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Unloaded CeO
2
and nominal 0.50, 1.00, 1.50, 2.00, 5.00, and 10.00 mol% Fe-loaded CeO

2
nanoparticles were synthesized by flame

spray pyrolysis (FSP). The samples were characterized to obtain structure-activity relation by X-ray diffraction (XRD), high-
resolution transmission electron microscopy (HRTEM), Brunauer, Emmett, and Teller (BET) nitrogen adsorption, X-ray pho-
toelectron spectroscopy (XPS), and UV-visible diffuse reflectance spectrophotometry (UV-vis DRS). XRD results indicated that
phase structures of Fe-loaded CeO

2
nanoparticles were the mixture of CeO

2
and Fe

2
O
3
phases at high iron loading concentrations.

HRTEM images showed the significant change in morphology from cubic to almost-spherical shape observed at high iron
loading concentration. Increased specific surface area with increasing iron content was also observed. The results from UV-
visible reflectance spectra clearly showed the shift of absorption edge towards longer visible region upon loading CeO

2
with iron.

Photocatalytic studies showed that Fe-loaded CeO
2
sample exhibited higher activity than unloaded CeO

2
, with optimal 2.00mol%

of iron loading concentration being the most active catalyst. Results from XPS analysis suggested that iron in the Fe3+ state might
be an active species responsible for enhanced photocatalytic activities observed in this study.

1. Introduction

Organic compounds from industries are one of the major
causes of water pollution [1]. Various strategies have been
employed to remove these toxic compounds [2, 3]. One of the
most interesting approaches is heterogeneous photocatalysis
because the process is based on the use of solar energy, which
is clean and abundant in nature [4, 5]. In the recent years,
cerium dioxide (CeO

2
or ceria) has received considerable

attention because this material shows promising applications
in solid oxide fuel cells [6], environmental catalysis [7, 8],
redox catalysis [9], and wet catalytic oxidation of organic
pollutants [10]. However, the band gap of CeO

2
(3.22 eV)

has limited the activation of solar energy; only UV light can
be applied to generate electron-hole pairs at the beginning
of photocatalytic processes. Thus, it is necessary to extend
the absorbance of CeO

2
into visible region and reduce the

electron-hole pairs recombination [11, 12]. There are many

methods to modify light absorption properties of CeO
2
,

such as metal doping [13, 14], surface sensitization [15], and
coupling with semiconductor that has smaller band gap [16].
Recently, transition metal doping/loading has been widely
used to enhance the light absorption of CeO

2
[17, 18]. It has

been reported in many works of literature that the metal ions
of Pt [19], Ag [20], Fe [21], Mn [22], Co [23], Ni [24], and
Zn [25] in CeO

2
could improve CeO

2
photocatalytic activity

towards the visible-light region. Among these metals, Fe has
been considered as a candidate owing to its special Fenton
reaction of iron. The Fenton process can improve the photo-
catalytic activity by producing the hydroxyl radicals (OH∙)
which are very powerful oxidizer in photocatalytic process
[26].There aremanymethods to prepare unloaded CeO

2
and

Fe-doped/-loaded CeO
2
nanoparticles such as sol-gel [27],

sonochemical [28], homogeneous precipitation [29], hydro-
thermal [30], microemulsions [31], surfactant-assisted pre-
cipitation [32], and flame spray pyrolysis (FSP) methods [33].
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Among them, the latter one is a promising approach
because FSP can produce the nanoparticle products with
particle size in the range of 1–200 nm at high production rates
up to 250 g/h in one step [34]. Other advantages are the ability
to dissolve the precursor directly in the fuel and the simplicity
of introduction of the precursor into the hot flame zone.
In addition, the process of loading/doping metal oxide with
metals can easily be done by adding dopant in the precursor
solution [35, 36]. In the present work, unloaded CeO

2
and

Fe-loaded CeO
2
nanoparticles were directly synthesized by

FSP method. The formic acid and oxalic acid were chosen
as model organic pollutants for photocatalytic study under
visible-light irradiation.

2. Experimental

2.1. Preparation of Powders. The precursor solutions for FSP
consisted of cerium nitrate hexahydrate (Sigma-Aldrich,
99.99wt%) and iron acetyl acetonate (Sigma-Aldrich,
97wt%). The cerium precursor was dissolved in absolute
ethanol (Scharlau, 98%) to obtain a 0.50M concentration.
Amounts of Fe loading concentration were varied as 0.50,
1.00, 1.50, 2.00, 5.00, and 10.00mol% in order to prepare Fe-
loaded CeO

2
samples. The precursor mixtures were fed into

the center of flame by syringe pump with a rate of 5mL/min
and dispersed by 5 L/min oxygen according to the previous
report [37]. Then, the liquid precursor was dispersed quickly
in an upward direction by gas stream and ignited by premixed
oxygen/methane flame. The gas flow rates of oxygen and
methane-supporting flame were set as constant rates of 1.19
and 2.46 L/min, respectively. After evaporation and com-
bustion of liquid precursor droplet, nanoparticle products
were collected on a glass microfiber filter papers (Whatmann
GF/A, 25.7 cm in diameter) with a vacuum pump controller.

2.2. Characterization of Nanoparticles. The phase and crys-
tallinity of the synthesized samples were analyzed by X-
ray powder diffraction (XRD; Philips X’Pert MPD; CuK𝛼
radiation). The most intense peak corresponding to (111)
plane was chosen to calculate the crystallite sizes (D) using
Scherrer equation as follow:

𝐷 =

𝑘𝜆

𝛽 cos 𝜃
, (1)

where 𝑘 is a constant equal to 0.89, 𝜆 is the X-ray wavelength
equal to 0.154 nm , 𝛽 is the full width at half-maximum
(FWHM), and 𝜃 is the half-diffraction angle [38]. The chem-
ical composition and oxidation state of material were studied
by X-ray photoelectron spectroscopy (XPS) using Mg X-ray
source (MgK𝛼, Kratos Axis Ultra DLD). The binding energy
of the adventitious carbon (C 1 s) line at 285 eV was used
for calibration, and the position of other peaks was cor-
rected according to the position of the C 1 s signal. High-
resolution transmission electronmicroscopy (HRTEM, JEOL
JEM-2010) was employed to determine the morphology of
prepared samples.Themean particle size and specific surface
area (SSA) were investigated using the Brunauer, Emmett,
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Figure 1: X-ray diffraction patterns of CeO
2
with different iron

content.

and Teller (BET) nitrogen adsorption method (Quantachro-
meAutosorp 1MP). The reflectance spectra of the nanopar-
ticle powders were obtained by using UV-visible diffuse
reflectance spectrophotometry (UV-vis DRS) equipped with
integrating sphere detector (Shimadzu, UV-3101PC).

2.3. Photocatalytic Activity. 1.00 g /L of photocatalyst suspen-
sions was prepared in deionized water and circulated in
closed system spiral photoreactor. In a typical run, carbon
burn-off step was firstly carried out by illuminating the pho-
tocatalyst suspension with a UV-A lamp (Sylvania Blacklight
Blue, 18W) in order to remove any organic impurities from
the photocatalyst. The photocatalytic activities were evalu-
ated through formic acid (Sigma-Aldrich, 98wt%) and oxalic
acid (Sigma-Aldrich, 99.99wt%) degradations under the
visible irradiation for 120min. Finally, the generated carbon
dioxide (CO

2
) was measured using the conductivity meter

(Eutech Instruments Cyberscan PC5500, 𝜇S/cm2 precision).
At the end of each photocatalytic experiment, the recorded
data presented the increase in conductivity value. In order
to calculate amounts of generated CO

2
, the values were

converted from conductivity at that time to the amount of
carbon by the interpolated from calibration curve.

3. Results and Discussion

3.1. X-Ray Powder Diffraction (XRD). In Figure 1, the X-ray
diffraction pattern has been used in order to study the struc-
ture and phase composition of the prepared samples. It can be
seen that all samples had similar diffraction patterns of cubic
fluorite structure of ceria (JCPDS 340394) [39]. However,
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Table 1: The calculated 𝑑-spacing, lattice parameters, unit cell volume, and crystalline size.

Iron loading
concentration (mol%)

111 plane
2𝜃 (degree) 𝑑-spacing (nm) Lattice parameter (nm) Unit cell volume (nm3) Crystalline size (nm)

0.00 28.4601 0.3132 0.5426 0.1597 8.3586
0.50 28.5479 0.3123 0.5409 0.1583 7.8555
1.00 28.5699 0.3121 0.5405 0.1579 7.4111
1.50 28.5772 0.3120 0.5404 0.1578 7.4081
2.00 28.6284 0.3114 0.5394 0.1570 6.9682
5.00 28.6490 0.3112 0.5390 0.1566 6.2226
10.00 28.7098 0.3106 0.5380 0.1557 5.7476
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Figure 2: The shift of 2𝜃 of samples.

the sample with high amount of iron loading (2.00, 5.00,
and 10.00mol%) exhibited the mixed phase of CeO

2
and

Fe
2
O
3
(JCPDS 330664) [40]. The XRD peaks of all samples

were magnified as shown in Figure 2. It was found that CeO
2

peaks shifted towards higher 2𝜃 upon increasing iron content.
The calculated d-spacing, lattice parameter, unit cell volume,
and average crystallite size were also decreased as shown
in Table 1. These observations could be ascribed to partial
substitution of Ce4+ ions (0.101 nm) by Fe3+ ions (0.064 nm)
[41]. A decrease of unit cell parameters due to the substitution
of larger ion by the smaller one was also found in previous
reports [42, 43].

3.2. High-Resolution Transmission Electron Microscopy
(HRTEM). As seen from Figure 3(a), the unloaded CeO

2

clearly showed the cubic morphology of cubic fluorite
CeO
2
structure. In Figure 3(b), the particles became more

spherical upon loading CeO
2
with iron. This change in

CeO
2
morphology might be due to the incorporation of

iron ions in CeO
2
lattice, thus affecting the particle growth

and causing lattice deformation [44]. This assumption was
supported by the shift of XRD peak and the changes of lattice

Table 2: Summary of analytical data.

Iron loading
concentration
(mol%)

SSA (m2/g) 𝐸
𝑔
(eV) BET diameter

(nm)

0 130.00 3.21 6.39
0.50 134.00 2.95 6.20
1.00 137.97 2.70 6.02
1.50 137.99 2.65 6.02
2.00 139.00 2.55 5.98
5.00 140.82 2.45 5.57
10.00 148.76 2.35 5.27

parameters as reported in Table 1. The average particle sizes
as seen from HRTEM image were about 6–8 nm. This was
in good agreement with the calculated sizes obtained by
using the Scherrer equation. Figure 3(c) shows the lattice
fringes of 2.00mol% Fe-loaded CeO

2
. The lattice planes with

d-spacing of 0.16 and 0.20 nmwere attributed to the (311) and
(220) planes of cubic fluorite CeO

2
, respectively, whereas the

plane with d-spacing of 0.24 was assigned to the (110) plane
of Fe
2
O
3
. These results confirmed the presence of mixed

phase between CeO
2
and Fe

2
O
3
in the nominal 2.00mol%

Fe-loaded CeO
2
as found previously in the XRD patterns

(Figure 1).

3.3. Nitrogen Adsorption-Desorption Isotherms. The specific
surface areas (SSA) of different samples were analyzed by
Brunauer-Emmett-Teller (BET) method based on the nitro-
gen adsorption/desorption isotherm. The mean BET diame-
ter (𝐷) was also calculated by using the following equation
[45]:

𝐷 =

6000

(𝑆BET × 𝜌)
, (2)

where 𝑆BET is the BET-specific surface area and 𝜌 is the den-
sity of the CeO

2
(7.32 g/mL). As shown in Table 2, an increase

of surface area accompanied with a decrease of BET diameter
was clearly observed upon increasing iron content. This
increased surface area would be beneficial to the efficient
photocatalytic performance due to high surface adsorption
of organic pollutants. The calculated BET diameter was in
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Figure 3: HRTEM images of (a) unloaded CeO
2
, (b) 2.00mol% Fe-loaded CeO

2
, and (c) lattice fringe of 2.00mol% Fe-loaded CeO

2
.

the range of 5–7 nm which was very well in agreement with
those obtained by using the Scherrer equation (Table 1).

3.4. UV-Visible Spectroscopy. UV-vis reflectance analysis was
performed by converting the obtained reflectance spectra
(Figure 4(a)) to the Kubelka-Munk absorbance spectra using
the Kubelka-Munk equation as follows [46]:

𝐹 (𝑅
∞
) =

(1 − 𝑅
∞
)
2

2𝑅
∞

, (3)

where 𝐹(𝑅
∞
) and 𝑅

∞
are the Schuster-Kubelka-Munk

absorbance and the absolute reflectance of the sample, respec-
tively.Theplot of absorbance against wavelength for theCeO

2

nanoparticle powders is shown in Figure 4(b).
The spectra showed that the absorption edge shifted to

longer wavelength upon increasing the iron loading con-
centration. Band gap energies of the obtained samples can
then be determined by using the intercept of the tangent to
the graph plotting between the Kubelka-Munk absorption
function and photon energy (ℎ]) as shown in Figure 4(c)
[47, 48]. The obtained band gap energies (𝐸

𝑔
) as reported in

Table 2 decreasedwith increasing iron loading concentration.

3.5. Photocatalytic Activity. The photocatalytic activity of
unloaded and Fe-loaded CeO

2
was evaluated by degradation

of formic and oxalic acids.The effects of different iron loading
concentrations on the photocatalytic efficiency of CeO

2

nanoparticles were evaluated under visible-light irradiation
for 120min, and the results are presented in Figure 5. Accord-
ing to the results, the photocatalytic activities of Fe-loaded
CeO
2
nanoparticles were significantly higher than those of

unloaded CeO
2
nanoparticles. This improved photoactivity

could be partially ascribed to the enhanced light absorption
in visible-light region as observed from the UV-vis study in
Figure 4. However, the activity was clearly dependent on the
amount of iron loading. The results demonstrated that the
nominal 2.00mol% was an optimal iron concentration for
photocatalytic activity of CeO

2
nanoparticles in this research.

On the other hand, 5.00% and 10.00mol% iron concentra-
tions showed poor photocatalytic activity, probably because
high iron concentration tended to cover CeO

2
surface, thus

preventing light from contacting the CeO
2
surface [49].

Another possible reason was that too high iron loading
can act as the electron-hole recombination centers instead
of the trapping level, resulting in a decreased photocatalytic
activity [47, 50]. The kinetic data for formic and oxalic acids
degradations under visible-light illumination were found to
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Figure 4: UV-vis (a) reflection spectra, (b) Kubelka-Munk absorbance, and (c) relation between band gap energy and [𝐹(𝑅)ℎ]]1/2 of CeO
2

with different iron content.
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with different iron content as a function of visible-light

irradiation time.
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Figure 6: Kinetics plots for linear fitting of data obtained from pseudo first-order reaction for (a) formic acid and (b) oxalic acid degradation
under visible-light irradiation.
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Figure 7: Kinetics plots of the surface-area-normalized degradation values against visible-light irradiation time for (a) formic acid and (b)
oxalic acid.

follow pseudo first-order reaction [51] as shown in Figure 6.
The pseudo first-order model is explained by

− ln( 𝐶
𝐶
0

) = 𝑘𝑡, (4)

where 𝑘 is the apparent rate constant (min−1), 𝐶
0
means the

initial concentration of acid, and𝐶 refers to the concentration
of acid at various reaction times (𝑡). The determined pseudo
first-order rate constants (𝑘, min−1) are presented in Table 3.
It can be seen that the loading of 2.00mol% iron in CeO

2

nanoparticles could remarkably improve the apparent rate

constant up to 5 times for formic acid and 3 times for oxalic
acid compared with the unloaded one.

In order to investigate the effect of surface area on the
degradation activity, the surface-area-normalized degrada-
tion values against visible-light irradiation time were plotted
as shown in Figure 7, and the calculated surface-area-nor-
malized rate constants are presented in Table 3. The results
clearly suggested that surface-area of the catalyst has a crucial
impact on the activity of acid degradation in this study
because the surface area-normalized rate constants are sig-
nificantly decreased from the original values. However, other
factors such as band gap energy, amount of Fe loading,
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Table 3: Apparent rate constants and surface-area-normalized rate constants.

Samples Rate constant (𝑘, min−1) Surface-area-normalized rate constants (min−1m−2 g)
Formic acid Oxalic acid Formic acid Oxalic acid

5.00mol% Fe-loaded CeO2 0.0014 0.0014 0.0009 0.0010
10.00mol% Fe-loaded CeO2 0.0017 0.0020 0.0013 0.0014
Unloaded CeO2 0.0021 0.0022 0.0019 0.0021
0.50mol% Fe-loaded CeO2 0.0040 0.0034 0.0024 0.0022
1.00mol% Fe-loaded CeO2 0.0054 0.0039 0.0024 0.0023
1.50mol% Fe-loaded CeO2 0.0060 0.0052 0.0033 0.0030
2.00mol% Fe-loaded CeO2 0.0096 0.0072 0.0045 0.0037
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Figure 8: The XPS spectra of Fe-loaded CeO
2
nanoparticles: (a) Fe 2p and (b) Ce 3d.

sample crystallinity, and phase composition [52] could not be
neglected as these could also contribute to the difference in
photocatalytic activity of the catalysts being studied.

3.6. X-Ray Photoelectron Spectroscopy (XPS). In order to
characterize the valence state of ceriumand iron in 2.00mol%
Fe-loaded CeO

2
, X-ray photoelectron spectroscopy (XPS)

was carried out as shown in Figure 8.
According to Figure 8(a), the peaks at 710.6 and 723.4 eV

assignable to the core level of 2p
3/2

and 2p
1/2

, respectively,
corresponded to Fe3+ species in Fe

2
O
3
[53, 54]. No other

peaks due to Fe0 and Fe2+ were found in theXPS results. From
the Ce 3d XPS spectrum, the binding energies of all peaks are
shown in Figure 8(b). These peaks corresponded to the three
pairs of spin-orbit doublets assignable to Ce4+ valence state
which were very well in agreement with the previous reports
[55, 56].

4. Conclusions

Fe-loaded CeO
2
nanoparticles with different iron loading

concentrations have successfully been synthesized by flame
spray pyrolysis (FSP). Loading CeO

2
with Fe3+ resulted in a

decrease of d-spacing, lattice parameter, unit cell volume, and

crystallite size but an increase of BET surface area. The UV-
vis absorption spectra displayed a red shift in the band edge
transition upon increasing of iron loading concentration.
XPS analysis showed the presence of Fe3+ species on the
surface of CeO

2
. This could be attributed to the presence

of Fe
2
O
3
as observed from the XRD and HRTEM analyses.

Increased photocatalytic activity compared with unloaded
CeO
2
was clearly obtained from the Fe-loading sample. It

was found from this study that the nominal 2.00mol% was
an optimum iron loading concentration, giving the highest
photocatalytic activity. Band gap energy and surface of the
catalyst were found to be important factors affecting the
photocatalytic activity observed in this study. However, other
factors such as amount of Fe loading, sample crystallinity, and
phase composition could not be neglected.
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[26] J. Araña, O. González Dı́az, M. Miranda Saracho, J. M. Doa
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