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Tracking a target in a cluttered environment is a representative application of sensor networks. In this paper, we develop a distributed
approach to estimate themotion states of a target using noisy measurements. Ourmethod consists of two parts. In first phase, using
the unscented sigma-point transformation techniques and information filter framework, a class of algorithms denoted as unscented
information filters was developed to estimate the states of a target to be tracked. These techniques exhibit robustness and accuracy
of sigma-point filters for nonlinear dynamic inference while being as easily fused as the information filters. In the second phase,
we proposed a novel consensus protocol which allows each sensor node to find a consistent estimate of the value of the target.
Under this protocol, the final estimate of the value of the target at each time step is iteratively updated only by fusing the neighbors’
measurements when one sensor node is out of the measurement scope of the target. Performance of the distributed unscented
information filter is demonstrated and discussed on a target tracking task.

1. Introduction

Recent advances in communication, computation, and emb-
edded technologies support the development of mobile
sensor networks (MSNs). The motivation behind MSNs is
that they have broad applications including target tracking,
cooperative detection of toxic chemicals in contaminated
environments, search and rescuing operations after disasters,
and forest fire monitoring [1–5]. One of the fundamental
purposes of the sensor networks is to estimate and track the
state of a process of interest using a large number of dispersed
wireless sensors.This is partly because of the fact thatmultiple
data sources can provide more complementary information
that is not available by individual source; moreover, strong
robust performance can be obtained because of the inherent
redundancy [6]. To implement the sensor fusion, two ques-
tions are often encountered about what information should
be communicated and how to fuse the received information.
Many strategies have been proposed to resolve these prob-
lems, in which the Kalman filter is one of the most significant
candidate. The sensor fusion architecture can be loosely

categorized into three types, that is, the centralized fusion, the
decentralized fusion, and the distributed fusion. In case of the
centralized fusion [7], all the measurements are transmitted
to a central processor, where a conventional Kalman filter or
its counterpart is used to obtain the global state estimates.
Although the centralized architecture is theoretically optimal
and it is also conceptually simple to implement, it suffers
from somedrawbacks, such as it needs a heavy computational
cost and may require a large amount of energy for a high
communication load. Furthermore, it is usually impossible to
apply a centralized processor when the sensor networks are of
large scale, and the fusion cannot be carried out if the central
unit fails. Therefore, a natural way is to implement the sensor
fusion in a decentralized architecture [8]. To be specific, a
group of local Kalman filters is used in parallel to obtain
sensor-based estimates. Then, the local estimates instead of
measurements are transmitted to the fusion center. To avoid
the requirement of a fusion center, a fully decentralized fusion
filter has been proposed in [9]; however, this scheme requires
every sensor to communicate with any other sensor node
and it is not scalable for large-scale sensor networks. In other
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words, the sensor networks should be fully connected, which
might not be possible in practical applications. Due to these
inherent limitations of centralized and decentralized fusion
algorithms, developing distributed algorithms has been the
subject of intensive studies by many researchers.

Based on the Kalman filter, many distributed estimation
algorithms have recently been proposed. As one typical of
these distributed estimation algorithms, Kalman consensus
filter received considerable attention for its fast convergence,
high estimation performance, and globally optimal estimates
without the requirement of a fusion center. Spanos et al.
[10] introduced consensus algorithms to the problem of
target state estimation in MSNs; the algorithms proposed
can be used to estimate the average value of all sensor
inputs. Saber [11–13] established the framework of distributed
Kalman filtering (DKF) algorithms and has done systematic
researches on Kalman consensus filter. The essence of DKF is
a networked multiagent system of communicating estimator
agents. Each estimator is computationally implemented as
an embedded microfilter module in a sensor. The main
objective is to design the estimator of every sensor so that
via local exchange ofmessages among neighboring nodes, the
networks of sensors collectively provide a cohesive set of esti-
mates of the state of the target. In [14], an information consen-
sus filter (ICF) was presented that applies consensus filters to
an information filter. Authors in [15, 16] proposed distributed
information and multiple model unscented Kalman filters
based on consensus for Jump Markov Nonlinear Systems.
Compared with the traditional centralized and decentralized
estimation schemes, several advantages emerge such as scal-
ability, low communication load, fast implementation, and
more robustness to sensor failures [10–16]. This is partly
due to the main features of distributed algorithms; that is,
each sensor node only communicates with its neighboring
peers and no fusion center is present. Moreover, DKF is
applicable to sensor networks with variable topologies and
networks with packet loss. Even DKF algorithms that have
been developed in the aforementioned references deal with
the distributed estimation problems smoothly; however,most
of them assumed that the target model to be estimated is
linear; moreover, they assumed that all the sensor nodes can
measure the target. In this note, with the help of the sigma-
point unscented transition approach, an unscented infor-
mation filter (UIF) is proposed to cope with the nonlinear
target models and this can be the first contribution of this
paper. In addition, a novel protocol was proposed when
using dynamic average-consensus strategies to the weighted
measurements and the inverse-covariance matrices to make
them reach a consensus state when one sensor node is out
of the measurement scope, and this could be the second
contribution of this work.

The remainder of this paper is organized as follows: in
Section 2, the distributed unscented information filter model
and distributed fusion objectives used throughout this paper
are stated. In Section 3, we develop the distributed informa-
tion fusion procedure using one novel consensus protocol,
and the corresponding convergence is analyzed. To illustrate
the novelty of the proposed algorithms, we present simulation

results in Section 4. Conclusions and future research works
are given in Section 5.

Notations. The following notations will be used throughout
this paper. 𝑅𝑛 and 𝐶

𝑛 denote the set of all 𝑛-dimensional real
and complex column vectors; 1 represents [1, . . ., 1]

𝑇 with
compatible dimensions (sometimeswe use 1

𝑛
to denote 1with

a dimension 𝑛); 𝑙 = {1, 2, . . . , 𝑛} denote a finite index set.
We use 𝑘 as the time step of the filter and [𝑘 − 1 | 𝑘 − 1],
[𝑘 | 𝑘 − 1], [𝑘 | 𝑘] as the optimal estimation of previous step,
prediction of the current step, and updating of the current
step, respectively.

2. Problem Statement and Preliminaries

2.1. Unscented Kalman Filtering at Local Processing Units.
Consider the following nonlinear Gaussian system model:

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘)) + 𝑤 (𝑘) ,

𝑧 (𝑘) = ℎ (𝑥 (𝑘)) + V (𝑘) ,
(1)

where 𝑓(⋅) is the state transition matrix and ℎ(⋅) is the mea-
surement matrix. 𝑥(𝑘) ∈ 𝑅

𝑛 is the system’s state vector, 𝑧(𝑘) ∈
𝑅
𝑚 is themeasurement,𝑤(𝑘) ∈ 𝑅

𝑛 is a Gaussian process noise
with the property that 𝑤(𝑘) ∼ 𝑁(0, 𝑄(𝑘)), and V(𝑘) ∈ 𝑅

𝑚 is a
Gaussian measurement noise denoted as V(𝑘) ∼ 𝑁(0, 𝑅(𝑘)).

The unscented Kalman filter (UKF) is a special of sigma-
point Kalman filters which uses the unscented transform for
computing approximate solutions to the filtering problem of
the system with form (1). Some basic operations performed
in the UKF algorithm are summarized as follows [17].

(1) Denoting the previous time step stated estimation as
𝑥[𝑘 − 1 | 𝑘 − 1], a set of 2𝑛 + 1 sigma points is taken
from the columns of the 𝑛 × 𝑛matrix as follows:

𝜉
0

[𝑘 − 1 | 𝑘 − 1] = 𝑥 [𝑘 − 1 | 𝑘 − 1] ,

𝜉
𝑖

[𝑘 − 1 | 𝑘 − 1] = 𝑥 [𝑘 − 1 | 𝑘 − 1]

+ [√(𝑛 + 𝜆) 𝑃 [𝑘 − 1 | 𝑘 − 1]]
𝑖

,

𝑖 = 1, . . . , 𝑛,

𝜉
𝑖

[𝑘 − 1 | 𝑘 − 1] = 𝑥 [𝑘 − 1 | 𝑘 − 1]

− [√(𝑛 + 𝜆) 𝑃 [𝑘 − 1 | 𝑘 − 1]]
𝑖

,

𝑖 = 𝑛 + 1, . . . , 2𝑛,

(2)

and the associate weights are computed as

𝜔
𝑚

0
=

𝜆

𝑛 + 𝜆
𝜔
𝑐

0
=

𝜆

(𝑛 + 𝜆) (1 − 𝛼2𝛽)

𝜔
𝑚

𝑖
=

1

2 (𝑛 + 𝜆)
𝜔
𝑐

𝑖
=

1

2 (𝑛 + 𝜆)
,

(3)

where 𝑖 = 1, 2, . . . , 2𝑛, 𝜆 = 𝛼
2

(𝑛 + 𝜅) − 𝑛 is a scaling
parameter, while 𝛼, 𝛽, and 𝜅 are constant parameters.



Mathematical Problems in Engineering 3

𝑃[𝑘 − 1 | 𝑘 − 1] is the covariance matrix of the state 𝑥
on previous time step and (√𝑃)

𝑖
denotes the 𝑖th row

of theCholesky decomposition of𝑃. It is shown in [17]
that this procedure produces accurate results for the
predicted mean and covariance up to the third order
of the Taylor series for Gaussian inputs and at least up
to the second order for other types of inputs.

(2) Transform each of the sigma points according to
system (1) to compute the predicted state 𝑥[𝑘 | 𝑘 − 1]

and the predicted covariance 𝑃[𝑘 | 𝑘 − 1] as

𝜉
𝑖

[𝑘 | 𝑘] = 𝑓 (𝜉
𝑖

[𝑘 − 1 | 𝑘 − 1]) ,

𝑖 = 0, 1, . . . , 2𝑛,

𝑥 [𝑘 | 𝑘 − 1] =

2𝑛

∑

𝑖=0

𝜔
𝑚

𝑖
𝜉
𝑖

[𝑘 | 𝑘] ,

𝑃 [𝑘 | 𝑘 − 1] =

2𝑛

∑

𝑖=0

𝜔
𝑐

𝑖
[𝜉
𝑖

[𝑘 | 𝑘] − 𝑥 [𝑘 | 𝑘 − 1]]

× [𝜉
𝑖

[𝑘 | 𝑘] − 𝑥 [𝑘 | 𝑘 − 1]]
𝑇

+ 𝑄 [𝑘 − 1] .

(4)

(3) Select the new predicted sigma point as 𝑥[𝑘 | 𝑘 − 1]

and 𝑃[𝑘 | 𝑘 − 1] to compute the propagation of state
𝑥[𝑘 | 𝑘]

𝜂
0

𝑘
= 𝑥 [𝑘 | 𝑘 − 1] ,

𝜂
𝑖

𝑘
= 𝑥 [𝑘 | 𝑘 − 1]

+ [√(𝑛 + 𝜆) 𝑃 [𝑘 | 𝑘 − 1]]
𝑖

,

𝑖 = 1, . . . , 𝑛,

𝜂
𝑖

𝑘
= 𝑥 [𝑘 | 𝑘 − 1]

− [√(𝑛 + 𝜆) 𝑃 [𝑘 | 𝑘 − 1]]
𝑖

,

𝑖 = 𝑛 + 1, . . . , 2𝑛.

(5)

(4) Compute the predicted 𝑧̂[𝑘 | 𝑘 − 1], covariance of the
measurement 𝑃

𝑧𝑧
[𝑘], and the cross covariance of the

state and measurement 𝑃
𝑥𝑧
[𝑘]

𝜁
𝑖

𝑘
= ℎ (𝜂

𝑖

𝑘
) , 𝑖 = 0, 1, . . . , 2𝑛,

𝑧̂ [𝑘 | 𝑘 − 1] =

2𝑛

∑

𝑖=0

𝜔
𝑚

𝑖
𝜁
𝑖

𝑘
,

𝑃
𝑧𝑧

[𝑘] =

2𝑛

∑

𝑖=0

𝜔
𝑐

𝑖
[𝜁
𝑖

𝑘
− 𝑧̂ [𝑘 | 𝑘 − 1]] [𝜁

𝑖

𝑘
− 𝑧̂ [𝑘 | 𝑘 − 1]]

𝑇

+ 𝑅 [𝑘 − 1] ,

(6)

𝑃
𝑥𝑧

[𝑘] =

2𝑛

∑

𝑖=0

𝜔
𝑐

𝑖
[𝜂
𝑖

𝑘
− 𝑥 [𝑘 | 𝑘 − 1]] [𝜁

𝑖

𝑘
− 𝑧̂ [𝑘 | 𝑘 − 1]]

𝑇

. (7)

(5) Update the filter gain 𝐾
𝑘
and the state 𝑥[𝑘 | 𝑘], the

covariance 𝑃[𝑘 | 𝑘], conditional to the new measure-
ment 𝑧[𝑘]

𝑥 [𝑘 | 𝑘] = 𝑥 [𝑘 | 𝑘 − 1] + 𝐾
𝑘
(𝑧 [𝑘] − 𝑧̂ [𝑘 | 𝑘 − 1])

𝐾
𝑘
= 𝑃
𝑥𝑧

[𝑘] 𝑃
𝑧𝑧
[𝑘]
−1

𝑃 [𝑘 | 𝑘] = 𝑃 [𝑘 | 𝑘 − 1] − 𝐾
𝑘
𝑃
𝑧𝑧

[𝑘]𝐾
𝑇

𝑘
.

(8)

2.2. Unscented Information Filtering. Conventional Kalman
filters deal with the estimation of states 𝑥[𝑖] and yield esti-
mates 𝑥[𝑖 | 𝑗] together with a corresponding estimate varia-
nce 𝑃[𝑖 | 𝑗]. The information filter deals instead with the
information state vector 𝑦[𝑖 | 𝑗] and information matrix
𝑌̂[𝑖 | 𝑗] defined as

𝑌 [𝑖 | 𝑗] = 𝑃
−1

[𝑖 | 𝑗]

𝑦 [𝑖 | 𝑗] = 𝑃
−1

[𝑖 | 𝑗] 𝑥 [𝑖 | 𝑗] ,

(9)

where 𝑖, 𝑗 are time indexes. We know that the information fil-
ter is mathematically equivalent to the Kalman filter accord-
ing to the matrix inversion lemma [9], so a set of recursion
equations for the information state and information matrix
can be derived directly from the equations of the Kalman
filter. Define the information-state contribution to 𝑦[𝑖 | 𝑗]

from an observation 𝑧[𝑘] as

𝑖 [𝑘] = 𝐻
𝑇

[𝑘] 𝑅[𝑘]
−1

𝑧 [𝑘] (10)

and the associated contribution to informationmatrix𝑌[𝑖 | 𝑗]
as

𝐼 [𝑘] = 𝐻
𝑇

[𝑘] 𝑅[𝑘]
−1

𝐻[𝑘] . (11)

For a linear discrete time model 𝑥[𝑘 + 1] = 𝐴[𝑘 − 1]𝑥[𝑘 −

1] +𝑤(𝑘−1) and the measurement model 𝑧[𝑘] = 𝐻[𝑘]𝑥[𝑘] +

V[𝑘], where𝐴[𝑘− 1] is the state transition matrix,𝐻[𝑘] is the
measurement matrix and 𝑤[𝑘], V[𝑘] with the same meanings
defined in (1).With the aforementioned definitions defined in
(9), (10), and (11), the recursive equations of the information
form of the Kalman filter can be written as follows [9].

(1) Prediction:

𝑌 [𝑘 | 𝑘 − 1] = {𝐴 [𝑘 − 1] 𝑌
−1

[𝑘 − 1 | 𝑘 − 1]𝐴
𝑇

× [𝑘 − 1] + 𝑄[𝑘 − 1]}
−1

𝑦 [𝑘 | 𝑘 − 1] = 𝑌 [𝑘 | 𝑘 − 1]𝐴 [𝑘 − 1] 𝑌
−1

× [𝑘 | 𝑘 − 1] 𝑦 [𝑘 − 1 | 𝑘 − 1] .

(12)

(2) Updating:

𝑌 [𝑘 | 𝑘] = 𝑌 [𝑘 | 𝑘 − 1] + 𝐼 [𝑘]

𝑦 [𝑘 | 𝑘] = 𝑦 [𝑘 | 𝑘 − 1] + 𝑖 [𝑘] .

(13)
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Just like the classical Kalman filters, the basic information
filters can only be used for linear system models. To deal
with the filter problems of nonlinear system (1), we can use
unscented transformation to replace𝐴[𝑘−1] and𝐻[𝑘] in the
linear model. The unscented information filter (UIF), which
is derived by embedding a statistical linear error propagation
approach based on the unscented transformation into the
information filter structure, will be proposed and presented
in this subsection.

As for the unscented transformation, the prediction of
information filter can be rewritten as

𝑌 [𝑘 | 𝑘 − 1] = 𝑃
−1

[𝑘 | 𝑘 − 1]

𝑦 [𝑘 | 𝑘 − 1] = 𝑌 [𝑘 | 𝑘 − 1]

2𝑛

∑

𝑖=0

𝜔
𝑚

𝑖
𝜉
𝑖

[𝑘 | 𝑘] ,

(14)

where 𝜉
𝑖

[𝑘 | 𝑘] and 𝑃[𝑘 | 𝑘 − 1] are defined in (4). Because
we did not have the accurate linearized measurement matrix
𝐻[𝑘], we cannot calculate the information contribution
defined by (10) and (11). Instead, it is assumed that the
nonlinear measurement equation of the system in (1) can
be mapped into a linear function of its statistical such as
mean and covariance, which makes it possible to use the
information update equations of the information filter. By
this assumption, the observation covariance and its cross-
covariance are approximated by

𝑃
𝑧𝑧

[𝑘] = 𝐸 [(𝑧 [𝑘] − 𝑧̂ [𝑘 | 𝑘 − 1]) (𝑧 [𝑘] − 𝑧̂ [𝑘 | 𝑘 − 1])
𝑇

]

≅ 𝐻 [𝑘] 𝑃 [𝑘 | 𝑘 − 1]𝐻
𝑇

[𝑘]

𝑃
𝑥𝑧

[𝑘] = 𝐸 [(𝑥 [𝑘] − 𝑥 [𝑘 | 𝑘 − 1]) (𝑧 [𝑘] − 𝑧̂ [𝑘 | 𝑘 − 1])
𝑇

]

≅ 𝑃 [𝑘 | 𝑘 − 1]𝐻
𝑇

[𝑘] ,

(15)

and 𝐻[𝑘] is the Jacobian of the output equation ℎ(𝑥[𝑘]).
Nextly, multiplying the predicted covariance and its inverse
termon the right side of the informationmatrix and replacing
𝑃[𝑘 | 𝑘 − 1]𝐻

𝑇

[𝑘] with 𝑃
𝑥𝑧
[𝑘] give the following representa-

tion of the information matrix:

𝐼 [𝑘] = 𝐻
𝑇

[𝑘] 𝑅
−1

[𝑘]𝐻 [𝑘]

= 𝑃
−1

[𝑘 | 𝑘 − 1] 𝑃 [𝑘 | 𝑘 − 1]𝐻
𝑇

[𝑘] 𝑅
−1

× [𝑘]𝐻 [𝑘] 𝑃
𝑇

[𝑘 | 𝑘 − 1] 𝑃
−𝑇

[𝑘 | 𝑘 − 1]

= 𝑃
−1

[𝑘 | 𝑘 − 1] 𝑃
𝑥𝑧

[𝑘] 𝑅
−1

[𝑘] 𝑃
𝑇

𝑥𝑧
[𝑘] 𝑃
−𝑇

[𝑘 | 𝑘 − 1] ,

(16)

where𝑃[𝑘 | 𝑘−1] is calculated according to (4) and the cross-
correlationmatrix𝑃

𝑥𝑧
[𝑘] is calculated from (6). Similarly, the

information state vector 𝑖[𝑘] can be rewritten as

𝑖 [𝑘] = 𝐻
𝑇

[𝑘] 𝑅
−1

[𝑘] {V [𝑘] + 𝐻 [𝑘] 𝑥 [𝑘 | 𝑘 − 1]}

= 𝑃
−1

[𝑘 | 𝑘 − 1] 𝑃 [𝑘 | 𝑘 − 1]𝐻
𝑇

[𝑘] 𝑅
−1

[𝑘]

× {V [𝑘] + 𝐻 [𝑘] 𝑃
𝑇

[𝑘 | 𝑘 − 1] 𝑃
−𝑇

× [𝑘 | 𝑘 − 1] 𝑥 [𝑘 | 𝑘 − 1] }

= 𝑃
−1

[𝑘 | 𝑘 − 1] 𝑃
𝑥𝑧

[𝑘] 𝑅
−1

[𝑘]

× {V [𝑘] + 𝑃
𝑇

𝑥𝑧
[𝑘] 𝑃
−𝑇

[𝑘 | 𝑘 − 1] 𝑥 [𝑘 | 𝑘 − 1]} .

(17)

From (16) and (17), we can find that the information
contribution is no longer associated with the measurement
equation directly. To complete the analogy to the information
contribution equations of the information filter, a pseudo-
measurement matrix is defined as

𝐻
𝑝

[𝑘] = 𝑃
−1

[𝑘 | 𝑘 − 1] 𝑃
𝑥𝑧

[𝑘] , (18)

where 𝑃
𝑥𝑧
[𝑘] is calculated from (6) with 𝑥[𝑘 | 𝑘 − 1], 𝜂𝑖

𝑘
, 𝜁𝑖
𝑘

and 𝑧̂[𝑘 | 𝑘 − 1] being defined in (4), (5), and (6). In terms
of the pseudo-measurement matrix 𝐻

𝑝

[𝑘], the information
contributions equations are written as

𝐼 [𝑘] = (𝐻
𝑝

[𝑘])
𝑇

𝑅
−1

[𝑘]𝐻
𝑝

[𝑘]

𝑖 [𝑘] = 𝐻
𝑝

[𝑘] 𝑅
−1

[𝑘] {V [𝑘] + (𝐻
𝑝

[𝑘])
𝑇

𝑥 [𝑘 | 𝑘 − 1]} .

(19)

Up to now, we can reach at the prediction and updating pro-
cedures of unscented information filter using (14) and (19).

2.3. Distributed Fusion Based on UIF. Consider a sensor
network with an ad hoc topology G that consists of a node
set V = {𝑠

1
, 𝑠
2
, . . . 𝑠
𝑛
} and an edge set E ⊆ V × V. The set

V consists of 𝑛 vertices representing the sensors that belong
to a finite set 1; an edge of G is denoted by 𝑒

𝑖𝑗
= (𝑠
𝑖
, 𝑠
𝑗
) ∈

E, which consists of unordered pairs of distinct vertices of
G and represents available communication links. The set of
neighbors of sensor node 𝑠

𝑖
is denoted by N

𝑖
= {𝑠
𝑗
∈ V :

(𝑠
𝑖
, 𝑠
𝑗
) ∈ E}. A path is a sequence of ordered edges of the

form (𝑠
𝑖
1

, 𝑠
𝑖
2

), (𝑠
𝑖
2

, 𝑠
𝑖
3

), . . . , (𝑠
𝑖
𝑗−1

, 𝑠
𝑖
𝑗

), where 𝑖
𝑗
∈ 1 and 𝑠

𝑖
𝑗

∈ V

and we called 𝑗 as the length of the path. If 𝑠
𝑖
1

= 𝑠
𝑖
𝑗

, then
the path is called a cycle; if 𝑗 = 1, that is, an edge from it to
itself, it is called a loop. The adjacent matrixA = [𝑎

𝑖𝑗
] ∈ 𝑅
𝑛×𝑛

is defined such that 𝑎
𝑖𝑗

= 𝑎
𝑗𝑖

> 0 if (𝑠
𝑗
, 𝑠
𝑖
) ∈ 𝜀, while

𝑎
𝑖𝑗
= 0, otherwise. Note that A is symmetric. The Laplacian

matrixL = [ℓ
𝑖𝑗
] ∈ 𝑅
𝑛×𝑛 associated withA can be defined as

ℓ
𝑖𝑖

= ∑
𝑛

𝑗=1, 𝑗 ̸= 𝑖
𝑎
𝑖𝑗
and ℓ
𝑖𝑗

= −𝑎
𝑖𝑗
, where 𝑖 ̸= 𝑗. Note that L is

symmetric positive. In addition, 0 is a simple eigenvalue ofL
with the associated eigenvector 1

𝑛
, and all other eigenvalues

ofL are positive if and only if graphG is connected.
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The main advantage of the information filter over the
Kalman filter in data fusion problems is the relative simplicity
of the update stage and its simple extension to multisensor
scenarios due to its characteristics of linear additivity. For a
system with 𝑛 sensors, the local UIF iterations for node 𝑖 are
in the form of

𝑌
𝑖
[𝑘 | 𝑘] = 𝑌

𝑖
[𝑘 | 𝑘 − 1] + 𝐼

𝑖
[𝑘] +

N
𝑖

∑

𝑗=1

𝐼
𝑗
[𝑘]

𝑦
𝑖
[𝑘 | 𝑘] = 𝑦

𝑖
[𝑘 | 𝑘 − 1] + 𝑖

𝑖
[𝑘] +

N
𝑖

∑

𝑗=1

𝑖
𝑗
[𝑘] .

(20)

Our main problem here is to compute the averages of
𝑌
𝑖
[𝑘 | 𝑘] and 𝑦

𝑖
[𝑘 | 𝑘] of all the sensors, whichmeans to drive

the information fusion of all the local sensors to a consensus
state.With above notations, themain problemswe concerned
in this paper can be formalized as follows:

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑖
[𝑘 | 𝑘] − 𝑌

𝑗
[𝑘 | 𝑘]

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} ,

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑖
[𝑘 | 𝑘] − 𝑦

𝑗
[𝑘 | 𝑘]

󵄩󵄩󵄩󵄩󵄩
󳨀→ 0, ∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} .

(21)

If the local fusion of each node satisfies with (21), we call
the fusion estimate algorithm as distributed estimation and
we will seek for such distributed estimation algorithms in the
following section.

3. Distributed Unscented Information
Filtering Using Consensus Seeking

3.1. Distributed Consensus Based Information Fusion. Dis-
tributed consensus filtering algorithms have been proposed
as important computational tools in [13–16] to make (21) be
carried out in a distributed manner by every sensor node.
In all these works, the scheme is to update the state of each
node according to some weighted linear combination of its
own and neighbors’ states; however, we know that during the
movement of the sensor nodes, the relative distance between
sensor nodes and target may change; hence, the target may be
out of measurement scope of the sensor node and therefore
senor nodes’ own information may not be available. To make
the algorithms proposed in the aforementioned references
be used when one sensor node is out of the scope of
measurement, we propose a novel distributed linear iterations
with the following form:

𝜍
𝑘

𝑖
[𝑙 + 1] =

1

𝜎
𝑖
[𝑙] 𝑎
𝑘

𝑖𝑖
[𝑙] + ∑

𝑗∈N
𝑖

𝑎
𝑘

𝑖𝑗
[𝑙]

×
{

{

{

𝜎
𝑖
[𝑙] 𝑎
𝑘

𝑖𝑖
[𝑙] 𝜍
𝑘

𝑖
[𝑙] + ∑

𝑗∈N
𝑖

𝑎
𝑘

𝑖𝑗
[𝑙] 𝜍
𝑘

𝑗
[𝑙]

}

}

}

,

(22)

where 𝑙 is iteration index and 𝑘 is the time step for the
information filter. The initial condition for (22) is given as
𝜍
𝑘

𝑖
(𝑙 = 0) = 𝑌

𝑖
[𝑘 | 𝑘] and 𝑦

𝑖
[𝑘 | 𝑘], respectively.

If the 𝑖th sensor can measure the target at time step 𝑘, then
𝜎
𝑖
[𝑙] = 1, otherwise, 𝜎

𝑖
[𝑙] = 0. In the following subsection,

we will analyze the convergence of (22) to deal with the main
problem (21) we concerned.

3.2. Convergence Analysis. The matrix form of (22) can be
written as

𝜍
𝑘

[𝑙 + 1] = 𝐷 [𝑙] 𝜍
𝑘

[𝑙] , (23)

where 𝜍𝑘 = [𝜍
𝑘

1

𝑇

, 𝜍
𝑘

2

𝑇

, . . . , 𝜍
𝑘

𝑛

𝑇

]
𝑇 and 𝐷[𝑙] = [𝑑

𝑖𝑗
] ∈ 𝑅
𝑛, (𝑖, 𝑗) ∈

{1, . . . , 𝑛}, with

𝑑
𝑖𝑗
=

{{{{{

{{{{{

{

𝑎
𝑖𝑗
[𝑙]

𝑎
𝑖𝑖
[𝑙] + ∑

𝑛

𝑗=1, 𝑗 ̸= 𝑖
𝑎
𝑖𝑗
[𝑙]

, 𝜎
𝑖
[𝑙] = 1,

𝑎
𝑖𝑗
[𝑙]

∑
𝑛

𝑗=1, 𝑗 ̸= 𝑖
𝑎
𝑖𝑗
[𝑙]

, 𝜎
𝑖
[𝑙] = 0,

𝑑
𝑖𝑖
=

{{

{{

{

𝑎
𝑖𝑖
[𝑙]

𝑎
𝑖𝑖
[𝑙] + ∑

𝑛

𝑗=1, 𝑗 ̸= 𝑖
𝑎
𝑖𝑗
[𝑙]

, 𝜎
𝑖
[𝑙] = 1,

0, 𝜎
𝑖
[𝑙] = 0.

(24)

It can be seen that 𝐷[𝑙] is a stochastic matrix. Before going
on, the following lemmas will be used.

Lemma 1 (see [18]). A nonnegative matrix 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑛 has

the same positive constant row sum 𝜇 > 0, namely,

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
= 𝜇, 𝑖 = 1, 2, . . . , 𝑛. (25)

Then 𝜇 is an eigenvalue of 𝐴 with an associated eigenvector
1 and 𝜌(𝐴) = 𝜇, where 𝜌(⋅) denotes the spectral radius. In
addition, the eigenvalue 𝜇 of 𝐴 has algebraic multiplicity equal
to one, if and only if the graph associated with 𝐴 has a
spanning tree. Furthermore, if the graph associated with 𝐴 has
a spanning tree and

𝑎
𝑖𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛, (26)

then 𝜇 is the unique eigenvalue of maximum modulus.

Lemma 2 (see [19]). Let 𝐴 ∈ 𝑅
𝑛 be nonnegative and irreduci-

ble, and let {𝑠
𝑖
} denote the set of vertices of the directed graph

Γ(𝐴). Denote by 𝐿
𝑖

= {󰜚
𝑖

1
, 󰜚
𝑖

2
, . . .} the set of lengths of all

directed paths in Γ(𝐴) that both start and end at the vertex
𝑠
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. Denote by 𝑔

𝑖
the greatest common divisor

of all the lengths in 𝐿
𝑖
. Then, 𝐴 is primitive if and only if all

𝑔
𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑛.

From Lemma 1, it can be seen that the condition in (26)
is sufficient for 𝜇 being the unique eigenvalue of maximum
modulus. In the following lemma, we show that the condition
in (26) can be relaxed.

Lemma 3. Suppose that a nonnegative matrix 𝐴 = [𝑎
𝑖𝑗
] ∈ 𝑅
𝑛

has the same positive constant row sum 𝜇 > 0. Then, 𝜇 is the
unique eigenvalue of maximum modulus if and only if either
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1

2

4 5 6 7

3

Figure 1: A directed graph of seven vertices that contains spanning
trees with vertices 1, 2, 4 as the root vertex, respectively, and vertex
2 has a self-loop.

(1) the graph Γ(𝐴) is strongly connected and all the lengths of
cycles in Γ(𝐴) are coprime or (2) the graph Γ(𝐴) is not strongly
connected but has a directed spanning tree, and at least one
of the root vertices has a self-loop (an example is shown in
Figure 1).

Proof. Consider two cases:

(i) if Γ(𝐴) is strongly connected, then by Lemma 1,
𝜌(𝐴) = 𝜇. Furthermore, according to Lemma 2, it can
be obtained that 𝜇 is the unique eigenvalue of maxi-
mum modulus, if and only if all the lengths of cycles
in Γ(𝐴) are coprime;

(ii) if Γ(𝐴) is not strongly connected, Lemma 1 implies
that 𝜇 is an eigenvalue of 𝐴 and 𝜇 has algebraic
multiplicity equal to one, if and only if the graph Γ(𝐴)

associated with 𝐴 has a spanning tree. In the follow-
ing, we will show that if the condition assumed in (2)
of Lemma 3 is satisfied, then there will be no other
eigenvalues for 𝐴 with modulus 𝜇.

Sufficiency. By Geršgorin disc theorem, all the eigenvalues of
𝐴 are located in the union of 𝑛 discs given by

∪
𝑛

𝑖=1

{

{

{

𝑧 ∈ 𝐶
𝑛

:
󵄨󵄨󵄨󵄨𝑧 − 𝑎

𝑖𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑅
󸀠

𝑖
(𝐴) =

𝑛

∑

𝑗=1, 𝑗 ̸= 𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

, (27)

where 𝑅
󸀠

𝑖
≡ ∑
𝑛

𝑗=1, 𝑗 ̸= 𝑖
|𝑎
𝑖𝑗
|, 1 ≤ 𝑖 ≤ 𝑛 is called the deleted

absolute row sums of 𝐴.
Without loss of generality, label the root vertex as vertex

1 and assume that 𝑎
11

> 0; that is, it has a self-loop and the
other diagonal entries of 𝐴 can be zero. By (27) and (25) and
because 𝑎

11
> 0, there are atmost 𝑛−1 same discs centering at

the origin and having radius 𝜇. When 𝑎
11

> 0, it is obviously
that𝑅󸀠

1
< 𝜇 and its disc is contained in the discs of radius𝜇. As

a result, all the eigenvalues of𝐴 are in the discs of radius 𝜇 and
there is only one intersection point on the right axis 𝑥

0
= 𝜇.

This can be shown by contradiction as follows. Assume that
there exists a 𝜆∗ = 𝜇⋅cos 𝜃+𝑤 ⋅𝜇⋅sin 𝜃which is different from
𝜇 such that𝐴𝑥

∗

= 𝜆
∗

𝑥
∗

, 𝑥
∗

= [𝑥
𝑖
] ̸= 0, where𝑤 is imaginary

part. According to Geršgorin theorem, |𝜆∗| = 𝜇 implies that
𝜆
∗ is a boundary point of the discs with radius 𝜇. Suppose

that 𝛿 is an index such that |𝑥
𝛿
| = max

1≤𝑖≤𝑛
|𝑥
𝑖
| = ‖𝑥

∗

‖
∞

̸= 0.
When 𝜃 = 0, it will be that 𝜆∗ = 𝑥

0
= 𝜇. As a result, 0 < 𝜃 <

2𝜋. Due to 𝐴𝑥 = 𝜆𝑥, we have

(𝜆 − 𝑎
𝑖𝑖
) 𝑥
𝑖
=

𝑛

∑

𝑗=1, 𝑗 ̸= 𝑖

𝑎
𝑖𝑗
𝑥
𝑗
, 𝑖 = 1, . . . , 𝑛. (28)

In terms of (28), we get

󵄨󵄨󵄨󵄨𝜆 − 𝑎
𝑖𝑖

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑥𝑖

󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1, 𝑗 ̸= 𝑖

𝑎
𝑖𝑗
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑

𝑗=1, 𝑗 ̸= 𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨

=

𝑛

∑

𝑗=1, 𝑗 ̸= 𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
≤

𝑛

∑

𝑗=1, 𝑗 ̸= 𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑥𝛿
󵄨󵄨󵄨󵄨 = 𝑅
󸀠

𝑖

󵄨󵄨󵄨󵄨𝑥𝛿
󵄨󵄨󵄨󵄨 .

(29)

Thus, on one hand, if 𝑙 is any index such that 𝑥
𝑙
= |𝑥
𝛿
|, we

must have |𝜆 − 𝑎
𝑙𝑙
| ≤ 𝑅
󸀠

𝑙
. On the other hand, we have to show

that 𝜆∗ is a point on the boundary of the discs with radius 𝜇,
whichmeans that 𝜆∗ is not an interior point of any Geršgorin
disc. Therefore, |𝜆∗ − 𝑎

𝑙𝑙
| ≥ 𝑅
󸀠

𝑙
. As a result, for 𝑖 = 𝑙, we get

󵄨󵄨󵄨󵄨𝜆
∗

− 𝑎
𝑙𝑙

󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝑥𝑙

󵄨󵄨󵄨󵄨 =

𝑛

∑

𝑗=1, 𝑗 ̸= 𝑙

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑙𝑗

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨

=

𝑛

∑

𝑗=1, 𝑗 ̸= 𝑙

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑙𝑗

󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨𝑥𝑙

󵄨󵄨󵄨󵄨 = 𝑅
󸀠

𝑖

󵄨󵄨󵄨󵄨𝑥𝑙
󵄨󵄨󵄨󵄨 ,

(30)

which implies |𝜆∗ −𝑎
𝑙𝑙
| ⋅ |𝑥
𝑙
| = 𝑅
󸀠

𝑖
⋅ |𝑥
𝑙
|. Since |𝑥

𝑙
| = ‖𝑥‖

∞
> 0,

we have |𝜆∗ −𝑎
𝑙𝑙
| = 𝑅
󸀠

𝑖
. This means that 𝜆∗ is in the boundary

of the 𝑙th disc. As a result, if 𝑙 is any index such that 𝑥
𝑙
= |𝑥
𝛿
|,

then 𝜆
∗ is in the boundary of the 𝑙th disc. According to (30),

it follows that
𝑛

∑

𝑗=1, 𝑗 ̸= 𝑙

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑙𝑗

󵄨󵄨󵄨󵄨󵄨
(
󵄨󵄨󵄨󵄨𝑥𝑙

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
) = 0. (31)

In (31), if |𝑎
𝑙𝑗
| > 0, then |𝑥

𝑙
| − |𝑥

𝑗
| = 0. As a result, 𝜆∗

is in the boundary of 𝑗th disc. Because there exists at least
one spanning tree in Γ(𝐴), then there is a directed path
from the root vertex V

1
to any other vertices including the

vertex V
𝑙
. Thus, a path (𝑠

1
, 𝑠
𝑗
1

), (𝑠
𝑗
1

, 𝑠
𝑗
2

), . . . , (𝑠
𝑗
𝑟−1

, 𝑠
𝑗
𝑟

) with
length 𝑟 exists, and all the corresponding weighting factors
{𝑎
𝑗
1
1
, 𝑎
𝑗
2
𝑗
1

, . . . , 𝑎
𝑙𝑗
𝑟

} are greater than zero. Using (31), it follows
that 𝑥

1
= 𝑥
𝑗
1

= 𝑥
𝑗
2

= ⋅ ⋅ ⋅ = 𝑥
𝑗
𝑟

= 𝑥
𝑙
; this means that

𝜆
∗ is in the boundary of the 1th, 𝑗

1
th, 𝑗
2
th, . . ., and the 𝑗

𝑟
th

discs. But the radius of the 1th disc is 𝜇− 𝑎
11
which is smaller

than 𝜇 and there is only one intersection point 𝑥
0
= 𝜇; see

Figure 2. This is a contradiction. Thus, we have that 𝜆 = 𝜇

is the unique eigenvalue of maximum modulus. In addition,
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x0 = 𝜇(0, 0)

Figure 2: The location of eigenvalues of 𝐴.

due to the same sum row of 𝐴, it is can be derived that 𝑥 = 1
is the right eigenvector corresponding to 𝜇.

Necessity. We prove this part by contraposition. Without loss
of generality, we assume that there exists a spanning tree with
vertex 𝑠

𝑖
1

as its root with the property that it does not have
a self-loop; that is, (𝑠

𝑖
1

, 𝑠
𝑖
1

) ∉ 𝜀. Suppose that subgraph G
𝑠

induced by 𝑠
𝑖
1

, 𝑠
𝑖
2

, . . . , 𝑠
𝑖
𝑘

(1 ≤ 𝑘 ≤ 𝑛) is the maximal-induced
subgraph and itself is a cycle but all vertices in G

𝑠
do not

have self-loops. Let the vertices in V − {𝑠
𝑖
1

, 𝑠
𝑖
2

, . . . , 𝑠
𝑖
𝑘

} be
𝑠
𝑖
𝑘+1

, 𝑠
𝑖
𝑘+2

, . . . , 𝑠
𝑖
𝑛

. Then, there exists a permutation matrix 𝑃

such that

𝑃𝐵𝑃
−1

= [
𝐵
11

𝐵
12

𝐵
21

𝐵
22

] , (32)

where 𝐵 = 𝐴 − 𝜇𝐼
𝑛
and

𝐵
11

=
[
[

[

𝑏
𝑠
1
,𝑠
1

⋅ ⋅ ⋅ 𝑏
𝑠
1
,𝑠
𝑘

... d
...

𝑏
𝑠
𝑘
,𝑠
1

⋅ ⋅ ⋅ 𝑏
𝑠
𝑘
,𝑠
𝑘

]
]

]

,

𝐵
12

=
[
[

[

𝑏
𝑠
1
,𝑠
𝑘+1

⋅ ⋅ ⋅ 𝑏
𝑠
1
,𝑠
𝑛

... d
...

𝑏
𝑠
𝑘
,𝑠
𝑘+1

⋅ ⋅ ⋅ 𝑏
𝑠
𝑘
,𝑠
𝑛

]
]

]

,

𝐵
21

=
[
[

[

𝑏
𝑠
𝑘+1
,𝑠
1

⋅ ⋅ ⋅ 𝑏
𝑠
𝑘+1
,𝑠
𝑘

... d
...

𝑏
𝑠
𝑛
,𝑠
1

⋅ ⋅ ⋅ 𝑏
𝑠
𝑛
,𝑠
𝑘

]
]

]

,

𝐵
22

=
[
[

[

𝑏
𝑠
𝑘+1
,𝑠
𝑘+1

⋅ ⋅ ⋅ 𝑏
𝑠
𝑘+1
,𝑠
𝑛

... d
...

𝑏
𝑠
𝑛
,𝑠
𝑘+1

⋅ ⋅ ⋅ 𝑏
𝑠
𝑛
,𝑠
𝑛

]
]

]

.

(33)

Since G
𝑠
is maximal, then 𝐵

12
= 0. Furthermore, G

𝑠
is

itself a cycle without self-loops, so all diagonal entries of 𝐵
11

are zeros and zero is one eigenvalue of it. Consider that Γ(𝐴)

1

2

4 5 6 7

3

Figure 3:Adirected graph of seven vertices that contains a spanning
tree and the root vertex has a self-loop.

has a spanning tree, which means that zero is one eigenvalue
of 𝐵
22
.Thus, we know that 𝐵 has at least two zero eigenvalues,

which in turn implies that 𝐴 has more than one eigenvalue
equal to 𝜇, which contradicts the assumption. Thus, there
must be at least one vertex in G

𝑠
that has a self-loop. This

completes the proof.

Remark 4. From Lemma 3, it can be seen that if Γ(𝐴) is not
strongly connected, then at least one of the root vertices
has a self-loop to ensure 𝜇 being the unique eigenvalue of
maximum modulus. On the other hand, if Γ(𝐴) is strongly
connected, the existence of a self-loop is not necessary, but
one vertex having a self-loop is sufficient to guarantee 𝜇 being
the unique eigenvalue with maximum modulus. If the graph
is strongly connected, then there must be a cycle including
all the 𝑛 vertices; that is, a cycle of length 𝑛 exists for every
vertex. Furthermore, if there is a vertex having a self-loop,
then the cycle of length 1 exists and it is called a trivial cycle.
As a result, the cycles of lengths 𝑛 (not passing the loop) and
𝑛 + 1 (passing the loop) exist for every vertex. Since 𝑛 and
𝑛 + 1 are coprime, by Lemma 2, we have 𝐴 as primitive. If
there are 𝑑 (1 ≤ 𝑑 < 𝑛) loops in Γ(𝐴), then there are 𝑑

positive diagonal entries in 𝐴, which means that the cycles
of length 1 exist. Using the same discussion above, we have𝐴
as primitive. In particular, if each vertex has a self-loop, then
the result in Lemma 3 reduces to that in [18] (Figure 3).

Based on Lemma 3, the necessary and sufficient condi-
tions on guaranteeing consensus using the designed protocol
results are summarized inTheorem 5.

Theorem 5. Let G be a fixed interaction topology of a sensor
networks. If and only if either (1)G is strongly connected and all
the lengths of cycles in G are coprime (2) or the graph G is not
strongly connected but has a directed spanning tree and the root
vertices (i.e., vertices have directed paths to all other vertices)
exist and at least one of them has a self-loop, then the problem
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(21) we concerned can be solved asymptomatically by using the
novel protocol (22).

Proof. When the graphG is not strongly connected consider
the following.

(i) Sufficiency. In (23), the update matrix 𝐷 correspond-
ing toG is fixed, and we have

𝜍
𝑘

[𝑙 + 1] = 𝐷𝜍
𝑘

[𝑙] , 𝑙 = 0, 1, 2, . . . . (34)

Since 𝐷 is a stochastic matrix, by Lemma 3, 𝜇 = 1 is
the unique eigenvalue of maximum modulus. It can
be obtained that 𝐷 is indecomposable and aperiodic
(SIA). As a result, there is a constant vector such that
lim
𝑚→∞

𝐷
𝑚

= 1]𝑇 which implies

lim
𝑙→∞

𝜍
𝑘

[𝑙 + 1] = lim
𝑙→∞

𝐷
𝑙

𝜍
𝑘

[0] = 1]𝑇 ⋅ 𝜍𝑘 [0] . (35)

Thus, the consensus is achieved.

(ii) Necessity. If the root vertex has no self-loop, according
to Lemma 3, 𝜇 = 1 is not the unique eigenvalue
of maximum modulus and consensus cannot be
achieved. When the graphG is strongly connected, if
and only if all the lengths of cycles in G are coprime,
and 𝜇 = 1 is the unique eigenvalue ofmaximummod-
ulus. Under this condition, the distributed estimation
can be achieved by following the similar analysis of
the above discussion. The proof is completed.

4. Simulation Results

Consider a target with dynamics

x (𝑘) = Φx (𝑘 − 1) + Γ𝑤 (𝑘) (36)

with

Φ =
[
[
[

[

1 𝑇 0 0

0 1 0 0

0 0 1 𝑇

0 0 0 1

]
]
]

]

,

Γ =

[
[
[
[
[
[

[

𝑇
2

2
0

𝑇 0

0
𝑇
2

2
0 𝑇

]
]
]
]
]
]

]

,

(37)

where 𝑇 = 1 s is the sampling interval and 𝑤[𝑘] is the cor-
responding Gaussian motion noise with covariance 𝑄[𝑘] =

(1𝑒 − 3) ∗ diag[0.5m/s2, 1m/s2], while x[𝑘] = [𝑥[𝑘], 𝑥̇[𝑘],

𝑦[𝑘], ̇𝑦[𝑘]] represents the coordinates and the velocities.
A sensor network with three located nodes is used in this

simulation (see Figure 4). The nodes make noisy measure-
ment of the distance between target and observing station;
that is

𝑧
𝑖
(𝑘) = √(𝑥

𝑖
(𝑘) − 𝑥

0
)
2

+ (𝑦
𝑖
(𝑘) − 𝑦

0
)
2

+ V
𝑖
(𝑘) , (38)

1

2

3

Figure 4: Communication topology of sensor nodes.

0 20 40 60 80 100 120 140
200

400

600

800

1000

1200

1400

Truth
UIF1

UIF2
UIF3

X (m)

Y
(m

)
Figure 5: Target tracking trajectories of sensor nodes.

where 𝑧
𝑖
[𝑘] is the observed range by 𝑖th node and V

𝑖
[𝑘]

is the corresponding Gaussian measurement noise with
covariance 𝑅[𝑘] = 5m. (𝑥

0
, 𝑦
0
) = [200; 300] is the posi-

tion of observing station. The initial state of the target is
[0m; 2m/s; 200/m; 20m/s].

Figure 5 shows the truth target trajectory and actual
trajectories of the sensor nodes. It can be seen that all
the trajectories estimated by the algorithm proposed have
good tracking performance for the truth target trajectory.
Figure 6 depicts a comparison of root mean square errors
(RMSEs) of target position estimation error of each nodes;
it can be seen that the target position estimation RMSEs of
all nodes are as low as to zero. The consecutive snapshots
of errors of target position estimation in 𝑥-axis and 𝑦-
axis between each node are depicted in Figures 7 and 8;
it demonstrates that the estimates by each node can reach
consensus states ultimately. Considering the fact that the cen-
tralized algorithms are optimal theoretically, we compared
the RMSE of target position estimation error between each
sensor node and the centralized algorithm in Figure 9. It can
be seen that the estimated error of each node is as low as to
the centralized algorithm, which shows that the distributed
unscented information filter proposed has good performance
for tracking the target coordinately in sensor networks.

5. Conclusions

A novel consensus-based distributed unscented information
filter for mobile sensor networks is presented in this work,
which integrates the unscented information filer and consen-
sus algorithm, as well as a new framework for the considera-
tion of one sensor node being out of the measurement scope
of the target to be tracked. A target tracking application by
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Figure 6: RMSE of target position estimation error.
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Figure 7: Comparison of target position estimation consensus
errors between each sensor node in 𝑥-axis.
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Figure 8: Comparison of target position estimation consensus
errors between each sensor node in 𝑦-axis.
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Figure 9: Comparison of target position estimation performance
between each sensor node and centralized algorithm.

three sensor nodes is employed to illustrate the performance
of the proposed algorithm. The simulation results show that
the algorithm proposed can be used to coordinated target
tracking scenes in sensor networks. As we know, the fusion
techniques are only tools being used to process the measured
date; however, the quality of the sensed date is the key for
the filter algorithm, so how to use the estimated date to
drive the sensor nodes coordinately to get high quality dates
is important and this could be our ongoing works. Fur-
thermore, issues revolving communication problems among
sensor nodes such as switching topologies (time-varying
network topologies) and time delays pose many challenging
problems that warrant further research.
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