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In order to rank all decision making units (DMUs) on the same basis, this paper proposes a multiobjective programming (MOP)
model based on a compensatory data envelopment analysis (DEA) model to derive a common set of weights that can be used for
the full ranking of all DMUs. We first revisit a compensatory DEA model for ranking all units, point out the existing problem
for solving the model, and present an improved algorithm for which an approximate global optimal solution of the model can be
obtained by solving a sequence of linear programming. Then, we applied the key idea of the compensatory DEA model to develop
the MOP model in which the objectives are to simultaneously maximize all common weights under constraints that the sum of
efficiency values of all DMUs is equal to unity and the sum of all common weights is also equal to unity. In order to solve the MOP
model, we transform it into a single objective programming (SOP) model using a fuzzy programming method and solve the SOP
model using the proposed approximation algorithm. To illustrate the ranking method using the proposed method, two numerical
examples are solved.

1. Introduction

As a nonparametric method, data envelopment analysis
(DEA) is proposed by [1] to evaluate the relative efficiency
of a set of decision making units (DMUs) with the multiple
inputs and outputs. For each DMU, the optimal weights for
calculating efficiency value are obtained by solving a linear
programming (LP) problem. By using DEA, DMUs can be
divided into two categories: efficient DMUs and inefficient
DMUs [2]. However, there are always more than one DMU
to be evaluated as efficient, which would cause the problem
that all DMUs cannot be fully discriminated [3]. Moreover,
the efficiencies of different DMUs obtained by different sets
of weights may be unable to be compared and ranked on the
same basis [2–5].

To deal with the above-mentioned problems,manymeth-
ods have been developed to rank all DMUs under the
framework of DEA. The common weights DEA introduced
by [6–8] is known as one of the popular methods in which
all DMUs can be evaluated by a common set of weights

(CSW). Since then, DEAmodels with CSWhave been rapidly
applied in many researches. For example, Sinuany-Stern and
Friedman [9] developed a DR/DEA to provide the best CSW
for given inputs and outputs in order to rank all DMUs on
the same scale. Jahanshahloo et al. [10] presented a method
to obtain the CSW of DMUs by solving only one problem,
in order to measure the efficiency and to rank the efficient
DMUs. Kao and Hung [11] proposed a compromise solution
approach for generating a CSWwhich produces the vector of
efficiency scores for the DMUs. Their approach is able to not
only differentiate efficient DMUs but also detect abnormal
efficiency scores on a common base. Amin and Toloo [12]
presented an improved integrated DEA model in order to
detect the most efficient DMUs. The method in their model
is able to determine a CSW for all DMUs by solving a LP
problem. Liu and Peng [13] introduced a DEA method to
determine a CSW for the ranking of only DEA efficient
DMUs. For the decision maker (DM), this ranking is based
on the optimization of the group’s efficiency. Jahanshahloo et
al. [2] proposed two methods to rank DMUs concerning an
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ideal line or a special DMU.Theirmethod needs to determine
a CSW for efficient DMUs. Davoodi and Rezai [14] suggested
a method to compute the efficiency scores of all DMUs and
then rank them using a CSW determined by solving a LP
problem. Ramón et al. [15] proposed a DEA approach for
deriving a CSW to be used for the ranking of all DMUs.
The idea of this approach is to minimize the deviations of
the CSW from the DEA profiles of weights without zeros of
the efficient DMUs. Lotfi et al. [16] developed the common
weights DEA method to deal with total weights flexibility in
order to allocate fixed resources using DEA. To see the other
ranking approaches under the framework of DEA, we refer
the readers to the review papers of [17, 18].

Recently, Khodabakhshi and Aryavash [19] proposed a
very interesting variant of the basic DEA model for ranking
all DMUs. In their DEA model, the sum of efficiency values
of all DMUs is supposed to be equal to unity.This assumption
implies that the efficiencies of all DMUs have compensatory
features, so we also call it a compensatory DEA model in
this paper. In order to rank all DMUs, the minimum and
maximumefficiency values of eachDMUare computed.Then
the rank of each DMU is determined in proportion to a
combination of itsminimumandmaximumefficiency values.
To solve the compensatory DEAmodel easily, they transform
it into a newLPmodel.However, the twomodels are not com-
pletely equivalent; thus the optimal solution of compensatory
DEA model may not be obtained by solving the transformed
LP model. Moreover, their ranking method does not provide
more information about the weights used for calculating the
efficiency scores of each DMU. To deal with these two prob-
lems, in this paper, we first improve their solution method
and propose an approximation algorithm to solve the com-
pensatory DEA model. Then, we apply the key idea of com-
pensatory DEA model to develop a multiobjective program-
ming (MOP) model for determining a CSW used for calcu-
lating the efficiency scores of each DMU. In the proposed
MOP model, the objectives are to simultaneously maximize
all common weights assigned to each input and output under
constraints that the sum of efficiency values of all DMUs is
equal to unity and the sum of all weights assigned to each
input and output is also equal to unity. After the CSW has
been determined by solving the MOP model, all DMUs can
be ranked according to the efficiency scores weighted by it.

The rest of the paper is organized as follows. In Section 2,
we first revisit compensatoryDEAmodel for ranking all units
and present an improved algorithm to solve the model. The
proposed MOP model and solution approach are presented
in Section 3. A numerical example is examined in Section 4
to illustrate the ranking method using the proposed model.
Conclusions are offered in Section 5.

2. The Improved Method for Solving
Compensatory DEA Model

In this section, we first revisit the compensatory DEA model
proposed by [19] for ranking all DMUs. After pointing out the
existing problem of their solution method, we will propose
an approximation algorithm by improving it so that the
model can be solved correctly. To demonstrate the improved

algorithm, a numerical example is also presented in this
section.

2.1. A Revisit to Compensatory DEA Model. Consider 𝑛

DMUs that use 𝑚 inputs to produce 𝑠 outputs. Let 𝑥
𝑖𝑗
(𝑖 =

1, 2, . . . , 𝑚) and 𝑦
𝑟𝑗

(𝑟 = 1, 2, . . . , 𝑠) represent the input
and output values of DMU

𝑗
(𝑗 = 1, 2, . . . , 𝑛), respectively.

Suppose that all input and output elements are nonnegative
deterministic numbers. For a givenDMU

𝑗
, then the efficiency

scores are given as follows:

𝜃
𝑗
=

∑
𝑠

𝑟=1
𝑦
𝑟𝑗
𝑢
𝑟

∑
𝑚

𝑖=1
𝑥
𝑖𝑗
V
𝑖

, 𝑗 = 1, 2, . . . , 𝑛, (1)

where V
𝑖
(𝑖 = 1, 2, . . . , 𝑚) and 𝑢

𝑟
(𝑟 = 1, 2, . . . , 𝑠) are the

input and output weights assigned to 𝑖th input and 𝑟th output,
respectively.

Let DMU
𝑜
be a DMU under evaluation; then the follow-

ing model is used to determine the minimum and maximum
efficiency values of DMU

𝑜
:

(M1) min and max 𝜃
𝑜

s.t. 𝜃
𝑗
=

∑
𝑠

𝑟=1
𝑦
𝑟𝑗
𝑢
𝑟

∑
𝑚

𝑖=1
𝑥
𝑖𝑗
V
𝑖

, 𝑗 = 1, 2, . . . , 𝑛

𝑛

∑

𝑗=1

𝜃
𝑗
= 1

𝑢
𝑟
, V
𝑖
, 𝜃
𝑗
≥ 0, ∀𝑖, 𝑗, 𝑟.

(2)

Model (M1) must be run twice.Theminimum/maximum
value of 𝜃

𝑜
is determined by minimizing/maximizing the

objective function of model (M1). Model (M1) is a nonlinear
programming. Using the transformation 𝑤

𝑖𝑗
:= V
𝑖
𝜃
𝑗
, we can

replace model (M1) by the following LP problem:

(M2) min and max 𝜃
𝑜
=

𝑠

∑

𝑟=1

𝑦
𝑟𝑜
𝑢
𝑟

s.t.
𝑚

∑

𝑖=1

𝑥
𝑖𝑜
V
𝑖
= 1

𝑚

∑

𝑖=1

𝑥
𝑖𝑗
𝑤
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑦
𝑟𝑗
𝑢
𝑟
= 0,

𝑗 = 1, 2, . . . , 𝑛

𝑛

∑

𝑗=1

𝑤
𝑖𝑗

= V
𝑖
, 𝑖 = 1, 2, . . . , 𝑚

𝑢
𝑟
, V
𝑖
, 𝑤
𝑖𝑗

≥ 0, ∀𝑖, 𝑗, 𝑟.

(3)

Let 𝜃min
𝑗

and 𝜃
max
𝑗

be the minimum and maximum values
of 𝜃
𝑗
, respectively, which can be obtained by solving model

(M2). Then the following convex combinations are used to
determine the efficiency values for each DMU:

𝜃
𝑗
= 𝜆𝜃

min
𝑗

+ (1 − 𝜆) 𝜃
max
𝑗

,

0 ≤ 𝜆 ≤ 1, 𝑗 = 1, 2, . . . , 𝑛,

(4)
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where

𝜆 =

1 − ∑
𝑛

𝑗=1
𝜃
max
𝑗

∑
𝑛

𝑗=1
(𝜃

min
𝑗

− 𝜃
max
𝑗

)

. (5)

Considering (4) and the value of 𝜆 obtained in (5)
together, the values of 𝜃

𝑗
(𝑗 = 1, 2, . . . , 𝑛) are determined.

Now, the DMUs are fully ranked with respect to their
efficiency scores. In other words, a DMU has a better rank
if it has a greater efficiency score.

2.2. The Existing Problem for Solving Compensatory DEA
Model. In compensatory DEA model, the optimal solutions
of model (M1) can be found by solving model (M2). Since
constraint𝑤

𝑖𝑗
= V
𝑖
𝜃
𝑗
is not considered in model (M2), model

(M2) is a relaxation problem of model (M1), and two models
are not completely equivalent. Hence, we may not obtain the
optimal solutions of model (M1) by solving model (M2).

Let 𝑢
𝑟
and V
𝑖
be the optimal solutions of model (M2) with

a minimum form. If they are also the optimal solutions of
model (M1), then they must satisfy the constraints of model
(M1); that is ∑

𝑛

𝑗=1
𝜃


𝑗
= 1, where the efficiency score 𝜃



𝑗
is

determined by (1). However the following example shows that
the equation ∑

𝑛

𝑗=1
𝜃


𝑗
= 1 does not hold.

For example, suppose we want to evaluate DMU
1
in the

numerical example presented in Section 2.4. For a minimum
problem, we solve model (M2) to find the optimal solutions:
𝑢


1
= 0.000678, 𝑢

2
= 0, V

1
= 0.000130, V

2
= 0.012707, and

V
3

= 0.050998. Using (1) we can obtain that the efficiency
scores 𝜃



𝑗
of twelve DMUs are 0.0454, 0.0637, 0.0631, 0.0680,

0.0928, 0.0439, 0.0604, 0.0707, 0.0828, 0.0427, 0.0276, and
0.0599, respectively. Computing the sum of those efficiency
scoreswe have∑12

𝑗=1
𝜃


𝑗
= 0.7210 < 1, whichmeans that𝑢

𝑟
and

V
𝑖
are not the optimal solutions of model (M1). Therefore, we

cannot obtain the optimal solutions of model (M1) by solving
model (M2).

2.3. The Proposed Approximation Algorithm for Solving Model
(M1). In this section, the minimum problems as an example
are used to illustrate the approximation algorithm. However,
the procedure can be easily extended to solve the maximum
problems.

Unlike the standard DEA, model (M1) involves the sum
of linear-fractional functions in constraints. So model (M1)
may not be considered a convex optimization problem. To
prove it we first rewrite these constraints of linear-fractional
functions as follows:

𝐹
𝑗
= 𝜃
𝑗

𝑚

∑

𝑖=1

𝑥
𝑖𝑗
V
𝑖
−

𝑠

∑

𝑟=1

𝑦
𝑟𝑗
𝑢
𝑟
= 0, 𝑗 = 1, 2, . . . , 𝑛. (6)

The Hessian matrix of function 𝐹
𝑗
, with the order of

variables being (𝜃, V, 𝑢), can be derived as

𝐻(𝐹
𝑗
) = (

0 𝑥
𝑗

0

𝑥
𝑇

𝑗
0 0

0 0 0

) ∈ R
(1+𝑚+𝑠)×(1+𝑚+𝑠)

, (7)

where 𝑥
𝑗

= (𝑥
1𝑗
, 𝑥
2𝑗
, . . . , 𝑥

𝑚𝑗
). Zeros in the matrix are of

appropriate dimension. Since principal minors of order 2 are





𝐻(𝐹
𝑗
)
2






= −𝑥
2

1
< 0, that is, there exists one 2 × 2 principal

minor in 𝐻(𝐹
𝑗
) which is negative, it can be concluded that

these constraints function is nondefinite. Therefore, model
(M1) is not a convex optimization, which implies that an
efficient algorithm may be required to determine a globally
optimal solution.

Although the optimal solutions of model (M1) cannot
be found by solving model (M2), the following shows that
the optimal solutions of model (M1) can be approximated by
solving a sequence of LP models on the base of the optimal
solution of model (M2).

Since the optimal solutions of model (M2) may not be
unique, a secondary goal must be introduced in it. For the
minimum problem, the secondary goal is to maximize the
sum of efficiency scores of the rest DMUs; that is,

max
𝑛

∑

𝑗=1

𝑗 ̸=𝑜

(

∑
𝑠

𝑟=1
𝑦
𝑟𝑗
𝑢
𝑟

∑
𝑚

𝑖=1
𝑥
𝑖𝑗
V
𝑖

) . (8)

The fractional form of the secondary objective function
can be transformed to the following linear form:

max
𝑛

∑

𝑗=1

𝑗 ̸=𝑜

((𝑛 − 1)

𝑠

∑

𝑟=1

𝑦
𝑟𝑗
𝑢
𝑟
−

𝑚

∑

𝑖=1

𝑥
𝑖𝑗
V
𝑖
) . (9)

Therefore, introducing a sufficiently small positive num-
ber 𝛿, model (M2) can also be rewritten as follows:

(M3) min 𝜃
𝑜
=

𝑠

∑

𝑟=1

𝑦
𝑟𝑜
𝑢
𝑟

− 𝛿

𝑛

∑

𝑗=1

𝑗 ̸=𝑜

((𝑛 − 1)

𝑠

∑

𝑟=1

𝑦
𝑟𝑗
𝑢
𝑟
−

𝑚

∑

𝑖=1

𝑥
𝑖𝑗
V
𝑖
)

s.t. (𝑢
𝑟
, V
𝑖
) ∈ ℵ
2 (

𝑢, V) ,

(10)

where ℵ
2
(𝑢, V) denotes the set of the feasible solution to

model (M2). Since model (M2) or (M3) is a relaxation
problem of model (M1), we have the following lemma.

Lemma 1. Let 𝑢
𝑟
and V

𝑖
be the optimal solutions of model

(M3); then one has
𝑛

∑

𝑗=1

𝜃
𝑗
≤ 1, (11)

where 𝜃
𝑗
is determined by using (1).

Proposition 2. If ∑𝑛
𝑗=1

𝜃
𝑗

= 1, then the optimal solutions 𝑢
𝑟

and V
𝑖
of model (M3) are also the optimal solutions of model

(M1).

Proof. If ∑𝑛
𝑗=1

𝜃
𝑗
= 1, then the optimal solutions 𝑢

𝑟
and V
𝑖
of

model (M3) are the feasible solutions ofmodel (M1). Since the
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objectives of twomodels are equivalent, the optimal solutions
𝑢
𝑟
and V

𝑖
of model (M3) are also the optimal solutions of

model (M1).

If∑𝑛
𝑗=1

𝜃
𝑗
< 1, then we have to proceed further to find the

optimal solutions on the basis of it. Let constraint 𝑤
𝑖𝑗

= V
𝑖
𝜃
𝑗

be replaced by 𝑤
𝑖𝑗

≥ V
𝑖
𝜃
𝑗
, then add it into model (M3) to

formulate the following LP problem:

(M4) min 𝜃
𝑜
=

𝑠

∑

𝑟=1

𝑦
𝑟𝑜
𝑢
𝑟

− 𝛿

𝑛

∑

𝑗=1

𝑗 ̸=𝑜

((𝑛 − 1)

𝑠

∑

𝑟=1

𝑦
𝑟𝑗
𝑢
𝑟
−

𝑚

∑

𝑖=1

𝑥
𝑖𝑗
V
𝑖
)

s.t. 𝑤
𝑖𝑗

≥ V
𝑖
𝜃
𝑗
, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

(𝑢
𝑟
, V
𝑖
) ∈ ℵ
2 (

𝑢, V) .
(12)

It is obvious that model (M4) is a relaxation problem of
model (M1) andmodel (M3) is a relaxation problem ofmodel
(M4). Therefore, we have the following lemma.

Lemma 3. Let 𝑢(1)
𝑟

and V(1)
𝑖

be the optimal solutions of model
(M4); then one has

𝑛

∑

𝑗=1

𝜃
𝑗
≤

𝑛

∑

𝑗=1

𝜃
(1)

𝑗
≤ 1, (13)

where 𝜃
(1)

𝑗
is determined by (1).

According to Proposition 2, if∑𝑛
𝑗=1

𝜃
(1)

𝑗
= 1, then 𝑢

(1)

𝑟
and

V(1)
𝑖

are also the optimal solutions of model (M1); otherwise,
we must also continue to find the optimal solutions of model
(M1).

Let 𝜃(1)
𝑗

replace 𝜃
𝑗
in model (M4); then solve it to obtain

the optimal solutions 𝑢
(2)

𝑟
and V(2)

𝑖
. Using (1) we will get the

efficiency score 𝜃
(2)

𝑗
of each DMU and then judge whether

∑
𝑛

𝑗=1
𝜃
(2)

𝑗
is equal to 1 or not. The process is repeated until the

sum of efficiency scores of all DMUs is approximately equal
to 1 within given error.

According to the above analysis, the procedure of the
proposed approximation algorithm to solve model (M1) can
be described as follows.

Algorithm 4. Consider the following.

Step 1. Give permissible error 𝜀 > 0.

Step 2. Solve model (M3) to find the optimal solutions 𝑢
𝑟
and

V
𝑖
, and then calculate the efficiency score 𝜃

𝑗
of each DMU

using (1).

Step 3. Compute the sum of the efficiency scores of all DMUs.
If 


∑
𝑛

𝑗=1
𝜃
𝑗
− 1






≤ 𝜀, then stop with the optimal solutions 𝑢

𝑟

and V
𝑖
to model (M1); otherwise, 𝑘 := 1; go to Step 4.

Step 4. Solve model (M4) to find optimal solutions 𝑢
(𝑘)

𝑟
and

V(𝑘)
𝑖
, and then calculate the efficiency score 𝜃

(𝑘)

𝑗
of each DMU

using (1).

Step 5. Compute the sum of the efficiency scores of all DMUs.
If 


∑
𝑛

𝑗=1
𝜃
(𝑘)

𝑗
− 1






≤ 𝜀, then stop with the optimal solutions 𝑢(𝑘)

𝑟

and V(𝑘)
𝑖

to model (M1); otherwise go to Step 6.

Step 6. Let 𝜃(𝑘)
𝑗

replace 𝜃
𝑗
in model (M4); 𝑘 := 𝑘 + 1; go back

to Step 4.

Proposition 5. The optimal solutions of model (M4) will be
close to the optimal solutions of model (M1) by using Algorithm
4.

Proof. Let 𝑢(𝑡)
𝑟
and V(𝑡)
𝑖
, 𝑡 = 1, 2, . . . , 𝑘, be the optimal solutions

to model (M4) for tth solution; using (1) we will get the
efficiency score 𝜃

(𝑡)

𝑗
of each DMU; then we have

𝑛

∑

𝑗=1

𝜃
𝑗
≤

𝑛

∑

𝑗=1

𝜃
(1)

𝑗
≤

𝑛

∑

𝑗=1

𝜃
(2)

𝑗
≤ ⋅ ⋅ ⋅ ≤

𝑛

∑

𝑗=1

𝜃
(𝑘)

𝑗
≤ 1. (14)

Since {∑𝑛
𝑗=1

𝜃
(𝑡)

𝑗
} increasesmonotonically and exists upper

bound 1, we have ∑
𝑛

𝑗=1
𝜃

(𝑡)

𝑗
→ 1, which means that the

optimal solutions 𝑢(𝑡)
𝑟

and V(𝑡)
𝑖

of model (M4) are close to the
optimal solutions of model (M1) by repeatedly solving model
(M4).

We have discussed the approximation algorithm with
minimum problem. For a maximum problem, let constraint
𝑤
𝑖𝑗

≥ V
𝑖
𝜃
𝑗
be replaced by constraint𝑤

𝑖𝑗
≤ V
𝑖
𝜃
𝑗
inmodel (M4).

Using the above approximation algorithm, we can also obtain
the optimal solutions to model (M1) with maximum form.

2.4. ANumerical Example. In order to compare the proposed
methodwith themethod in [19], a numerical example used by
them is presented in this subsection. There are twelve DMUs
with three inputs (𝑋

1
, 𝑋
2
, and 𝑋

3
) and two outputs (𝑌

1
, 𝑌
2
)

as shown in Table 1. The minimum and maximum efficiency
scores, the integrated score, and the rank of DMUs obtained
by the method in [19] are exhibited in the seventh, the eighth,
and the ninth column of Table 1, respectively.

In order to rank all DMUs by the proposed method, we
first use the proposed approximationAlgorithm 4 to calculate
the minimum and maximum efficiency scores of each DMU
and then use (4) and (5) to compute the integrated scores.
Finally, the DMUs were ranked according to their integrated
scores.

Using Algorithm 4, the procedure to calculate the mini-
mum efficiency score of DMU

1
is described as follows.

Step 1. Give permissible error 𝜀 = 0.001.

Step 2. Let 𝛿 = 0.0001. Solve model (M3) to find the optimal
solutions: 𝑢

1
= 0.000678, 𝑢

2
= 0, V

1
= 0, V

2
= 0.013872,

and V
3
= 0.050998. Using (1) we can obtain that the efficiency

scores 𝜃
𝑗
of twelve DMUs are 0.0454, 0.0644, 0.0646, 0.0697,
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Table 1: The input-output data and the rankings of DMUs.

DMU Inputs and outputs The method in [19] Proposed improved method
𝑋
1

𝑋
2

𝑋
3

𝑌
1

𝑌
2

[𝜃
min
𝑗

, 𝜃max
𝑗

] 𝜃
𝑗

Rank [𝜃
min
𝑗

, 𝜃max
𝑗

] 𝜃
𝑗

Rank
1 350 39 9 67 751 [0.0454, 0.0989] 0.0675 11 [0.0573, 0.0862] 0.0702 11
2 298 26 8 73 611 [0.0526, 0.1199] 0.0804 7 [0.0605, 0.0993] 0.0778 7
3 422 31 7 75 584 [0.0483, 0.1076] 0.0728 9 [0.0556, 0.0893] 0.0706 10
4 281 16 9 70 665 [0.0564, 0.1468] 0.0937 4 [0.0577, 0.1371] 0.0930 4
5 301 16 6 75 445 [0.0499, 0.1679] 0.0986 2 [0.0591, 0.1435] 0.0967 3
6 360 29 17 83 1070 [0.0393, 0.1402] 0.0810 6 [0.0393, 0.1249] 0.0774 8
7 540 18 10 72 457 [0.0304, 0.1262] 0.0700 10 [0.0348, 0.1248] 0.0749 9
8 276 33 5 74 590 [0.0549, 0.1358] 0.0883 5 [0.0589, 0.1190] 0.0857 5
9 323 25 5 75 1074 [0.0800, 0.2043] 0.1313 1 [0.0975, 0.1724] 0.1308 1
10 444 64 6 74 1072 [0.0363, 0.1394] 0.0789 8 [0.0363, 0.1394] 0.0822 6
11 323 25 5 25 350 [0.0267, 0.0666] 0.0432 12 [0.0325, 0.0562] 0.0430 12
12 444 64 6 104 1199 [0.0510, 0.1560] 0.0944 3 [0.0510, 0.1560] 0.0977 2

0.0964, 0.0444, 0.0643, 0.0704, 0.0845, 0.0420, 0.0282, and
0.0591, respectively.

Step 3. Computing the sum of the efficiency scores of all
DMUs, we have ∑

12

𝑗=1
𝜃
𝑗

= 0.7335. Since 




∑
12

𝑗=1
𝜃
𝑗
− 1







=

0.2665 > 0.001, we do not obtain the optimal solutions
to model (M1), and we have to proceed further to find the
optimal solutions. Consider 𝑘 := 1; go to Step 4.

Steps 4–6. Solve model (M4) repeatedly to find the optimal
solutions 𝑢(𝑘)

𝑟
and V(𝑘)
𝑖
, and then calculate the efficiency score

𝜃
(𝑘)

𝑗
of each DMU using (1), 𝑘 = 1, 2, . . .. Computing the sum

of the efficiency scores of all DMUs, we have {∑
12

𝑗=1
𝜃
(𝑘)

𝑗
} =

{0.9592, 0.9945, 0.9993, . . .}. Since 




∑
12

𝑗=1
𝜃
(3)

𝑗
− 1






= 0.0007 <

0.001, the optimal solutions of model (M1) have been found:
𝑢
∗

1
= 0.000855, 𝑢∗

2
= 0, V∗
1
= 0, V∗
2
= 0.022075, V∗

3
= 0.015451,

and the objective function valve is 𝜃∗
1

= 0.0573.
Hence, the minimum efficiency value of DMU

1
is 𝜃min
1

=

0.0573. Similarly, using Algorithm 4, we can also obtain the
minimum efficiency values of the rest DMUs. Let constraint
𝑤
𝑖𝑗

≥ V
𝑖
𝜃
𝑗
be replaced by constraint 𝑤

𝑖𝑗
≤ V
𝑖
𝜃
𝑗
in model

(M4). Using Algorithm 4 we can also obtain the maximum
efficiency values of all DMUs. The minimum and maximum
efficiency scores of each DMU are shown in the tenth column
of Table 1.

Using (4) and (5), the integrated score 𝜃
𝑗
is determined

and the results are exhibited in the eleventh column of Table
1. The twelfth column of Table 1 shows the results of rankings
according to their integrated scores.

Table 1 shows that the rankings of DMUs obtained by
proposedmethod are not exactly the same as that obtained by
themethod in [19]. For instance, DMU

6
is ranked as eighth in

our method and sixth in the method of [19], whereas DMU
10

is placed sixth in our method and eighth in the method of
[19].

3. Proposed Multiobjective Programming
Model Based on Compensatory DEA

3.1. The Multiobjective Programming Model for Ranking All
Units. Khodabakhshi and Aryavash [19] contribute to a very
interesting variant of the basic DEAmodel by supposing that
the sum of efficiency values of all DMUs is equal to unity.
Using their method all DMUs can be fully ranked. However,
their method does not provide more information about the
weight used for calculating the efficiency scores of eachDMU.
In this section, we aim to develop a newmodel to find a CSW,
which can be used for the full ranking of all DMUs. To do it,
here we propose a MOP model as follows:

(M5) max {𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑠
, V
1
, V
2
, . . . , V

𝑚
}

s.t.
∑
𝑠

𝑟=1
𝑦
𝑟1
𝑢
𝑟

∑
𝑚

𝑖=1
𝑥
𝑖1
V
𝑖

+

∑
𝑠

𝑟=1
𝑦
𝑟2
𝑢
𝑟

∑
𝑚

𝑖=1
𝑥
𝑖2
V
𝑖

+ ⋅ ⋅ ⋅ +

∑
𝑠

𝑟=1
𝑦
𝑟𝑛
𝑢
𝑟

∑
𝑚

𝑖=1
𝑥
𝑖𝑛
V
𝑖

= 1,

𝑠

∑

𝑟=1

𝑢
𝑟
+

𝑚

∑

𝑖=1

V
𝑖
= 1

𝑢
𝑟
, V
𝑖
≥ 0, ∀𝑟, 𝑖,

(15)

where V
𝑖
(𝑖 = 1, 2 . . . , 𝑚) and 𝑢

𝑟
(𝑟 = 1, 2, . . . , 𝑠) are

the common weights assigned to 𝑖th input and 𝑟th output,
respectively. 𝑥

𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑚) and 𝑦

𝑟𝑗
(𝑟 = 1, 2, . . . , 𝑠)

represent normalized input and output values of DMU
𝑗
(𝑗 =

1, 2, . . . , 𝑛), respectively. In order to eliminate the impacts of
measurement units on a CSW, we normalize all inputs and
outputs values by using the following equations [23]:

𝑥
𝑖𝑗

=

𝑥
𝑖𝑗

∑
𝑛

𝑗=1
𝑥
𝑖𝑗

, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

𝑦
𝑟𝑗

=

𝑦
𝑟𝑗

∑
𝑛

𝑗=1
𝑦
𝑟𝑗

, 𝑟 = 1, 2, . . . , 𝑠, 𝑗 = 1, 2, . . . , 𝑛.

(16)
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Inmodel (M5), in order to avoid a choice of zero common
weights and get them as big as possible, the objectives are to
simultaneously maximize the common weights assigned to
each input and output. The first constraint is supposing that
the sum of efficiency values of all DMUs is equal to unity,
which can avoid the problem that more than one DMU is
evaluated as efficient inDEA.The second constraint∑𝑠

𝑟=1
𝑢
𝑟
+

∑
𝑚

𝑖=1
V
𝑖

= 1 is used to avoid arbitrariness in determining
commonweights.Without it, there will be an infinite number
of common weights that can meet the model (M5).

3.2. Fuzzy Programming Method for Solving the MOP Model
(M5). Many methods can be used to solve the MOP model,
such as compromise programming method, goal program-
mingmethod, and fuzzy programmingmethod. In this paper,
we use fuzzy programmingmethods to solve theMOPmodel
(M5).

In the MOP model (M5), it is unlikely that all objectives
simultaneously achieve their optimal solutions subject to the
given constraints. So in practice the DM usually chooses a
satisfying solution according to the aspiration level fixed for
each objective [24, 25]. Let 𝑢

𝑟𝑎
, 𝑟 = 1, 2, . . . , 𝑠, V

𝑖𝑎
, 𝑖 =

1, 2, . . . , 𝑚, be the aspiration level of objectives; then model
(M5) can be expressed as follows [24, 26, 27]:

(M6) Find 𝑢, V

To satisfy 𝑢
𝑟
≥̃𝑢
𝑟𝑎
, 𝑟 = 1, 2, . . . , 𝑠,

V
𝑖
≥̃V
𝑖𝑎
, 𝑖 = 1, 2, . . . , 𝑚,

(𝑢
𝑟
, V
𝑖
) ∈ ℵ
5 (

𝑢, V) .

(17)

The expressions 𝑢
𝑟
≥̃𝑢
𝑟𝑎

and V
𝑖
≥̃V
𝑖𝑎
are represented by a

fuzzy set called fuzzy goal, which means that the DM would
be satisfied even for objective value slightly less than 𝑢

𝑟𝑎
or

V
𝑖𝑎
within the value of allowed deviations. The symbols “≥̃”

denote the fuzzified versions of “⩾” and they can be read
as “approximately greater than or equal to.” The expression
(𝑢
𝑟
, V
𝑖
) ∈ ℵ

5
(𝑢, V) is system constraint in model (M5), and

ℵ
5
(𝑢, V)denotes the set of the feasible solution ofmodel (M5).
Model (M6) is a fuzzy multiobjective programming

(FMOP) model. The procedure for finding the fuzzy efficient
solution can be summarized as follows.

Algorithm 6. Consider the following.

Step 1 (determine the fuzzy aspiration level of each objective).
Since the DM usually knows little about the objectives, this
paper uses the ideal solutions of model (M5) to determine
the value of the fuzzy aspiration level of each objective. The
ideal solutions are just the optimal solutions of the individual
objective subject to the system constraint. That is,

(M7) max 𝑢
𝑟

or max V
𝑖

(𝑢
𝑟
, V
𝑖
) ∈ ℵ
5 (

𝑢, V) .
(18)

Model (M7) may not be also considered as a convex
optimization problem like model (M1), and it usually has

multiple local optimal solutions. Thus model (M7) is more
difficult to be solved. In the following, a similar approxima-
tion algorithm with Algorithm 4 is used.

Let

𝜃
𝑗
=

∑
𝑠

𝑟=1
𝑦
𝑟𝑗
𝑢
𝑟

∑
𝑚

𝑖=1
𝑥
𝑖𝑗
V
𝑖

, 𝑗 = 1, 2, . . . , 𝑛; (19)

then model (M7) can be rewritten as follows:

(M8) max 𝑢
𝑟

or max V
𝑖

s.t. 𝜃
𝑗

𝑚

∑

𝑖=1

𝑥
𝑖𝑗
V
𝑖
−

𝑠

∑

𝑟=1

𝑦
𝑟𝑗
𝑢
𝑟
= 0, 𝑗 = 1, 2, . . . , 𝑛,

𝑛

∑

𝑗=1

𝜃
𝑗
= 1,

𝑠

∑

𝑟=1

𝑢
𝑟
+

𝑚

∑

𝑖=1

V
𝑖
= 1,

𝑢
𝑟
, V
𝑖
, 𝜃
𝑗
≥ 0, ∀𝑖, 𝑗, 𝑟.

(20)

Using the transformation𝑤
𝑖𝑗

= V
𝑖
𝜃
𝑗
[19], model (M8) can

be rewritten by the following LP problem:

(M9) max 𝑢
𝑟

or max V
𝑖

s.t.
𝑚

∑

𝑖=1

𝑥
𝑖𝑗
𝑤
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑦
𝑟𝑗
𝑢
𝑟
= 0, 𝑗 = 1, 2, . . . , 𝑛,

𝑛

∑

𝑗=1

𝑤
𝑖𝑗

= V
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

𝑠

∑

𝑟=1

𝑢
𝑟
+

𝑚

∑

𝑖=1

V
𝑖
= 1,

𝑢
𝑟
, V
𝑖
, 𝑤
𝑖𝑗

≥ 0, ∀𝑖, 𝑗, 𝑟.

(21)

Let 𝑢
𝑟
and V

𝑖
be the optimal solutions of model (M9).

Using (19), it is easy to compute the efficiency score 𝜃
𝑗
of each

DMU. If ∑
𝑛

𝑗=1
𝜃
𝑗

= 1, then 𝑢
𝑟
and V

𝑖
are also the optimal

solutions of model (M7); otherwise, that is, ∑𝑛
𝑗=1

𝜃
𝑗

̸= 1, we
have to proceed further to find the optimal solutions on the
basis of the optimal solution of model (M9). In the following,
we only discuss the case that ∑

𝑛

𝑗=1
𝜃
𝑗

> 1 for the sake of
convenient description. However, the procedure can be easily
extended to the case that ∑𝑛

𝑗=1
𝜃
𝑗
< 1.

In order to find further the optimal solutions of model
(M7) when ∑

𝑛

𝑗=1
𝜃
𝑗
> 1, let constraints 𝑤

𝑖𝑗
= V
𝑖
𝜃
𝑗
be replaced
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by constraints 𝑤
𝑖𝑗

≤ V
𝑖
𝜃
𝑗
, then add it into model (M9) to

formulate the following LP problem:

(M10) max 𝑢
𝑟

or max V
𝑖

s.t. 𝑤
𝑖𝑗

≤ V
𝑖
𝜃
𝑗
, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

(𝑢
𝑟
, V
𝑖
) ∈ ℵ
9 (

𝑢, V) ,
(22)

where ℵ
9
(𝑢, V) denotes the set of the feasible solutions to

model (M9).
Let 𝑢(1)
𝑟

and V(1)
𝑖

be the optimal solutions of model (M10).
Using (19), we will get the efficiency score 𝜃

(1)

𝑗
of each DMU,

if ∑𝑛
𝑗=1

𝜃

(1)

𝑗
= 1. Then 𝑢

(1)

𝑟
and V(1)
𝑖

are the optimal solutions
of model (M7); otherwise, we also have to proceed further to
find the optimal solutions on the basis of it.

Let 𝜃

(1)

𝑗
replace 𝜃

𝑗
in model (M10), and then solve it to

find the optimal solutions 𝑢(2)
𝑟

and V(2)
𝑖
. Using (19) we will get

the efficiency score 𝜃

(2)

𝑗
of each DMU and then judge whether

∑
𝑛

𝑗=1
𝜃

(2)

𝑗
is equal to 1 or not. The process is repeated until

that the sum of efficiency scores of all DMUs is approximately
equal to 1 within given error. According to Algorithm 4, the
optimal solutions of model (M10) will be close to the optimal
solutions of model (M7) by repeatedly solving model (M10).

We have discussed the approximation algorithm in the
case that ∑

𝑛

𝑗=1
𝜃
𝑗

> 1. If ∑
𝑛

𝑗=1
𝜃
𝑗

< 1, then let constraint
𝑤
𝑖𝑗

≤ V
𝑖
𝜃
𝑗
be replaced by constraint 𝑤

𝑖𝑗
≥ V
𝑖
𝜃
𝑗
in model

(M10). According to the above analysis and Algorithm 4, we
can also obtain the optimal solutions of model (M7).

Step 2 (construct membership functions). In the model (M6),
each fuzzy goal is represented by fuzzy sets and defined by
membership functions 𝜇

𝑟
(𝑢
𝑟
) and 𝜇

𝑖
(V
𝑖
) (𝑟 = 1, 2, . . . , 𝑠, 𝑖 =

1, 2, . . . , 𝑚). Since linear membership functions are used
more than other types of membership functions in the
literature [28], we choose the linear membership functions.
For each objective, the lower bound is zero, and the upper
bound is the fuzzy aspiration level determined by solving
model (M7). Hence, the membership functions for each
objective may be defined as follows:

𝜇
𝑟
(𝑢
𝑟
) =

{
{
{

{
{
{

{

0 𝑢
𝑟
≤ 0

𝑢
𝑟

𝑢
𝑟𝑎

0 ≤ 𝑢
𝑟
≤ 𝑢
𝑟𝑎

1 𝑢
𝑟
≥ 𝑢
𝑟𝑎
,

𝑟 = 1, 2, . . . , 𝑠

𝜇
𝑖
(V
𝑖
) =

{
{
{

{
{
{

{

0 V
𝑖
≤ 0

V
𝑖

V
𝑖𝑎

0 ≤ V
𝑖
≤ V
𝑖𝑎

1 V
𝑖
≥ V
𝑖𝑎
,

𝑖 = 1, 2, . . . , 𝑚.

(23)

Step 3 (build an auxiliary crisp model). Introducing the
auxiliary variable 𝜆, the FMOP model (M6) is transformed
into the following auxiliary crisp model [27, 29, 30]:

(M11) Max 𝜆 + 𝛿(

𝑠

∑

𝑟=1

𝑢
𝑟

𝑢
𝑟𝑎

+

𝑚

∑

𝑖=1

V
𝑖

V
𝑖𝑎

)

s.t. 𝑢
𝑟
≥ 𝑢
𝑟𝑎
𝜆, 𝑟 = 1, 2, . . . , 𝑠,

V
𝑖
≥ V
𝑖𝑎
𝜆, 𝑖 = 1, 2, . . . , 𝑚,

(𝑢
𝑟
, V
𝑖
) ∈ ℵ
5 (

𝑢, V) ,

(24)

where 𝛿 is a sufficiently small positive number. The optimal
solution to model (M11) is a fuzzy efficient solution to the
FMOP model (M6) and the Pareto optimal solution of MOP
model (M5) [24, 29, 30].

Step 4 (solve model (M11) to find the optimal CSW). The
method for solving model (M11) is similar to that for solving
model (M7). Using the approximation algorithm, we solve
model (M11) to find the optimal solutions 𝑢∗

𝑟
(𝑟 = 1, 2, . . . , 𝑠)

and V∗
𝑖
(𝑖 = 1, 2, . . . , 𝑚), which is also the optimal CSW.

Then, using (19) we compute the optimal efficiency scores 𝜃∗
𝑗

(𝑗 = 1, 2, . . . , 𝑛) of each DMU, which can be used to fully
rank all DMUs. A DMU has a better rank if it has a greater
efficiency score.

4. Numerical Examples

In this section, we provide two numerical examples to
illustrate our method and then compare the results with the
results of the existing models to show the potential usage of
the proposed method in the full ranking of DMUs.

Example 1. Consider the numerical example used in Section
2.4. There are twelve DMUs with three inputs (𝑋

1
, 𝑋
2
, and

𝑋
3
) and two outputs (𝑌

1
, 𝑌
2
) as shown in Table 1. In order

to rank all DMUs by using the proposed method, we first
normalize all inputs and outputs values by using (16); the
normalized values are shown in Table 2. The integrated score
and the rank of DMUs obtained by the method in [19] are
exhibited again in the seventh and the eighth column of Table
2, respectively.

Using the normalized values we can build a MOP model
(M5), which is transformed into FMOP model (M6). We
solve model (M6) to find the fuzzy efficient solution, which is
also the Pareto optimal solution of MOP model (M5), using
Algorithm 6.

The procedure to solve the model (M6) can be described
as follows.

Step 1 (determine the fuzzy aspiration level of each objective by
solving model (M7)). The algorithm for solving model (M7) is
similar to the approximation algorithm, Algorithm 4.

Give permissible error 𝜀 = 0.001. For the first objective,
max 𝑢

1
, solve model (M9) to find optimal solutions: 𝑢

1
=

0.09333, 𝑢
2

= 0, V
1

= 0.40844, V
2

= 0.28013, and
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Table 2: The normalized input-output data and the rankings of DMUs.

DMU The normalized values of inputs and outputs The method in [19] Proposed method
𝑋
1

𝑋
2

𝑋
3

𝑌
1

𝑌
2

𝜃
𝑗

Rank 𝜃
𝑗

Rank
1 0.0802 0.1010 0.0968 0.0773 0.0847 0.0675 11 0.0703 10
2 0.0683 0.0674 0.0860 0.0842 0.0689 0.0804 7 0.0874 6
3 0.0967 0.0803 0.0753 0.0865 0.0659 0.0728 9 0.0774 7
4 0.0644 0.0415 0.0968 0.0807 0.0750 0.0937 4 0.0954 4
5 0.0690 0.0415 0.0645 0.0865 0.0502 0.0986 2 0.1042 2
6 0.0825 0.0751 0.1828 0.0957 0.1207 0.0810 6 0.0750 8
7 0.1238 0.0466 0.1075 0.0830 0.0515 0.0700 10 0.0640 11
8 0.0633 0.0855 0.0538 0.0854 0.0665 0.0883 5 0.0956 3
9 0.0740 0.0648 0.0538 0.0865 0.1211 0.1313 1 0.1250 1
10 0.1018 0.1658 0.0645 0.0854 0.1209 0.0789 8 0.0718 9
11 0.0740 0.0648 0.0538 0.0288 0.0395 0.0432 12 0.0413 12
12 0.1018 0.1658 0.0645 0.1200 0.1352 0.0944 3 0.0923 5

V
3
= 0.21810. Calculate the efficiencies score 𝜃

𝑗
of each DMU

using (19) and their sum; we have ∑
12

𝑗=1
𝜃
𝑗
= 1.2678.

Since 




∑
12

𝑗=1
𝜃
𝑗
− 1






= 0.2678 > 𝜀, we do not obtain the

optimal solutions to model (M7). Thus we have to proceed
calculating further to find the optimal solutions. We solve
model (M10) repeatedly, to find optimal solutions 𝑢

(𝑘)

𝑟
and

V(𝑘)
𝑖
, 𝑘 = 1, 2, . . ., until









∑
𝑛

𝑗=1
𝜃

(𝑘)

𝑗
− 1









≤ 𝜀. After repeating

4 times for solving model (M10), we have








∑
𝑛

𝑗=1
𝜃

(4)

𝑗
− 1









=

0.00079 < 𝜀, which means that the optimal solutions have
been found: 𝑢∗

1
= 0.07516, 𝑢∗

2
= 0, V∗

1
= 0.32684, V∗

2
=

0.27280, and V∗
3

= 0.32521. And the objective function valve
is 𝑢
∗

1
= 0.07516. Therefore the fuzzy aspiration level of the

first objective is 𝑢
1𝑎

= 0.07516.
Similarly, we can also solve model (M7) to obtain the

fuzzy aspiration levels of the rest of the objectives: 𝑢
2𝑎

=

0.07673, V
1𝑎

= 0.92510, V
2𝑎

= 0.93421, and V
3𝑎

= 0.93073.

Step 2 (construct membership functions). The mathematical
expression ofmembership functions is given in (23). For each
objective, the lower bound is zero, and the upper bound is
the fuzzy aspiration level determined by solving model (M7).
According to Step 1, we have 𝑢

1𝑎
= 0.07516, 𝑢

2𝑎
= 0.07673,

V
1𝑎

= 0.92510, V
2𝑎

= 0.93421, and V
3𝑎

= 0.93073.

Step 3 (build an auxiliary crisp model (M11)). Having deter-
mining the fuzzy aspiration level of each objective and the
form of membership functions, we can get the auxiliary crisp
model (M11) by introducing the auxiliary variable 𝜆.

Step 4 (solve model (M11) to obtain the optimal CSW). The
method for solving model (M11) is similar to that of model
(M7). Set 𝛿 = 0.01; we solve model (M11) to obtain the
optimal solutions 𝜆∗ = 0.33133, 𝑢∗

1
= 0.05014, 𝑢∗

2
= 0.02542,

V∗
1

= 0.30652, V∗
2

= 0.30954, and V∗
3

= 0.30838. They are
the fuzzy efficient solutions to model (M6) and the Pareto
optimal solutions tomodel (M5).Therefore we have obtained
the optimal CSW: 𝑢∗

1
= 0.05014, 𝑢∗

2
= 0.02542, V∗

1
= 0.30652,

V∗
2
= 0.30954, and V∗

3
= 0.30838.

Using (19) we can compute the optimal efficiency score 𝜃∗
𝑗

of each DMU, and the results are shown in the ninth column
of Table 2. The tenth column of Table 2 shows the results of
ranking by our method. It shows that all DMUs are fully
ranked with their optimal efficiency scores 𝜃∗

𝑗
.

Table 2 shows that the rankings of DMUs using the
proposed method are not entirely consistent with that of the
method in [19].Themain advantage of ourmethod compared
to themethod in [19] is that a CSW for fully ranking DMUs is
derived and allDMUsmay be able to be compared and ranked
on the same basis. Moreover, we improve their solution
method and propose an approximation algorithm to solve
their DEA model.

Example 2. Measure the performance of nations participat-
ing in the Olympic Games. Consider the example studied
by Zhang et al. [20] and Azizi and Wang [21], in which 73
countries or areas are evaluated in terms of two inputs and
three outputs defined as follows:

𝑋
1
: gross domestic product (GDP),

𝑋
2
: total population of the country or area,

𝑌
1
: number of gold medals won by the country,

𝑌
2
: number of silver medals won by the country,

𝑌
3
: number of bronze medals won by the country.

The input and output data of the Athens 2004 Summer
Olympic Games [20, 21] are presented in Table 3. We use this
example to compare the proposed method with Azizi and
Wang’s method [21] and Ramezani-Tarkhorani et al.’s method
[22].

In Azizi andWang’s method [21], a pair of bounded DEA
models was proposed to measure the interval efficiencies of
DMUs.The lower bound of the interval efficiency is called the
worst relative efficiency or pessimistic efficiency, and its value
is determined using improved pessimistic DEA model [21].
The upper bound of the interval efficiency is called the best
relative efficiency or the optimistic efficiency, and its value
is determined using the conventional DEA model. Using the
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Table 3: Data of the Athens 2004 Summer Olympic Games [20, 21].

Country or area (DMU) Inputs Outputs
GDP (billion $) Population (thousands) Gold Silver Bronze

Argentina 151.94 38372 2 0 4
Australia 617.61 19942 17 16 16
Austria 289.72 8171 2 4 1
Azerbaijan 8.54 8355 1 0 4
Bahamas 5.5 319 1 0 1
Belarus 22.75 9811 2 6 7
Belgium 352 10400 1 0 2
Brazil 599.73 183913 5 2 3
Britain 2125.51 59479 9 9 12
Bulgaria 23.91 7780 2 1 9
Cameroon 14.43 16038 1 0 0
Canada 995.83 31958 3 6 3
Chile 93.65 16124 2 0 1
China 1649.39 1307989 32 17 14
China, Hong Kong 164.55 6963 0 1 0
Chinese Taipei 305.2 22689 2 2 1
Colombia 95.19 44915 0 0 2
Croatia 33.2 4540 1 2 2
Cuba 44.54 11245 9 7 11
Czech Republic 107.05 10229 1 3 4
Denmark 242.34 5414 2 0 6
Dominican Republic 19.44 8768 1 0 0
Egypt 77.03 72642 1 1 3
Eritrea 0.62 4232 0 0 1
Estonia 11.2 1335 0 1 2
Ethiopia 8.21 75600 2 3 2
Finland 186.18 5235 0 2 0
France 2018.08 60257 11 9 13
Georgia 4.45 4518 2 2 0
Germany 2706.67 82645 13 16 20
Greece 205.49 11098 6 6 4
Hungary 99.35 10124 8 6 3
India 661.05 1087124 0 1 0
Indonesia 257.87 220077 1 1 2
Iran 168.97 68803 2 2 2
Israel 116.34 6601 1 0 1
Italy 1680.69 58033 10 11 11
Jamaica 8.71 2639 2 1 2
Japan 4668.42 127924 16 9 12
Kazakhstan 40.75 14839 1 4 3
Kenya 15.62 33467 1 4 2
Korea, Republic 681.47 47645 9 12 9
Latvia 13.66 2318 0 4 0
Lithuania 22.17 3443 1 2 0
Mexico 676.5 105699 0 3 1
Mongolia 1.29 2614 0 0 1
Morocco 49.82 31020 2 1 0
Netherlands 577.98 16226 4 9 9
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Table 3: Continued.

Country or area (DMU) Inputs Outputs
GDP (billion $) Population (thousands) Gold Silver Bronze

New Zealand 96.97 3989 3 2 0
Nigeria 71.33 128709 0 0 2
Norway 250.44 4598 5 0 1
Paraguay 7 6017 0 1 0
Poland 241.77 38559 3 2 5
Portugal 167.24 10441 0 2 1
Romania 71.32 21790 8 5 6
Russia 582.73 143899 27 27 38
Serbia and Montenegro 24.13 10510 0 2 0
Slovakia 41.09 5401 2 2 2
Slovenia 32.79 1967 0 1 3
South Africa 212.9 47208 1 3 2
Spain 992.99 42646 3 11 5
Sweden 346.53 9008 4 2 1
Switzerland 358 7240 1 1 3
Syria 23.74 18582 0 0 1
Thailand 163.49 63694 3 1 4
Trinidad and Tobago 12.54 1301 0 0 1
Turkey 300.09 72220 3 3 4
Ukraine 65.04 46989 9 5 9
United Arab Emirates 95.72 4284 1 0 0
United States 11733.47 295410 36 39 27
Uzbekistan 9.72 26209 2 1 2
Venezuela 107.49 26282 0 0 2
Zimbabwe 5.82 12936 1 1 1

traditional DEA model, the DEA efficiency or the optimistic
efficiency of each participating country at the Athens 2004
Olympic Games is determined, and the results are shown
in the second column of Table 4. The efficiency intervals of
the 73 DMUs according to Azizi and Wang’s method are
presented in the third column of Table 4. The fourth column
of Table 4 shows the rankings based on the efficiency intervals
[21].

Liu and Peng [13] proposed a common weights analysis
methodology to generate a CSW for the performance indices
of only DEA efficient DMUs. All DMUs are then ranked
according to the efficiency scores weighted by the CSW.
Ramezani-Tarkhorani et al. [22] pointed out the problem and
proposed a new approach to rank all DMUs with common
weights. From the second column of Table 4, it can be seen
that, among 73 DMUs, 18 DMUs are DEA efficient. Using
the data of these efficient DMUs, the CSW is determined as
𝑢
1
= 0.01, 𝑢

2
= 5.829, 𝑢

3
= 3.235, V

1
= 0.01, and V

2
= 0.01.

The efficiency scores of DMUs can then be calculated using
the CSW and the results are shown in the fifth column of
Table 4, and corresponding rankings are shown in the sixth
column of Table 4.

In order to rank all DMUs by using the proposedmethod,
we first normalize all inputs and outputs values by using (16)
and then build aMOPmodel (M5), which is transformed into
FMOP model (M6). We solve model (M6) to find the fuzzy

efficient solution, which is also the Pareto optimal solution of
MOPmodel (M5), using Algorithm 6.The procedure to solve
model (M6) can be described as follows.

Step 1 (determine the fuzzy aspiration level of each objective by
solving model (M7)). The algorithm for solving model (M7)
is similar to the approximation algorithm, Algorithm 4. Give
permissible error 𝜀 = 0.01, for each objective, max 𝑢

𝑟
or

max V
𝑖
, solve model (M7), respectively, to obtain the fuzzy

aspiration levels of all objectives: 𝑢
1𝑎

= 0.00474, 𝑢
2𝑎

=

0.00442, 𝑢
3𝑎

= 0.00349, V
1𝑎

= 0.99867, and V
2𝑎

= 0.99688.

Step 2 (construct membership functions). The mathematical
expression of membership functions are given in (23). For
each objective, the lower bound is zero, and the upper bound
is the fuzzy aspiration level determined by solving model
(M7) in Step 1.

Step 3 (build an auxiliary crisp model (M11)). Having deter-
mining the fuzzy aspiration level of each objective and the
form of membership functions, we can get the auxiliary crisp
model (M11) by introducing the auxiliary variable 𝜆.

Step 4 (solve model (M11) to obtain the optimal CSW). The
method for solving model (M11) is similar to that of model
(M7). Set 𝛿 = 0.01, we solve model (M11) to obtain the
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Table 4: Efficiencies of the countries participating in the Athens 2004 Olympic Games.

Country or area (DMU) DEA efficiencies The method in [21] The method in [22] Proposed method
Efficiency intervals Rank Efficiencies Rank Efficiencies Rank

Argentina 0.08978 [0.00004, 0.08978] 52 0.03364 55 0.00429 44
Australia 1.00000 [0.00023, 1.00000] 26 0.70622 5 0.02271 15
Austria 0.42598 [0.00010, 0.42598] 34 0.31406 17 0.00746 33
Azerbaijan 1.00000 [0.00030, 1.00000] 23 0.15484 32 0.02075 16
Bahamas 1.00000 [0.00039, 1.00000] 22 1.00000 1 0.08595 1
Belarus 1.00000 [0.00212, 1.00000] 2 0.58614 7 0.05144 4
Belgium 0.11826 [0.00001, 0.11826] 67 0.06027 50 0.00222 63
Brazil 0.03770 [0.00004, 0.03770] 54 0.01161 66 0.00180 65
Britain 0.22016 [0.00004, 0.22016] 51 0.14832 34 0.00405 51
Bulgaria 1.00000 [0.00068, 1.00000] 12 0.44803 10 0.04399 6
Cameroon 0.15419 [0.00001, 0.15419] 65 0.00006 73 0.00295 59
Canada 0.17040 [0.00005, 0.17040] 47 0.13567 36 0.00351 55
Chile 0.10916 [0.00003, 0.10916] 58 0.02007 61 0.00501 41
China 1.00000 [0.00010, 1.00000] 39 0.01105 67 0.00200 64
China, Hong Kong 0.08323 [0.00004, 0.08323] 53 0.08178 43 0.00177 67
Chinese Taipei 0.10304 [0.00005, 0.10304] 48 0.06486 49 0.00388 53
Columbia 0.05115 [0.00001, 0.05115] 71 0.01437 65 0.00125 69
Croatia 0.47307 [0.00050, 0.47307] 17 0.39662 13 0.02538 12
Cuba 1.00000 [0.00155, 1.00000] 4 0.67743 6 0.07166 2
Czech Republic 0.38991 [0.00023, 0.38991] 27 0.29448 18 0.01436 22
Denmark 0.93665 [0.00003, 0.93665] 56 0.34351 14 0.00872 29
Dominican Republic 0.17635 [0.00002, 0.17635] 62 0.00011 72 0.00468 42
Egypt 0.09781 [0.00014, 0.09781] 31 0.02138 60 0.00255 61
Eritrea 1.00000 [0.00004, 1.00000] 49 0.07643 44 0.00832 30
Estonia 1.00000 [0.00069, 1.00000] 11 0.91362 3 0.04368 7
Ethiopia 1.00000 [0.00045, 1.00000] 19 0.03171 56 0.00427 45
Finland 0.22139 [0.00007, 0.22139] 43 0.21505 24 0.00340 56
France 0.24442 [0.00004, 0.24442] 50 0.15195 33 0.00465 43
Georgia 1.00000 [0.00340, 1.00000] 1 0.25823 20 0.04032 8
Germany 0.51400 [0.00005, 0.51400] 44 0.18523 28 0.00508 40
Greece 0.68020 [0.00025, 0.68020] 25 0.42443 12 0.02014 17
Hungary 0.95138 [0.00052, 0.95138] 16 0.43782 11 0.03607 9
India 0.00337 [0.00001, 0.00337] 73 0.00054 70 0.00004 73
Indonesia 0.02180 [0.00004, 0.02180] 55 0.00559 68 0.00069 71
Iran 0.05368 [0.00010, 0.05368] 35 0.02631 58 0.00306 58
Israel 0.04833 [0.00002, 0.04833] 63 0.04831 52 0.00409 49
Italy 0.23392 [0.00006, 0.23392] 46 0.16714 30 0.00534 38
Jamaica 1.00000 [0.00127, 1.00000] 6 0.46528 9 0.06032 3
Japan 0.14589 [0.00002, 0.14589] 66 0.06896 47 0.00235 62
Kazakhstan 0.35502 [0.00075, 0.35502] 10 0.22199 23 0.01790 20
Kenya 0.85474 [0.00134, 0.85474] 5 0.08899 42 0.00914 28
Korea, Republic 0.47165 [0.00015, 0.47165] 30 0.20518 25 0.01028 26
Latvia 1.00000 [0.00194, 1.00000] 3 1.00000 2 0.04885 5
Lithuania 0.49341 [0.00064, 0.49341] 14 0.33673 15 0.02417 14
Mexico 0.02075 [0.00003, 0.02075] 59 0.01948 62 0.00096 70
Mongolia 1.00000 [0.00007, 1.00000] 42 0.12370 38 0.01290 23
Morocco 0.12119 [0.00017, 0.12119] 29 0.01883 63 0.00415 47
Netherlands 0.67746 [0.00013, 0.67746] 32 0.48570 8 0.01079 25
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Table 4: Continued.

Country or area (DMU) DEA efficiencies The method in [21] The method in [22] Proposed method
Efficiency intervals Rank Efficiencies Rank Efficiencies Rank

New Zealand 0.71636 [0.00017, 0.71636] 28 0.28606 19 0.01560 21
Nigeria 0.04570 [0.00001, 0.04570] 72 0.00502 69 0.00052 72
Norway 1.00000 [0.00002, 1.00000] 60 0.06775 48 0.00809 32
Paraguay 0.33965 [0.00094, 0.33965] 7 0.09677 41 0.00721 35
Poland 0.11449 [0.00009, 0.11449] 36 0.07181 45 0.00626 37
Portugal 0.14606 [0.00008, 0.14606] 41 0.14039 35 0.00423 46
Romania 0.54421 [0.00068, 0.54421] 13 0.22247 22 0.02859 10
Russia 1.00000 [0.00043, 1.00000] 20 0.19420 27 0.01886 19
Serbia and Montenegro 0.24230 [0.00055, 0.24230] 15 0.11067 39 0.00732 34
Slovakia 0.44929 [0.00043, 0.44929] 21 0.33348 16 0.02585 11
Slovenia 1.00000 [0.00025, 1.00000] 25 0.77679 4 0.02535 13
South Africa 0.06503 [0.00011, 0.06503] 33 0.05054 51 0.00367 54
Spain 0.32958 [0.00008, 0.32958] 40 0.18407 29 0.00518 39
Sweden 0.42647 [0.00005, 0.42647] 45 0.15964 31 0.00643 36
Switzerland 0.29930 [0.00003, 0.29930] 57 0.20458 26 0.00392 52
Syria 0.08710 [0.00001, 0.08710] 68 0.01739 64 0.00166 68
Thailand 0.09048 [0.00009, 0.09048] 37 0.02944 57 0.00415 48
Trinidad and Tobago 0.37071 [0.00002, 0.37071] 61 0.24628 21 0.01227 24
Turkey 0.05986 [0.00009, 0.05986] 38 0.04200 54 0.00407 50
Ukraine 0.68481 [0.00082, 0.68481] 9 0.12401 37 0.01891 18
United Arabic Emirates 0.07446 [0.00001, 0.07446] 69 0.00023 71 0.00316 57
United States 1.00000 [0.00003, 1.00000] 64 0.10257 40 0.00265 60
Uzbekistan 0.82038 [0.00048, 0.82038] 18 0.04699 53 0.00827 31
Venezuela 0.05859 [0.00001, 0.05859] 70 0.02452 59 0.00179 66
Zimbabwe 0.59653 [0.00090, 0.59653] 8 0.07011 46 0.01012 27

optimal solutions: 𝜆
∗

= 0.33132, 𝑢
∗

1
= 0.00157, 𝑢

∗

2
=

0.00146, 𝑢∗
3

= 0.00116, V∗
1

= 0.49818, and V∗
2

= 0.49763.
They are the fuzzy efficient solutions to model (M6) and the
Pareto optimal solutions to model (M5). Therefore we have
obtained the optimal CSW: 𝑢∗

1
= 0.00157, 𝑢∗

2
= 0.00146,

𝑢
∗

3
= 0.00116, V∗

1
= 0.49818, and V∗

2
= 0.49763. The efficiency

scores of DMUs can then be calculated using the CSW and
the results are shown in the seventh column of Table 4, and
corresponding rankings are shown in the eighth column of
Table 4.

Table 4 shows that the rankings of DMUs using three
methods are not entirely consistent with each other. However,
Spearman’s rank correlation coefficients for the proposed
model and Azizi and Wang’s model [21] and Ramezani-
Tarkhorani et al.’s model [22] are calculated as 𝑟

𝑠
= 0.7929

and 0.8344, respectively. For the 𝛼 = 0.05 significant level, all
correlation coefficients are statistically significant. This result
shows that the rank that is determined by the proposedmodel
has the same direction as that of Azizi andWang’s model [21]
and Ramezani-Tarkhorani et al.’s model [22].

The main features of the proposed method compared to
Azizi and Wang’s method [21] and Ramezani-Tarkhorani et
al.’s method [22] are summarized as follows.

(1) In Azizi andWang’smethod [21], a pair of efficiencies,
the pessimistic efficiency and the optimistic efficiency,

is used to rank all DMUs; in the proposedmethod, the
neutral efficiency, not the pessimistic efficiency or the
optimistic efficiency, is used to rank all DMUs.

(2) In Azizi and Wang’s method [21], for each DMU,
the optimal weights for calculating the pessimistic
efficiency and the optimistic efficiency are obtained by
solving a LP problem, respectively, and the efficiencies
of DMUs may be unable to be ranked on the same
basis; in the proposed method, a MOP model is
proposed to derive a CSW, and then all DMUs can be
ranked on the same basis.

(3) In Ramezani-Tarkhorani et al.’ model [22], only the
date set of DEA efficient DMUs is used to determine
a CSW, and all DMUs are then ranked according to
the efficiency scores weighted by the CSW; in the
proposed method, the date set of all DMUs is used to
determine a CSW, and then all DMUs can be ranked
with complete information of all DMUs.

(4) In Ramezani-Tarkhorani et al.’ model [22], more than
one DMU is usually evaluated as efficient DMUs, and
thus new rules may be needed to rank the DMUs;
in the proposed method, the efficiencies of all DMU
have compensatory features, and thus all DMUs can
be fully discriminated.
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5. Conclusions

In this paper, we have developed a MOP model based on
compensatory DEA model to derive a CSW for fully ranking
DMUs. There are four features of the proposed ranking
method as follows.

(1) In this paper, an approximation algorithm based on
LP model is proposed to solve nonlinear program-
ming models (M1), (M7), and (M11), which are not
the convex optimization problem. It is desirable for
the reason that optimal solution for the LP problem is
global in contrast to the nonlinear one.

(2) We suppose that the sum of efficiency values of all
DMUs is equal to unity in the MOP model. It has
compensatory feature and can avoid the problem
that more than one DMU is evaluated as efficient.
Hence, using the proposed approach one can get a full
ranking of all DMUs.

(3) In order to avoid a choice of zero common weights,
the objectives of the proposed model are to simul-
taneously maximize all common weights assigned to
each input and output. So we can get a set of nonzero
common weights as big as possible.

(4) In this paper a CSW is used for calculating the effi-
ciency score of each DMU. Hence, all DMUs may be
able to be compared and ranked on the same basis
using the efficiency scores.

In future research, we will develop a newMOPmodel for
fully ranking DMUs by considering new objectives or some
weights constraints.
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