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Fast simultaneous localization and mapping (FastSLAM) is an efficient algorithm for autonomous navigation of mobile vehicle.
However, FastSLAMmust reconfigure the entire vehicle state equationwhen the feature points change, which causes an exponential
growth in quantities of computation and difficulties in isolating potential faults. In order to overcome these limitations, an improved
FastSLAM, based on the distributed structure, is developed in this paper. There are two state estimation parts designed in this
improved FastSLAM. Firstly, a distributed unscented particle filter is used to avoid reconfiguring the entire system equation in
the vehicle state estimation part. Secondly, in the landmarks estimation part, the observation model is designed as a linear one to
update the landmarks states by using the linear observation errors.Then, the convergence of the proposed and improved FastSLAM
algorithm is given in the sense of mean square. Finally, the simulation results show that the proposed distributed algorithm could
reduce the computational complexity with high accuracy and high fault-tolerance performance.

1. Introduction

Simultaneous localization and mapping (SLAM) is the pro-
cess of enabling amobile robot tomove through an unknown
environment, building a map and estimating the position
simultaneously, by estimating the features of the environ-
ment. In the last decade, SLAM has attracted lots of attention
in the mobile robotics literature and is considered to be a key
prerequisite for the truly autonomous robot navigation [1, 2].

In general, there are three main types of SLAM, the
extended Kalman filter based SLAM (EKF-SLAM), the par-
ticle filter based SLAM (PF-SLAM), and FastSLAM, which
have been widely used. In fact, EKF-SLAM is the first SLAM
used in the real system and has been well developed over
the past two decades. As the well-known algorithm to solve
the Gaussian nonlinear problem, it linearizes the nonlinear
model using Taylor series expansions. However, the series
approximations lead to poor representations of the nonlinear
functions due to the fact that EKF cannot solve the Gaussian
problem [3]. Then, to own a feasible solution for non-
Gaussian nonlinear SLAM, PF-SLAM is proposed in [4].The
particle filter relies on the importance of sampling to approx-
imate the posterior distribution. However, since the feature

points will change in the unknown environment, the entire
system equation must be reconfigured. The computational
complexity of PF-SLAM is a major problem for estimating
the robot state and landmarks together. To overcome the
former problems, a FastSLAM framework, using the Rao-
Blackwellised particle filter (RBPF), is proposed in [5].
FastSLAM is an efficient algorithm for SLAM problems. It
decomposes the entire SLAM system into a robot localization
problem using PF and a collection of landmarks estimation
problems using EKF. The FastSLAM approach separates the
robot state from the landmarks state estimate; only the robot
state equation needs to be reconfigured when the feature
points change in the process. However, many limitations
still need to be overcome in FastSLAM. For example, the
feasible solution for non-Gaussian nonlinear SLAM and the
convergence should be discussed.

In this paper, a new improved FastSLAM based on
distributed structure is proposed to overcome the drawbacks
of FastSLAM. In the improved FastSLAM algorithm, the
SLAM problem is divided into robot localization problem
and landmarks estimation problem [6]. In the localization
part, the robot state is divided into several parts according
to the effective landmarks based on the distributed structure,
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which can estimate the distributed states at the same time
without reconfiguring and changing the dimension of the
robot state equation, as well as improving the fault tolerance
[7]. Then, each part of the state is estimated by a local
unscented particle filter (UPF) which can permit a set of
sigma points to be scaled as an arbitrary scaling parameter
[8]. And the computational cost will not be increased in
this algorithm. In the landmarks estimation part, since the
observation error is used in the updating step, the landmarks
estimation can be seen as a linear optimal estimation.The fed-
eratedKalman filter, an associated set of independent Kalman
filters, estimating the position of landmarks effectively, is used
to estimate the landmarks instead of EKF and without the
linearization process [9].

The contents of this paper are as follows. In Section 2,
the basic properties and theorems of SLAM model and
FastSLAM framework are reviewed. Section 3 defines the
improved distributed FastSLAM and shows the process of the
robot state estimation and the landmarks states estimation.
Meanwhile, the weight fusion method for the local filters is
given. Section 4 discusses the mean square convergence of
the proposed algorithm. Section 5 gives the simulation results
and the conclusions are made in Section 6.

2. Background

2.1. SLAM Model. Indeed, the absolute position of the robot
cannot be obtained directly; it needs to use the indirect
observation from the sensor to estimate the position of
the robot while maintaining error stable in a small range
[10]. The SLAM algorithm uses dead reckoning and relative
observation to estimate the position of the robot and build a
navigation map. Generally, the model of SLAM is composed
of the motion model and the observation model.

2.1.1. Motion Model. The robot motion model can be
described as a probabilistic Markov chain

x
𝑟
(𝑘) = [

[

𝑥
𝑟
(𝑘)

𝑦
𝑟
(𝑘)

𝜑
𝑟
(𝑘)

]

]

= 𝑓 (x
𝑟
(𝑘 − 1)) + 𝛾

= [

[

𝑥
𝑟
(𝑘 − 1) + Δ𝑥

𝑦
𝑟
(𝑘 − 1) + Δ𝑦

𝜑
𝑟
(𝑘 − 1) + Δ𝜑

]

]

+ 𝛾,

(1)

where 𝑥
𝑟
(𝑘), 𝑦

𝑟
(𝑘), 𝜑

𝑟
(𝑘) are the robot states defined at the

external laser sensor at time 𝑘, and 𝛾 is state noise.
The landmarks are assumed to be static, and the landmark

motion model is given by

x𝑗
𝐼
(𝑘 + 1) = x𝑗

𝐼
(𝑘) = [𝑥

𝑗

𝐼
𝑦
𝑗

𝐼
] , (2)

where x𝑖
𝐼
is the state of the 𝑗th landmark.

2.1.2. Observation Model. Normally, the observation equa-
tion relating the robot states to the landmarks is
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where 𝑧 is the observation vector. ℎ is themeasurement noise.
𝑟 is the distance from the beacon to the laser sensor and
𝛽 is the laser sensor bearing measured with respect to the
robot coordinate frame. (𝑥𝑗

𝐼
, 𝑦
𝑗

𝐼
)means the coordinate of the

landmarks.

2.2. FastSLAM Framework. The FastSLAM algorithm, intro-
duced by Montemerlo et al., is an efficient algorithm espe-
cially for the SLAMproblems [11]. It utilizes a particle filter to
approximate the ideal recursive Bayesian filter for estimating
the robot pose. At each point of time, the FastSLAM algo-
rithm maintains a set of particles to represent the posterior,
denoted 𝑆

𝑡
. Each particle 𝑠[𝑖]

𝑡
∈ 𝑆
𝑡
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where [𝑖] refers to the 𝑖th particle. And the set of particles
in 𝑆
𝑡
is considered for both the robot control 𝑢

𝑡
and the

measurement 𝑧
𝑡
, which is denoted by the following sampling

distribution:
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After obtaining the new set 𝑆
𝑡
, each particle 𝑠𝑡[𝑖] is drawn

with a probability proportional called the importance weight
𝑤[𝑖]
𝑡
, and then the final robot position and orientation estima-

tion results can be gotten. Finally, the landmarks estimation
is represented by EKF, and this estimation is conditioned on
the robot position and orientation.

In the FastSLAM algorithm, the SLAMposterior was par-
titioned into a localization problem with three positions and
orientation parameters of robot and independent landmarks
position estimation problem with 𝑛 landmarks with two state
parameters conditioned on the robot position and orientation
estimation. So that the update process in FastSLAM only
involves a Gaussian of dimension two, whereas a Gaussian of
size 2𝑛 + 3 has to be updated in EKF-SLAM [3].

However, the FastSLAMalgorithm also suffers from three
limitations. Firstly, the FastSLAM algorithm belongs to the
centralized approach. The robot position and orientation 𝑛

estimation are considered under measurement information.
Since the number of effective landmarks is changing over
time, the dimension of robot state equation must be recon-
figured. It is difficult for the centralized approach to deal with
the reconfiguration in runtime. Secondly, the fault tolerance
of centralized approach is low. Thirdly, since EKF is used for



Journal of Sensors 3

Feature point 
matching

UPF1

UPF2

KF1

KF2
Mapping

Sensor

Measurement 1

Measurement 2

Master filter

Estimate 
resultVehicle state estimation

Feature state estimation

...

...

...

Figure 1: Framework of the distributed FastSLAM.

landmarks estimation, it needs to approximates the nonlinear
model using a linear function and take the derivative of the
Jacobian matrices with complicated calculations.

3. Improved FastSLAM Based on
Distributed Structure

In this section, the improved FastSLAM algorithm is intro-
duced. The improved distributed FastSLAM is based on
the distribution structure. And the federated Kalman fil-
ter algorithm is used to replace the EKF in FastSLAM.
This improved FastSLAM algorithm consists of three parts:
the robot state estimation, the landmarks state estimation,
and the importance weights calculation. Figure 1 shows the
framework of the proposed improved FastSLAM.

3.1. Robot State Estimation. Since it is complex for a cen-
tralized approach to handle the changing dimension of the
state vectors, UPF approach is used to do the robot state
estimation, which is based on the distributed structure. The
state is divided into several parts based on the effective
landmarks. Each part of the state is estimated by a local
UPF filter which is separated from the others. Each estimated
result of the states is transmitted to the master filter to make
the final results. Even if there is an error in one part, it
would not affect the estimated results of the other parts. The
distributed algorithm can reduce the effect of error messages
on the final estimated result, improve the fault tolerance,
respond effectively to the changes in the number of effective
landmarks, and have a better accuracy:
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ẋ
𝑟
= 𝑓 (x

𝑟
) + 𝛾,

z
𝑗
= ℎ (x

𝑟
(𝑘) ,m

𝑗
) + 𝜂.

(6)

Based on the distributed structure, the detail motion
model for robot states estimation is derived as (6). The local
UPF filters are built based on the effective landmarks 𝑚 sep-
arately, and the process and measurement noises are added
to each state vector. Then, each local filter deterministically
extracts the sigma points from the Gaussian distribution.
After that, the estimated mean x𝑖

𝑘
and the covariance P𝑖

𝑘
of

each state vector are updated according to the UKF algorithm
[12]. The updated mean and covariance are remarked as x𝑖

𝑘

and P𝑖
𝑘
, and then they are used to optimize the distribution

of the particles in every local filter. From the Gaussian
distribution generated by the estimated mean and covariance
of the robot, the particles of each local filter are resampled by

x𝑖
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∼ 𝑁(x𝑖
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) . (7)

Then, the next steps are calculating the weight of each
local filter, resampling as normal particle filter algorithm and
doing results fusion [13]. Finally, the estimation results of the
robot state can be obtained accurately.

3.2. Landmarks State Estimation. In the normal FastSLAM,
since the measurement is nonlinear as (3), EKF is used
to do the landmarks state estimation and approximate the
nonlinear process as the linear process. However, the lin-
earization process needs to calculate the Jacobian matrices
and has a high linear approximation error, whichwill increase
the computational complexity while reducing the estimation
accuracy [14]. In the proposed algorithm, a new observation
model is proposed on the basis of FastSLAM algorithm.
Because the estimation process of landmarks is separated
from the robot state estimation process in FastSLAM, the
estimated results of the robot state with high accuracy can
be taken as given in the landmarks estimation process. Since
the position of landmarks can be calculated by robot pose and
the distance between the robot and landmark obtained by the
laser sensor and there is an observation error inmeasurement
results, the new observation model can be given by
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where Δ𝑥 and Δ𝑦 are the distance between the robot and
landmarks obtained by the laser sensor. ] is the measurement
noise.

Since the landmarks are assumed to be static and the
motion model is given by (2), the state estimation model of
each landmark is shown as

𝑥
𝐼
(𝑘) = 𝑥

𝐼
(𝑘 − 1) ,

z (𝑘) = x
𝐼
(𝑘) + ^.

(9)

From (9), since themotionmodel and observationmodel
of landmarks are linear in the part of landmarks estimation,
then the landmarks estimation process can be seen as a
linear optimal estimation problem, and Kalman filter is the
best method for this problem. So the Kalman filter is used
to estimate the landmarks position to avoid the complex
calculation of Jacobian matrices in EKF. However, since the
feature points change, it is difficult for the centralized Kalman
filter algorithm to deal with it and the centralized approach
does not get a good fault tolerance.

In this paper, the measurement information provided
by the laser sensor may include outliers and the landmarks
need to be estimated at the same time; the federated filter
[15] is used here to estimate the states of landmarks for its
stronger fault tolerance and its capability of dealing with
several different estimations simultaneously. And Kalman
filter is used as the local filter of the federated filter which
can reduce the computation complexity while maintaining
the estimation accuracy. According to every estimated result
of local UPF filters and observation information, the cor-
responding landmarks are updated by local Kalman filters
separately. The motion model for landmarks state estimation
is as follows:
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where 𝑗 refers to the 𝑗th landmark.
The update process of the landmark in each local filter is

the same as the normal Kalman filter algorithm [16]. After the
update process, all of the local Kalmanfilter estimation results
will be combined to calculate the optimal estimated results of
each landmark.

3.3. Importance of Weights Calculation. Generally, in dis-
tributed particle filters, the Neff method is used to calculate

the importance of weights of every local filter [8]. The Neff
method can be defined as follows:
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where Neff
𝑗
is the number of effective particles in the 𝑗th

filter. 𝑤𝑖𝑗
𝑘
is the weight of each particle in the 𝑗th filter.

However, the Neff method distributes the weights
through calculating the degree of the particles degeneracy of
each filter; it is closely related to the number of particles. If in
the case of a small number of particles, it cannot effectively
response to the real weights distribution. Therefore, a new
method is advanced which combines the Neff method with
the innovation method in order to obtain a high precision of
real weights distribution. The new method can be calculated
by

𝛼Ne ⋅ 𝜆 + 𝛼In ⋅ 𝜒 = 𝛼
𝑀
, 𝜆 + 𝜒 = 1, (12)

where𝛼Ne is the weight generated byNeff algorithm,𝛼In is the
weight generated by innovation algorithm, 𝛼

𝑀
is the mixed

weight, and 𝜆 and 𝜒 are the proportion parameters, which
stand for the proportion of these two methods in the mixed
method, and the relationship between these two parameters
can be defined as (12).

The weight of each local filter based on the innovation
method is calculated by (13), and the innovation is the
difference between the observation and the estimation:
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4. Mean Square Convergence

For the proposed distributed FastSLAM, the convergence
of the unscented particle filter with the distributed imple-
mentation is an important issue and requires careful inves-
tigation, as it is crucial for the successful applications. In
this section, the proof of the mean square convergence of
the distributed unscented particle filter to the optimal filter
was described. First, the convergence results from particle
filters were extended to prove the convergence of distributed
particle filter in mean squares as the number particles go
to infinity. Second, the mean square convergence of the
distributed FastSLAMwas proved by considering in turn each
of the steps of prediction, measurement, and resampling.

The generic proof of distributed unscented particle filter
convergence is as follows.
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where 𝐵(R𝑛) is the space of bounded, Borel measurable
functions on R𝑛. We denote ‖𝑓‖ ≜ sup |𝑓(𝑥)|, 𝑥 ∈ R𝑛.
Equation (14) is the mean square convergence of the filters.This
convergence result shows that, under very loose assumptions,
convergence of the unscented particle filter is ensured and the
only crucial assumption is to ensure that 𝑤

𝑡
is upper bounded.

Hence, the weight of the distributed FastSLAM proposed must
prove that it is upper bounded firstly.
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𝐶. Thus, the weight of the distributed FastSLAM is an upper
bounded, so that the mean square error is convergent.

Then, the mean square convergence of the distributed
FastSLAM will be proved by considering in turn each of the
steps of prediction,measurement, and resampling.This proof
is a modification of [17, 18]. The main difference from that
proof is that the effect of UKF must be considered and an
upper bound can be obtained.
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󵄨󵄨󵄨󵄨󵄨
𝜑(𝑥
𝑖

𝑡−1
) − Ε [𝜑 (𝑥

𝑖

𝑡−1
) | G
𝑡−1

]
󵄨󵄨󵄨󵄨󵄨

2

]

≤
4

𝑁2

𝑁

∑
𝑖=1

Ε [𝜑
2

(𝑥
𝑖

𝑡−1
) | G
𝑡−1

]

=
4

𝑁
(𝜋
𝑁

𝑡−1|𝑡−1
, 𝜅𝜑
2

) .

(17)

Since Markov operators are contractions ‖𝜅𝜑‖ ≤ ‖𝜑‖ [19], so

Ε [
󵄨󵄨󵄨󵄨󵄨
(𝜋
𝑁

𝑡|𝑡−1
, 𝜑) − (𝜋

𝑁

𝑡−1|𝑡−1
, 𝜅𝜑)

󵄨󵄨󵄨󵄨󵄨

2

] ≤
4

𝑁

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

. (18)

The upper bound of the second term (16) is

Ε [
󵄨󵄨󵄨󵄨󵄨
(𝜋
𝑁

𝑡−1|𝑡−1
, 𝜑) − (𝜋

𝑡−1|𝑡−1
, 𝜑)

󵄨󵄨󵄨󵄨󵄨

2

] ≤
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

(𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

+
𝑐
𝑡−1|𝑡−1

𝑁
) ,

(19)

so that E[|(𝜋𝑁
𝑡|𝑡−1

, 𝜑) − (𝜋
𝑡|𝑡−1

, 𝜑)|
2

] ≤ ‖𝜑‖
2

(𝐶‖𝑓‖
2

+ 𝑐
𝑡|𝑡−1

/𝑁),
where 𝑐

𝑡|𝑡−1
= 𝑐
𝑡−1|𝑡−1

+ 4.
Assume that, for any 𝜑 ∈ Β(R𝑛), the mean

square error for the UKF step can be defined as
E[|(𝜋𝑁
𝑡|𝑡−1

, 𝑓
𝑡,𝑠
𝜑) − (𝜋

𝑡|𝑡−1
, 𝑓𝜑)|
2

].

Proof. FromMinkowski’s inequality,

E [󵄨󵄨󵄨󵄨󵄨(𝜋
𝑁

𝑡|𝑡−1
, 𝑓
𝑡,𝑠
𝜑) − (𝜋

𝑡|𝑡−1
, 𝑓𝜑)

󵄨󵄨󵄨󵄨󵄨

2

]

≤ Ε [
󵄨󵄨󵄨󵄨󵄨
(𝜋
𝑁

𝑡|𝑡−1
, 𝑓
𝑡,𝑠
𝜑) − (𝜋

𝑁

𝑡−1|𝑡−1
, 𝑓𝜑)

󵄨󵄨󵄨󵄨󵄨

2

]

+ Ε [
󵄨󵄨󵄨󵄨󵄨
(𝜋
𝑁

𝑡−1|𝑡−1
, 𝑓𝜑) − (𝜋

𝑡−1|𝑡−1
, 𝑓𝜑)

󵄨󵄨󵄨󵄨󵄨

2

] .

(20)

The first term (20) on the right hand side is bounded as
follows:

E [󵄨󵄨󵄨󵄨󵄨(𝜋
𝑁

𝑡|𝑡−1
, 𝑓
𝑡,𝑠
𝜑) − (𝜋

𝑁

𝑡|𝑡−1
, 𝑓𝜑)

󵄨󵄨󵄨󵄨󵄨

2

]

= Ε[

[

1

𝑁2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑
𝑖=1

𝑓
𝑡,𝑠
(𝑥
𝑖

𝑡
) 𝜑 (𝑥

𝑖

𝑡
) − 𝑓 (𝑥

𝑖

𝑡
) 𝜑 (𝑥

𝑖

𝑡
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

]

]

≤ Ε[

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

𝑁

𝑁

∑
𝑖=1

(𝑓
𝑡,𝑠
(𝑥
𝑖

𝑡
) − 𝑓 (𝑥

𝑖

𝑡
))
2

]

≤ 𝐶
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

.

(21)

Using the result of the prediction step, we can get

E [󵄨󵄨󵄨󵄨󵄨(𝜋
𝑁

𝑡|𝑡−1
, 𝑓
𝑡,𝑠
𝜑) − (𝜋

𝑡|𝑡−1
, 𝑓𝜑)

󵄨󵄨󵄨󵄨󵄨

2

]

≤ 𝐶
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

(𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

+
𝑐
𝑡|𝑡−1

𝑁
)

=
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

(𝐶
1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

+
𝑐
𝑡|𝑡−1

𝑁
) ,

(22)

where 𝐶
1
= 𝐶 + 𝐶.



6 Journal of Sensors

Figure 2: Trees with different shape, size, and inclination.

The next distributed FastSLAM step is a measurement
update, and the mean square error can be provided as
E[|(𝜋𝑁
𝑡|𝑡
, 𝜑) − (𝜋

𝑡|𝑡
, 𝜑)|
2

].

Proof. We have

(𝜋̃
𝑁

𝑡|𝑡
, 𝜑) − (𝜋

𝑡|𝑡
, 𝜑)

=
(𝜋𝑁
𝑡|𝑡−1

, 𝑓
𝑡,𝑠
𝜑)

(𝜋𝑁
𝑡|𝑡−1

, 𝑓
𝑡,𝑠
)

−
(𝜋
𝑡|𝑡−1

, 𝑓𝜑)

(𝜋
𝑡|𝑡−1

, 𝑓)

=
(𝜋
𝑁

𝑡|𝑡−1
, 𝑓
𝑡,𝑠
𝜑) ((𝜋

𝑡|𝑡−1
, 𝑓) − (𝜋

𝑁

𝑡|𝑡−1
, 𝑓
𝑡,𝑠
))

(𝜋𝑁
𝑡|𝑡−1

, 𝑓
𝑡,𝑠
) (𝜋
𝑡|𝑡−1

, 𝑓)

+
(𝜋𝑁
𝑡|𝑡−1

, 𝑓
𝑡,𝑠
𝜑) − (𝜋

𝑡|𝑡−1
, 𝑓𝜑)

(𝜋
𝑡|𝑡−1

, 𝑓)
.

(23)

From the result of the UKF step, we can get

Ε [
󵄨󵄨󵄨󵄨󵄨
(𝜋̃
𝑁

𝑡|𝑡
, 𝜑) − (𝜋

𝑡|𝑡
, 𝜑)

󵄨󵄨󵄨󵄨󵄨

2

]

≤ Ε[

[

(

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨󵄨
(𝜋
𝑡|𝑡−1

, 𝑓) − (𝜋𝑁
𝑡|𝑡−1

, 𝑓
𝑡,𝑠
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󵄨󵄨󵄨󵄨󵄨

(𝜋
𝑡|𝑡−1

, 𝑓)

+

󵄨󵄨󵄨󵄨󵄨
(𝜋𝑁
𝑡|𝑡−1

, 𝑓
𝑡,𝑠
𝜑) − (𝜋

𝑡|𝑡−1
, 𝑓𝜑)

󵄨󵄨󵄨󵄨󵄨

(𝜋
𝑡|𝑡−1

, 𝑓)
)

2

]

]

≤ 2Ε[

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

(𝜋
𝑡|𝑡−1

, 𝑓)
2

󵄨󵄨󵄨󵄨󵄨
(𝜋
𝑁

𝑡|𝑡−1
, 𝑓
𝑡,𝑠
𝜑) − (𝜋

𝑡|𝑡−1
, 𝑓𝜑)

󵄨󵄨󵄨󵄨󵄨

2

]

≤ 2

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

(𝜋
𝑡|𝑡−1

, 𝑓)
2
(𝐶
1

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

+
𝑐
𝑡|𝑡−1

𝑁
)

=
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

(𝐶
2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

+
𝑐
𝑡|𝑡−1

𝑁
) ,

(24)

where 𝐶
2
= 4𝐶
1
/(𝜋
𝑡|𝑡−1

, 𝑓)
2, 𝑐
𝑡|𝑡−1

= 4𝑐
𝑡|𝑡−1

/(𝜋
𝑡|𝑡−1

, 𝑓)
2.

The last step is the resampling step, and the mean square
error can be provided as E[|(𝜋𝑁

𝑡|𝑡
, 𝜑) − (𝜋

𝑡|𝑡
, 𝜑)|
2

].

Proof. We have

(𝜋
𝑁

𝑡|𝑡
, 𝜑) − (𝜋

𝑡|𝑡
, 𝜑)

= (𝜋
𝑁

𝑡|𝑡
, 𝜑) − (𝜋̃

𝑁

𝑡|𝑡
, 𝜑) + (𝜋̃

𝑁

𝑡|𝑡
, 𝜑) − (𝜋

𝑡|𝑡
, 𝜑) .

(25)

If 𝐹
𝑡
is a 𝜎-algebra generated by {𝑥

𝑖

𝑡
}
𝑁

𝑖=1
, then (𝜋̃

𝑁

𝑡|𝑡
, 𝜑) =

Ε[(𝜋̃𝑁
𝑡|𝑡
, 𝜑) | 𝐹

𝑡
].

Thus, by the same procedure from (17), for some constant
𝐶, finally we have

E [󵄨󵄨󵄨󵄨󵄨(𝜋
𝑁

𝑡|𝑡
, 𝜑) − (𝜋

𝑡|𝑡
, 𝜑)

󵄨󵄨󵄨󵄨󵄨

2

] ≤
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

(𝐶
2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

+
𝑐
𝑡|𝑡

𝑁
) , (26)

where 𝑐
𝑡|𝑡
= 𝑐
𝑡|𝑡−1

+ 𝐶.
Combing the above results, the following main con-

clusion can be gotten where the mean square error of
the distributed FastSLAM is the upper bounded, and the
conclusion is as follows:

E [󵄨󵄨󵄨󵄨󵄨(𝜋
𝑁

𝑡|𝑡
, 𝜑) − (𝜋

𝑡|𝑡
, 𝜑)

󵄨󵄨󵄨󵄨󵄨

2

] ≤
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

(𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

+
𝑐
𝑡|𝑡−1

𝑁
) . (27)

5. Experiment Results

To verify the accuracy of the improved algorithm, a simula-
tion experiment was finished in this section. We compared
the estimated results of the normal FastSLAM algorithm,
the distribute SLAM (DPF-SLAM) algorithm, and the dis-
tributed FastSLAM algorithm proposed in this paper.

These experiments were tested using the experiment data
come from an experiment which was taken at Victoria Park
in Sydney, Australia [20, 21]. The trees can be considered one
of the most relevant features that a laser sensor can identify
with this outdoor environment. The algorithm implemented
in [20] was used in this paper, which tracks the center of
the trunk by clustering a number of laser observations. The
extraction algorithmof the center was shown in Figures 2 and
3.

The vehicle was started at a location with known uncer-
tainty and driven in this area for more than 300 sec. The
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Figure 4: Vehicle trajectory and landmarks estimated position
under three different algorithms.

estimated results of the vehicle trajectory and navigation
landmarks were given by three algorithms as shown in Fig-
ures 4 and 5. We used the GPS information on good quality
of the standard data compared with the results estimated by
the three different algorithms separately, so as to compare
the accuracy of these algorithms directly. From Figures 4 and
5 we can see that all of the three algorithms can match the
GPS standard data very well at the beginning of the estimated
trajectory. However, as time went on the normal FastSLAM
algorithm and the normal DPF-SLAM algorithm could not
match the GPS standard data, especially after 148 sec, while
the improved distributed FastSLAM algorithm can make
better estimation results, although the accuracy of the normal
DPF-SLAM algorithm is better than that of the FastSLAM
algorithm. Since GPS was in the shade, it could be seen
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Figure 5: Vehicle trajectory and landmarks estimated position
under three different algorithms.

Table 1: Statistical data for experiment results.

SLAM algorithm RMSE/m
𝑋 𝑌

FastSLAM 7.1278 3.5215
DPF-SLAM 5.4257 2.4136
Distributed FastSLAM 2.2704 0.8313

that GPS information was not available in some areas. The
landmarks were used here to reduce the navigation errors.

The root mean square error (RMSE) of the vehicle
position of three algorithms between 148 sec and 160 sec in
the directions 𝑥 and 𝑦, compared with GPS standard data,
is shown in Figure 6, and Table 1 shows the statistical data
of RMSE in Figure 6. The RMSE of the normal FastSLAM
algorithm is higher than the normal DPF-SLAM algorithm,
and the improved distributed FastSLAM algorithm has a
little estimated error compared to the DPF-SLAM algorithm.
Thus, we know that the performance of the improved dis-
tributed FastSLAM system is better than the others.

These results demonstrate that the improved distributed
FastSLAM algorithm is workable and stable and has a higher
accuracy at the same time.

6. Conclusion

This paper proposed a distributed FastSLAM algorithm as an
effective solution to simultaneous localization and mapping.
In the localization process, the distributed structure was
used to reduce the effect of error messages on the final
estimated results and improved the fault tolerance of the
SLAM. The unscented Kalman filter was implemented in
the prediction step of the robot state and provided a better
proposal distribution. In the landmarks estimation process,
the nonlinear landmark observation model was changed into
linear models, and federated Kalman filter was implemented
in this process to estimate the state of landmarks for its
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Figure 6: RMSE of the vehicle state estimation under the three algorithms.

stronger fault tolerance and its capability of dealing with
several different estimations at the same time. The conver-
gence of the proposed distributed FastSLAM was proved in
the sense of mean squares. The simulation results showed
that the proposed distributed FastSLAM algorithm has better
estimation accuracy than the previous algorithms, and more
accurate estimation could be achieved consistently for longer
time periods. The simulation results also proved that the
proposed algorithm can reduce the computation complexity
and maintain the estimation accuracy.
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