
system that offers a simple way to submit computa-
tions to remote servers, and in its current version it does
not implement any security mechanisms. On the other
hand, the GRAM implementation of the env api makes
use of the Globus Security Infrastructure (GSI) to sub-
mit jobs. We are also considering providing implemen-
tations of the env api for Ninf [21] and Legion [19].

The Actuator’s design provides great flexibility as it
is possible to mix and match the env api and the trans-
port api. The APST daemon can then simultaneously
use Globus and NetSolve servers for tasks, as well as
IBP, GASS, and NFS servers for storage. It is also
possible to have any task (spawned by the the env api)
use files in any storage system. At the moment how-
ever, our implementation imposes the restriction that
GRAM-spawned tasks can only access files in GASS
servers or over the NFS. Likewise, NetSolve-spawned
tasks can only access files stored in IBP servers or over
the NFS. Using systems such as GASS and IBP makes
it possible for tasks outside the client’s file system to
share copies of a single file as described in Section 2.1.
This in turn makes it worthwhile to use the heuristics
of Section 2.3.

4. Software evaluation

4.1. The MCell PSA

Parameter Sweep Applications arise in various
fields [8–13,38]. In this work we focus primarily
on MCell [7,39], a micro-physiology application that
uses 3-D Monte-Carlo simulation techniques to study
molecular bio-chemical interactions within living cells.
MCell can be used to study the trajectories of neuro-
transmitters in the 3-D space between two cell mem-
branes for different deformations of the membranes.
MCell is currently being used in over 20 laboratories
over the world for practical applications. It is typical
for subsets of MCell tasks to share large data files (e.g.
describing 3-D polygon surfaces) and our expectation is

that scheduling heuristics such as XSufferage will lead
to good performance in real-world Grid environments.

We use three criteria to evaluate our software with
MCell. First, we discuss how APST’s usability makes
it not only possible but easy for users to deploy large
scale MCell simulations. Second, we use experimental
results to show how APST’s scheduling capabilities
promote performance in a Grid environment. Third, we
show how the use of multi-threading allows the APST
daemon to achieve better Grid resource utilization.

4.2. Usability

Previously, MCell users wanting to run a distributed
MCell simulation had to manually upload input files
to remote computational sites, create a collection of
Shell scripts to perform simulation sequentially on each
available host, manually check for task completions and
download produced output file. There was no support
for data-management, scheduling, or fault-tolerance.
APST addresses all three issues. The user needs to sim-
ply write task descriptions (see Section 3.2) and pro-
vide paths to input files on his/her local disk or to files
that have been pre-staged on remote storage. The user
never performs any explicit data upload and download
as those are determined by the Scheduler and transpar-
ently implemented via Grid services. Scheduling de-
cisions are made automatically and are based on real-
time resource availabilities and loads. Finally, APST
inherits fault-tolerance mechanisms from Grid com-
putational services and can recover from host failures
gracefully. In addition, new resources can be added (or
deleted) on-the-fly and APST adapts its current sched-
ule accordingly. MCell users can now deploy their sim-
ulations over large sets of resources without modifying
the way they design their experiments. As far as the
user is concerned, the simulation runs locally on the
desktop.

4.3. Scheduling algorithm

Figure 4 depicts the computing environment that we
used for the experiments reported in this section. Hosts
were located in three different institutions: the Uni-
versity of California at San Diego (UCSD), the Uni-
versity of Tennessee, Knoxville (UTK), and the Tokyo
Institute of Technology (TITECH). Hosts at UCSD and
TITECH are Linux/Intel boxes, whereas hosts at UTK
are Solaris/Sparc workstations. We deployed NetSolve
and IBP at TITECH and UTK, and the Globus’s GRAM
and GASS at UCSD (version 1.1.3). The host break-

118 H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid

NetSolve
 + IBP

NWS

NWS
NWS

Tokyo Institute of Technology

University of Tennessee

Univ. of California, San Diego

Globus
(GRAM+GASS)

NetSolve
 + IBP

Linux / Intel

Solaris / Sparc

Linux / Intel daemon/client
PST

Fig. 4. Experimental Grid configuration.

down for the three institutions is as follows: 8 hosts at
UCSD, 16 hosts at UTK, and 32 hosts at TITECH. All
hosts were used in non-dedicated mode and the NWS
was deployed to monitor CPUs and network links. We
had to start the APST daemon and client within the
TITECH firewall so that we could make use of Net-
Solve to access hosts on the TITECH cluster. Note that
current developments (e.g. [40]) will make it possible
to use hosts behind firewalls in future experiments.

4.3.1. Experiments
The first set of experiments was conducted with a

standard MCell application consisting of 1,200 tasks.
Relative task computational costs are in the range 1–
20 (meaning that the most expensive task required 20
times more computation than the cheapest one). The
application is structured as 6 Monte-Carlo simulations
(each containing 200 tasks) and all tasks within a sim-
ulation share a common input file describing the ge-
ometry of a different 3-D space. The 6 shared files are
of size 1, 1, 20, 20, 100 and 100 MBytes respectively.
Other input files and produced output files are all under
10 Kbytes. All input files are initially present in local
storage on the host running the APST client, that is a
host at TITECH that we will call the source.

In these experiments, we compare two different
schedulers: the self-scheduled workqueue and the
Gantt chart algorithm introduced in Section 2.3. Fig-
ure 5 shows results obtained with 4 different scenarios.
On that figure, bar heights are averages over 5 runs, and

two standard deviations are shown as error bars. For
each scenario, measurements were obtained for back-
to-back runs of the MCell simulation with both sched-
ulers, and all experiments were performed over a period
of 4 days. In all scenarios all input files are available
from the source and in all but scenario (a) some shared
input files have been pre-staged at some remote sites.
This pre-staging can be actively performed by the user
while setting up the MCell simulation, can be the result
of using distributed digital libraries that use replication
for better efficiency, or can just mean that left-over files
from previous runs can be re-used. The extreme sce-
nario (d) is when all shared input files are pre-staged at
all remote sites. The expectation is that the Gantt chart
algorithm will outperform the workqueue when few
files have been pre-staged, whereas the performance of
both algorithms should be similar when many files have
been pre-staged, making the Gantt chart algorithm the
most versatile and consistent overall.

Note that we do not give results for all the heuristics
mentioned in Section 2.3, but instead just give generic
“Gantt chart” results. In fact, we did not observe any
real difference between the heuristics in these experi-
ments as their scheduling choices were similar. This is
due to the topology of our testbed in Fig. 4. Indeed, the
simulation results previously obtained in [27] indicated
that heuristics start behaving differently when the Grid
topology contains a larger number of sites. Although
time constraints prevented us from gathering experi-

H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid 119

(a) (b) (c) (d)
0

1000

2000

3000

4000

5000

6000

7000
E

xe
cu

tio
n

tim
e

in
 s

ec
on

ds

Scenarios

Fig. 5. Gantt chart vs. workqueue in 4 scenarios.

mental results on a larger testbed here, we will report
on more extensive experiments in a future paper.

On average, during the experiments, the bandwidths
between the source and the TITECH cluster is 20 times
higher than the one between the source and the UCSD
cluster, and 40 times higher than the one between the
source and the UTK cluster. In scenario (a) no file
are pre-staged. The workqueue sends tasks to hosts in
a greedy fashion, leading to large input files transfers
over slow links. By contrast, the Gantt chart algorithm
uses the UTK cluster only for tasks that use small in-
put files (1 Mbyte), the UCSD cluster for tasks that
use small or medium input files (20 MBytes), and the
TITECH cluster for all tasks. This explains the aver-
age 62% gap between the two scheduling algorithms.
In scenario (b), the 100 MByte input files have been
pre-staged at UCSD. Expectedly, both scheduling algo-
rithms show improvement, but the workqueue still pays
the cost of sending 100 MByte files over to UTK. In
scenario (c), one 100 MByte and the two 20 MByte in-
put files have been pre-staged on the cluster at UTK, in
addition to the files already pre-staged for scenario (b).
Again, this leads to improvements for both algorithms
by comparison with scenario (b). The relative improve-
ment if larger for the workqueue as one of the 100
MByte file needs not be transfered. Finally, in sce-
nario (d), all large input files are pre-staged on all clus-

ters, and one can see that both workqueue and the Gantt
chart algorithm lead roughly to the same performance.
These results indicate that using the scheduling algo-
rithm of Fig. 2 leads to better schedules because it takes
into account data storage and data sharing patterns in
the application. When there is no data storage con-
cern (as in scenario (d)), then it performs similarly to a
workqueue algorithm.

4.3.2. Forecast accuracy and scheduling cost
Given the large number of available resources and

of tasks in PSAs, we have to use techniques to mini-
mize the time required to apply the heuristics of Sec-
tion 2.3. An obvious cost incurred by the heuristics
is the one of obtaining forecasts from the Meta-Data
Bookkeeper. Indeed, as detailed in Appendix A, each
heuristics makes heavy use of performance estimates,
and constantly obtaining new forecasts leads to pro-
hibitive costs. Therefore, our implementation of the
Bookkeeper provides caching of forecasts that can be
re-used until a new forecast is obtained. This caching
mechanism is transparent to the other APST compo-
nents. Figure 6 shows typical percentage relative errors
when forecasting task execution times during an MCell
run. We mentioned in Section 3.2 that the user can
provide relative computational costs for the application

120 H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90

100

Time forecast performed

P
er

ce
nt

ag
e

re
la

tiv
e

er
ro

r
on

 fo
re

ca
st

Fig. 6. Forecast accuracy.

tasks. These costs are not representative of real task
execution times, but can be used to compare tasks (e.g.
a task with cost “2” requires twice as much computa-
tion as a task with cost “1”). During the first round
of scheduling, the Bookkeeper makes initial guesses
for actual task execution times. Once tasks complete,
the Bookkeeper uses observed execution times to im-
prove accuracy by factoring in the user-provided rela-
tive costs, observed CPU loads, and host speeds (when
unloaded). Figure 6 shows that behavior, with relative
errors initially around 100%, and then dropping to an
average of 11% after about 500 seconds which is when
the first tasks complete. In this experiment scheduling
events where 250 seconds apart, and according to the
simulation result obtained in [27] a relative error rate
of 11% is largely sufficient to justify the use of Gantt
chart heuristics for scheduling. This corroborates the
results in the previous section.

As seen in Appendix A, the heuristics are imple-
mented with nested loops over all tasks that have not
yet been scheduled. When the total number of tasks
in the application is large, the heuristics can become
costly (albeit in polynomial time). It is then necessary
to run the heuristic on a reduced task space. The current
implementation of the heuristics in the APST Sched-

uler reduces the task space by limiting the number of
tasks processed by the inner loop of each heuristic’s
algorithm to a fixed number of tasks (200 in our exper-
iment). These 200 tasks are randomly selected at each
iteration of the outer loop. For comparison purposes
we ran a few experiments without task-reduction, and
did not observe any degradation in the performance of
the obtained schedules. In fact, as long as the set of
200 tasks contains one task that uses each large shared
input file, the heuristic makes the right decisions. Sta-
tistically, this is almost always the case for the MCell
application we used as there are only 6 distinct large
input files. This will not be true for applications that ex-
hibit more complex structures, and more sophisticated
task space reduction technique will be needed. More
detailed investigations on how different reduction tech-
niques impact the quality of the resulting schedule is
left for future work.

Due to the caching mechanisms used by the Book-
keeper and our simple task space reduction, the time re-
quired to run the sched() algorithm averaged 10 sec-
onds for all runs (recall that sched() was called every
250 seconds). Further optimization of the Gantt chart
implementations are possible, and the released version
of APST will likely exhibit even lower scheduling costs.

H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid 121

4.4. Multi-threading for performance

It is critical that the Actuator embedded in the APST
daemon be able to launch computations on Grid re-
sources (in our case NetSolve and Globus resources) as
efficiently as possible. Indeed, since PSAs consist of
many tasks and are to be deployed over many resources,
the overhead incurred when starting remote computa-
tions may have dramatic impact on the overall execu-
tion time. This overhead is due to both network and
software latencies. For instance, to launch a computa-
tion on a remote NetSolve server, the NetSolve client
(transparently to the user) contacts a NetSolve agent,
downloads an IDL description of a few Kbytes, and
performs an IDL check with the remote server. The
server then forks a separate process to handle the com-
putation, and that process sends an acknowledgement
back to the client. The NetSolve client then returns
control to the APST Actuator. Similar overheads are
incurred when launching remote jobs via the Globus
GRAM.

Let us give an example: say that the APST daemon
has access to 60 identical remote hosts for computation,
and that the MCell simulation to be performed consists
of, 1000 tasks that all require 30 seconds of computa-
tion. For the sake of discussion, assume that the Ac-
tuator incurs and overhead of 1 second for initiating a
computation on a remote host. In this setting, under the
optimistic assumption that there is no overhead for ac-
knowledging task completions, the APST daemon will
achieve at most 50% utilization of available resources,
leading to an execution time roughly two times larger
than the execution time without the 1 second overhead.
APST users trying to run large MCell computations
faced that problem acutely when performing simula-
tions on the SP-2 available at the San Diego Supercom-
puting Center that provides more than 1000 nodes for
computation. The overhead for starting a remote job
was on average 0.3 seconds and the machine utilization
for typical MCell simulation, at times, got as low as
20%.

Our first step was to dynamically measure and in-
clude that overhead into the Scheduler’s performance
model (e.g. when filling the Gantt chart). While im-
proving the schedule’s accuracy, the new performance
model led to no observable improvement from the
user’s perspective. We then opted for providing a more
efficient implementation of the env api, and our first
approach uses threads. The expectation is that multi-
ple concurrent threads can place simultaneous call to
Grid software, and that network and software latencies

can be partially hidden. Some minor changes to the
NetSolve client library were required in order to make
it thread-safe whereas Globus provides a thread-safe
GRAM API.

For experiments in this section we used NetSolve on
all nodes of the “Presto” cluster, a 64-node 350MHz
Pentium II Linux cluster made available to us by the
Tokyo Institute of Technology (TITECH). More infor-
mation on that cluster is available at [41]. As for the
experiments in Section 4.3.1, the APST daemon was
running also at TITECH, inside the firewall, but not
on the cluster itself. We conducted experiments with
an MCell simulation consisting of 1000 tasks. During
the experiments, MCell tasks were running for 30 to
80 seconds (depending on the task and the CPU loads,
since the cluster was not dedicated). Input/output file
transfers were done with IBP, and we used the standard
workqueue scheduler (which is as good a choice as any
other in such an environment).

Figure 7 shows execution times for increasing num-
ber of allowed simultaneous threads in the env api. For
each number of allowed threads (1, 2, 3, 4, 10, 20 and
30), we show data points for 5 runs, for a total of 35
runs of the application. The execution time averages
are linked with a solid line. One can see that the use
of multi-threading leads to dramatic improvement and
effectively hides network and software latencies. Al-
lowing for 20 concurrent threads improves the execu-
tion time by 48% over no multi-threading. However,
allowing for more than 20 threads does not lead to fur-
ther improvement. This behavior is explained by the
data in Fig. 8. On that figure, for the same experiments,
we plot average numbers of simultaneous threads that
the Actuator could effectively spawn. As in Fig. 7,
we plot a data point for each run and link the averages
with a solid line. One can see that, for this experiment,
the Actuator never had the opportunity to spawn more
than 12 threads. This is strongly related to the rate at
which tasks complete in this particular setting, which
in turns depends on the nature of the application and on
the number and nature of available resources. In this
experiment, the APST daemon spawns new tasks ap-
proximately every 10 seconds, in which time 12 tasks
complete on average.

Finally, Fig. 9 shows the decrease in latency for in-
dividual NetSolve calls when the number of concurrent
threads increases. The per-call latency is computed by
dividing the time spent in spawning n NetSolve calls (in
a multi-threaded fashion) by n. The data-points shown
on Fig. 9 are averages computed over all 35 experi-
ments previously reported in Fig. 7. The curve shows

122 H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid

0 5 10 15 20 25 30
1000

1500

2000

2500

3000

3500

4000

Number of allowed threads

E
xe

cu
tio

n
tim

e
(in

 s
ec

on
ds

)

Fig. 7. Multi-threading and execution time.

a dramatic drop in per-call latency initially and then
stabilizes at roughly 15 threads. This means that, when
using NetSolve on this cluster, multi-threading is effec-
tive for hiding latency effectively only up to 15 threads.
We expect that larger numbers of threads can be effec-
tive for larger network latencies and we will perform
more experiments with different configurations. Since
the APST daemon spawns 12 threads simultaneously
on average in this experiment, it is close to making best
use of multi-threading.

Following the same ideas, we implemented a multi-
threaded implementation of the transport api that al-
lows concurrent file transfers on top of GASS, IBP and
NFS. Threads could also be used to hide latencies as-
sociated with overheads incurred when acknowledging
task completions. We leave this for a future implemen-
tation of the APST Actuator.

5. Conclusion and future work

In this paper we have described a user-level Grid mid-
dleware project, the AppLeS Parameter Sweep Tem-
plate (APST), that is used to deploy Parameter Sweep
Applications (PSAs) across the Computational Grid.
The design of the software makes it easy to: (i) effi-

ciently and adaptively use resources managed by mul-
tiple Grid infrastructure environments for large-scale
PSAs; and (ii) investigate the effectiveness of a variety
of adaptive scheduling algorithms and implementation
strategies.

Our work on scheduling can be extended in sev-
eral ways. We plan to integrate and possibly adapt
more scheduling algorithms found in the literature such
as [42,43]. Our current Grid model restricts network
communications between the user’s machine and the
remote site; extending it to allow inter-site communica-
tion is straightforward and will be our next undertaking.
All the scheduling algorithms mentioned in this paper
are adaptive to changing resource conditions. However,
our overall goal is to have APST select which algo-
rithm should be used at run-time. In the release version
of APST, we plan to dynamically select a workqueue
algorithm or XSufferage depending on estimation ac-
curacy. We have also initiated a collaboration with the
Nimrod team in a attempt to explore Grid economy
models and their impact on scheduling algorithms. We
will investigate in more details the impact of several of
the techniques we used to reduce the cost of computing
a schedule, particularly task space reduction techniques
and NWS forecast caching. Finally, we will perform
many more experiments with larger testbeds and appli-

H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid 123

0 5 10 15 20 25 30
0

2

4

6

8

10

12

14

Number of allowed threads

A
ve

ra
ge

 n
um

be
rs

 o
f s

pa
w

ne
d

th
re

ad
s

Fig. 8. Opportunities for multi-threading.

cations. We expect that these experiments will make it
possible to effectively compare the different heuristics
for assigning tasks to hosts.

From the software standpoint, several improvements
can be made to the current implementation of APST.
First, we must allow the APST daemon and the APST
client to reside on different file systems. This will al-
low the same daemon to be used by multiple users for
different applications. Multiple applications will re-
quire finding a way for the scheduling algorithms to
ensure some degree of fairness among users without
compromising efficient use of storage and computa-
tion resources. Our work motivates the development
of better long-range forecasting techniques as part of
the NWS, and the authors are collaborating with the
NWS team towards that purpose. More components of
the Globus toolkit need to be integrated/used by APST
(e.g. HBM, MDS). We will also develop implementa-
tions of the APST Actuator over other Grid softwares
like Ninf [21] and Legion [19]. Finally, following the
idea presented in Section 4.4, we will push the use of
threads further in the implementation of the Actuator
for increased efficiency.

As Grid services become more available and ubiq-
uitous, we plan to deploy large-scale parameter sweep

simulations in production mode on Grid resources.
These simulations will be executed at a scale that will
enable users to achieve new disciplinary results.

Acknowledgements

The authors would like to thank the reviewers for
their insightful comments, the Tokyo Institute of Tech-
nology for providing access to many computational re-
sources, the MCell team for coping with us computer
scientists, and members of the AppLeS group for their
comments and help with the experiments.

Appendix A: Task/host selection heuristics

The general algorithm for the heuristics introduced
in Section 2.3 is as follows (CT denotes the completion
time):

while there are tasks to schedule
foreach task i to schedule

foreach host j
compute CTi,j = CT(task i, host j)

124 H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid

5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

Number of simultaneous threads

pe
r

ca
ll

N
et

S
ol

ve
 la

te
nc

y
(in

 s
ec

on
ds

)

Fig. 9. NetSolve latency and multi-threading.

end foreach
compute metric i = f(CTi,1, CTi,2, ...)

end foreach
choose “best” metric i′

compute minimum CTi′,j′

schedule task i′ on host j ′

end while

Defining the function f and the meaning of “best” in
this algorithm entirely defines a heuristic. We list here
what these definitions are for our 4 heuristics.

MinMin: f is the minimum of all the CTi,j . “Best” is
defined as the minimum.

MinMin: f is the minimum of all the CTi,j . “Best” is
defined as the maximum.

Sufferage: f is the difference between the second min-
imum CTi,j and the minimum CTi,j . This difference
is called the sufferage value. “Best” is defined as the
maximum.

XSufferage: For each task and each site f computes the
minimum completion times of the task over the hosts

in the site. We call this minimum the site-level com-
pletion time. For each task, f returns the difference be-
tween the second minimum and the minimum site-level
completion time. We call that difference the site-level
sufferage value. “Best” is defined as the maximum.

References

[1] F. Berman, R. Wolski, S. Figueira, J. Schopf and G. Shao,
Application-Level Scheduling on Distributed Heterogeneous
Networks, Proc. of Supercomputing’96, Pittsburgh, 1997.

[2] I. Foster and K. Kesselman, Globus: A Metacomputing In-
frastructure Toolkit, International Journal of Supercomputer
Applications 11(2) (1997), 115–128.

[3] H. Casanova and J. Dongarra, NetSolve: A Network Server for
Solving Computational Science Problems, The International
Journal of Supercomputer Applications and High Performance
Computing (1997).

[4] R. Wolski, Dynamically Forecasting Network Performance
Using the Network Weather Service, 6th High-Performance
Distributed Computing Conference, August 1997, pp. 316–
325.

[5] I. Foster and C. Kesselman, eds, CHAPTER= 12, The Grid,
Blueprint for a New computing Infrastructure, (Chapter 12),
Morgan Kaufmann Publishers, Inc., 1998.

[6] http://www.gridforum.org.
[7] J.R. Stiles, T.M. Bartol, E.E. Salpeter and M.M. Salpeter,

Monte Carlo simulation of neuromuscular transmitter release

H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid 125

using MCell, a general simulator of cellular physiological
processes, Computational Neuroscience (1998), 279–284.

[8] D. Abramson, M. Cope and R. McKenzie, Modeling Photo-
chemical Pollution using Parallel and Distributed Computing
Platforms, in: Proceedings of PARLE-94, 1994, pp. 478–489.

[9] J. Basney, M. Livny and P. Mazzanti, Harnessing the Capacity
of Computational Grids for High Energy Physics, in: Con-
ference on Computing in High Energy and Nuclear Physics,
2000.

[10] W.R. Nelson, H. Hirayama and D.W.O. Rogers, The EGS4
Code system, Technical Report SLAC-265, Stanford Linear
Accelerator Center, 1985.

[11] S.J. Sciutto, AIRES users guide and reference manual, ver-
sion 2.0.0, Technical Report GAP-99-020, Auger project,
1999.

[12] A. Amsden, J. Ramshaw, P. O’Rourke and J. Dukiwica, Kiva:
A computer program for 2- and 3-dimensional fluid flows
with chemical reactions and fuel sprays, Technical Report LA-
10245-MS, Los Alamos National Laboratory, 1985.

[13] S. Rogers, A Comparison of Implicit Schemes for the Incom-
pressible Navier-Stokes Equations with Artificial Compress-
ibility, AIAA Journal 33(10) (Oct. 1995).

[14] N. Spring and R. Wolski, Application Level Scheduling: Gene
Sequence Library Comparison, in: Procedings of ACM Inter-
national Conference on Supercomputing 1998, July 1998.

[15] F. Berman, The Grid, Blueprint for a New computing Infras-
tructure, (Chapter 12), I. Foster and C. Kesselman, eds, Mor-
gan Kaufmann Publishers, Inc., 1998.

[16] D. Abramson, J. Giddy, I. Foster and L. Kotler, High Perfor-
mance Parametric Modeling with Nimrod/G: Killer Applica-
tion for the Global Grid? in: Proceedings of the International
Parallel and Distributed Processing Symposium, May 2000,
to appear.

[17] J. Basney, R. Raman and M. Livny, High-throughput Monte
Carlo, in: Proceedings ot the Ninth SIAM Conference on Par-
allel Processing for Scientific Computing, March 1999.

[18] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Spring and
A. Su, Running EveryWare on the Computational Grid, Pro-
ceedings of Supercomputing 1999, November 1999.

[19] A. Grimshaw, A. Ferrari, F.C. Knabe and M. Humphrey, Wide-
Area Computing: Resource Sharing on a Large Scale, IEEE
Computer 32(5) (May 1999), 29–37.

[20] M. Litzkow, M. Livny and M.W. Mutka, Condor – A Hunter of
Idle Workstations, in: Proc. of the 8th International Confer-
ence of Distributed Computing Systems, Department of Com-
puter Science, University of Winsconsin, Madison, June 1988,
pp. 104–111.

[21] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka and U. Na-
gashima, Ninf: Network based Information Library for Glob-
ally High Performance Computing, Proc. of Parallel Object-
Oriented Methods and Applications (POOMA), Santa Fe,
February 1996, pp. 39–48.

[22] P. Arbenz, W. Gander and M. Oettli, The Remote Computa-
tional System, Parallel Computing 23(10) (1997) 1421–1428.

[23] I. Foster, C. Kesselman, J. Tedesco and S. Tuecke, GASS: A
Data Movement and Access Service for Wide Area Computing
Systems, in: Proceedings of the Sicth workshop on I/O in
Parallel and Distributed Systems, May 1999.

[24] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany and
R. Wolski, The Internet Backplane Protocol: Storage in the
Network, in: Proceedings of NetSore’99: Network Storage
Symposium, Internet2, 1999.

[25] G. Shao, F. Breman and R. Wolski, Using Effective Network
Views to Promote Distributed Application Performance, in:

Proceedings of the 1999 International Conference on Paral-
lel and Distributed Processing Techniques and Applications,
1999.

[26] B. Lowekamp, N. Miller, D. Sutherland, T. Gross, P. Steenkiste
and J. Subhlok, A Resource Query Interface for Network-
Aware Applications, Proceedings of the 7th IEEE Smposium
on High-Performance Distributed Computing, July 1998.

[27] H. Casanova, A. Legrand, D. Zagorodnov and F. Berman,
Heuristics for Scheduling Parameter Sweep Applications in
Grid Environments, in: Proceedings of the 9th Heterogeneous
Computing Workshop (HCW’00), May 2000, pp. 349–363.

[28] T. Hagerup, Allocating Independent Tasks to Parallel Proces-
sors: An Experimental Study, Journal of Parallel and Dis-
tributed Computing 47 (1997), 185–197.

[29] M. Pinedo, Scheduling: Theory, Algorithms, and Systems,
Prentice Hall, Englewood Cliffs, NJ, 1995.

[30] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen and R. Fre-
und, Dynamic Matching and Scheduling of a Class of Indepen-
dent Tasks onto Heterogeneous Computing Systems, in: 8th
Heterogeneous Computing Workshop (HCW’99), April 1999.

[31] W. Clark, The Gantt chart, 3rd ed., Pitman and Sons, London,
1952.

[32] O.H. Ibarra and C.E. Kim, Heuristic algorithms for scheduling
independent tasks on nonindentical processors, Journal of the
ACM 24(2) April 1977, pp. 280–289.

[33] F. Berman and R. Wolski, The AppLeS Project: A Status
Report, in: Proc. of the 8th NEC Research Symposium, Berlin,
Germany, May 1997.

[34] http://apples.ucsd.edu.
[35] S. Parker, M. Miller, C. Hansen and C. Johnson, An integrated

problem solving environment: The SCIRun computational
steering system, in: Proceedings of the 31st Hawaii Interna-
tional Conference on System Sciences (HICSS-31), (Vol. VII),
January 1998, pp. 147–156.

[36] R. Wolski, N. Spring and J. Hayes, Predicting the CPU Avail-
ability of Time-shared Unix Systems on the computational
Grid, in: Proceedings of the 8th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC8),
Aug 1999.

[37] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Mar-
tin, W. Smith and S. Tuecke, A Resource Management Ar-
chitecture for Metacomputing Systems, in: Proceedings of
IPPS/SPDP’98 Workshop on Job Scheduling Strategies for
Parallel Processing, 1998.

[38] A. Majumdar, Parallel Performance Study of Monte-Carlo
Photon Transport Code on Shared-, Distributed-, and
Distributed-Shared-Memory Architectures, in: Proceedins of
the 14th Parallel and Distributed Proceeding Symposium,
IPDPS’00, May 2000, pp. 93–99.

[39] J.R. Stiles, D. Van Helden, T.M. Bartol, E.E. Salpeter and
M.M. Salpeter, Miniature end-plate current rise times <100
microseconds from improved dual recordings can be modeled
with passive acetylcholine diffusion form a synaptic vesicle,
Proc. Natl. Acad. Sci. USA 93 (1996), 5745–5752.

[40] Y. Tanaka, M. Sato, M. Hirano, H. Nakada and S. Sekiguchi,
Resource Management for Globus-based Wide-area Cluster
Computing, First IEEE International Workshop on Cluster
Computing (IWCC’99), 1999, pp. 237–244.

[41] http://matsu-www.is.titech.ac.jp/cluster-team/.
[42] R.D. Braun, H.J. Siegel, N. Beck, L. Boloni, M. Maheswaran,

A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hens-
gen and R.F. Freund, A Comparison Study of Static Mapping
Heuristics for a Class of Meta-tasks on Heterogeneous Com-

126 H. Casanova et al. / The AppLeS Parameter Sweep Template: User-level middleware for the Grid

puting Systems, in: Proceedings of the 8th Heterogeneous
Computing Workshop (HCW’99), April 1999, pp. 15–29.

[43] M. Mitzenmacher, How useful is old information, in: Proceed-

ings of the 16th ACM Symposium on Principles of Distributed
Computing, 1997, pp. 83–91.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

