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Pareto dominance is an important concept and is usually used inmultiobjective evolutionary algorithms (MOEAs) to determine the
nondominated solutions. However, for many-objective problems, using Pareto dominance to rank the solutions even in the early
generation, most obtained solutions are often the nondominated solutions, which results in a little selection pressure of MOEAs
toward the optimal solutions. In this paper, a new rankingmethod is proposed formany-objective optimization problems to verify a
relatively smaller number of representative nondominated solutionswith a uniform andwide distribution and improve the selection
pressure ofMOEAs. After that, amany-objective differential evolutionwith the new rankingmethod (MODER) for handlingmany-
objective optimization problems is designed. At last, the experiments are conducted and the proposed algorithm is compared with
several well-known algorithms.The experimental results show that the proposed algorithm can guide the search to converge to the
true PF and maintain the diversity of solutions for many-objective problems.

1. Introduction

Multiobjective evolutionary algorithms (MOEAs) are a kind
of effective methods for solving multiobjective problems
[1, 2]. Almost all well-known and frequently used MOEAs,
which have been proposed in the last twenty years [3–5],
are based on Pareto dominance. Such Pareto dominance-
based algorithms usually work well on problems with two
or three objectives but its searching ability is often severely
degraded by the increased number of objectives [6]. This is
due to the fact that most solutions in a population could
be nondominated solutions under many objectives even in
the early stages of evolution for many-objective optimization
problems. When almost all solutions in a population are
nondominated solutions, Pareto dominance-based fitness
evaluation almost cannot generate any selection pressure
toward the Pareto front (PF). Therefore, how to increase the
selection pressure toward the PF is critical for the many-
objective optimization algorithm.

In the literature, there are mainly three categories which
are used toMOEAs to deal withmany-objective optimization

problems. The first category uses an indicator function, such
as the hypervolume [7–9], as the fitness function. This kind
of algorithms is also referred to as IBEAs (indicator-based
evolutionary algorithms), and their high search ability has
been demonstrated in the literature [10]. Bader and Zitzler
[11] propose a fast hypervolume-based many-objective opti-
mization algorithm which uses Monte Carlo simulation to
quickly approximate the exact hypervolume values. However,
one of their main drawbacks is the computation time for the
hypervolume calculation which exponentially increases with
the number of objectives.

The second category utilizes the scalarizing functions
to deal with the many-objective problem. According to
the literatures [12–14], scalarizing function-based algorithms
could better deal with many-objective problems than the
Pareto dominance-based algorithms. The main advantage
of scalarizing function-based algorithms is the simplicity of
their fitness evaluation which can be easily calculated even if
the number of objectives is large. The representative MOEA
in this category isMOEA/D [15] (multiobjective evolutionary
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Table 1: Multiobjective benchmark functions.
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algorithm based on decomposition), which works well on
a wide range of multiobjective problems with many objec-
tives, discrete decision variables, and complicated Pareto
sets [16–18]. In MOEA/D [15], the uniformity of the used
weighted vectors determines the uniformity of the obtained
nondominated optimal solutions; however, the usedweighted
vectors in MOEA/D are not very uniform and the size 𝑁
of these weighted vectors should satisfy the restriction 𝑁 =
𝐶𝑚
𝐻+𝑚−1

.Thus𝑁 cannot be freely assigned and it will increase
nonlinearly with the increase of𝑚, where𝑚 is the number of
objectives and 𝐻 is an integer. This restricts the application
of MOEA/D to many-objective optimization problems (i.e.,
𝑚 is large). Therefore, for many-objective problems, how to
set weight vectors is a very difficult but critical task.

The third category makes use of solution ranking meth-
ods. Specifically, solution ranking methods are used to dis-
criminate among solutions in order to enhance the selection
pressure toward the PF, which make sure the solutions are
able to converge to the PF. Bentley and Wakefield [19]
proposed ranking composition methods which extract the
separated fitness of every solution into a list of fitness values
for each objective. Ikeda et al. [20] proposed a relaxed
form of dominance (RFD) to deal with what they called
dominance resistant solutions, that is, solutions that are
extremely inferior to others in at least one objective but
are hardly dominated. Farina and Amato [21] proposed a
dominance relation which takes into account the number
of objectives where a solution is better, equal, and worse
than another solution. Sato et al. [22] proposed a method to
strengthen or weaken the selection process by expanding or
contracting the solutions’ dominance area.

In this paper, a new ranking approach for many-objective
problems is proposed to rank the obtained solutions. In this
approach, for each solution, a small number of virtual objec-
tive vectors which are evenly distributed around the objective
vector of the solution are generated to determine whether
the solution is a nondominance solution. The selection
pressure, the diversity of solutions, and time consumption are
taken into consideration by the ranking method. Moreover,
a multiobjective DE algorithm based on the new ranking

method is designed to solve many-objective optimization
problems.

The remainder of this paper is organized as follows.
Section 2 introduces the new ranking method. The proposed
many-objective algorithm is proposed in Section 3. Section 4
shows the experimental results of the proposed algorithm.
Finally, Section 5 gives the conclusions and future works.

2. The New Ranking Method

A multiobjective optimization problem can be formulated as
follows [23]:
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variable and 𝑋 is 𝑛-dimensional decision space. 𝑓
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1, 2, . . . , 𝑝) defines 𝑗th equality constraint. Furthermore, all
the constraints determine the set of feasible solutions which
are denoted by Ω. To be specific, we try to find a feasible
solution 𝑥 ∈ Ωminimizing each objective function𝑓

𝑖
(𝑥) (𝑖 =

1, . . . , 𝑚) in 𝐹 (Table 1).

Definition 1 (Pareto dominance). Pareto dominance between
solutions 𝑥, 𝑧 ∈ Ω is defined as follows. If

∀𝑖 ∈ {1, 2, . . . , 𝑚} 𝑓
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(2)

are satisfied, 𝑥 dominates (Pareto dominate) 𝑧 (denoted by
𝑥 ≻ 𝑧).

For many-objective problems, to determine whether a
solution is a nondominated one by using Pareto dominance,
all other solutions should be used to make the comparisons
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of objectives one by one among all objectives, and a lot
of comparisons (thus a large amount of computation) will
be needed. Also, Pareto dominance will result in a lot
of nondominated solutions. In this work, a new ranking
method is designed to determine whether a solution is a
nondominated solution by only using a small number of
virtual objective vectors. For each solution 𝑥, 𝑚 points in
objective space are generated on the following surface:

𝑓𝑃
1
+ 𝑓𝑃
2
+ ⋅ ⋅ ⋅ + 𝑓𝑃

𝑚
= 𝑅𝑃, (3)

where 𝑃 > 0 and it controls the shape and size of the surface;
𝑅 = min{‖𝐹(𝑥)‖

𝑃
| 𝑥 ∈ POP}, where POP is the set of

the current solutions. Before the 𝑚 points are generated, 𝑚
vectors (𝐷𝑖, 𝑖 = 1, . . . , 𝑚) are firstly generated. The 𝑖th vector
𝐷𝑖 = (𝑑
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, . . . , 𝑑
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where 𝑜 = (𝑜
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𝑖=1
𝑓
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After𝐷𝑖 is obtained, the 𝑖th virtual vector is generated by the
following formula:

𝑉𝑖 = 𝑅 ∗
𝐷𝑖

󵄩󵄩󵄩󵄩𝐷
𝑖󵄩󵄩󵄩󵄩𝑃

. (5)

Note that these 𝑚 virtual vectors have the same and the
smallest norm (𝑃-norm) among all obtained solutions and
distribute evenly around the objective vector of the solution
𝑥. Moreover, for any virtual vector, for example, 𝑉𝑖 (𝑖 =
1, . . . , 𝑚), its 𝑖th component is not larger than 𝑓

𝑖
(𝑥) and

the 𝑖th component of 𝐷𝑖 is not larger than 𝐻𝑜
𝑖
, which

indicate that the virtual vector 𝑉𝑖 more likely dominates the
solution𝐹(𝑥) than other virtual vectors whose corresponding
𝑖th component of 𝐷𝑖 is larger than 𝐻𝑜

𝑖
. Thus, if 𝐹(𝑥) is

not dominated by these 𝑚 virtual vectors, the solution 𝑥
can be regarded as a nondominated solution (of course,
it may be a dominated one, but it is more possible to be
a nondominated one); otherwise, the solution 𝑥 can be
regarded as a dominated solution.

The parameter 𝐻 plays a very important role in this
method which controls the convergence and diversity of
solutions. The larger the value of 𝐻 is, the better the
convergence of solutions is. However, if the surface and the
true PF are in great difference, a large value of𝐻 will lead to
the poor diversity.Therefore, the value of𝐻 should be traded
off between the convergence and diversity of solutions.

The proposed ranking method has the following advan-
tages.

(1) For each solution 𝑥 of the set POP whose size is 𝑁,
this method only needs to make comparisons among
𝑚+1 points, instead of𝑁 points (𝑚 ≪ 𝑁), which can
reduce much time consumption.

(2) The value of 𝑖th component of 𝑉𝑖 is not more than
𝑓
𝑖
(𝑥), and the angle of𝑉𝑖 and𝐹(𝑥) is very small, which

make 𝐹(𝑥) easily dominated by 𝑉𝑖. Thus, the number
of nondominated solutions generated by the method
is not too large, and the selection pressure can be
enhanced.

(3) In this method, maximum 𝑚 points need additional
space to store, which only takes a small amount of
storage space.

(4) This method can balance the convergence and diver-
sity by adjusting the parameter𝐻.

3. Algorithm

In this section, a many-objective optimization evolutionary
algorithm is presented. The algorithm uses DE [24, 25]
operator to generate offspring and the (𝜇+𝜆) selection scheme
to generate the next population. DE is a good optimizer
for continuous optimization. The trial vector generation
comprises two operators: mutation and crossover operators.
The mutation operator which is used in our algorithm is
performed as follows:

𝑢𝑡
𝑖
= 𝑥𝑡
𝑟1
+ 𝐿 (𝑥𝑡

𝑟2
− 𝑥𝑡
𝑟3
) , (6)

where 𝑡 is the generation number; 𝑥𝑡
𝑟1
and 𝑥𝑡

𝑟2
are two ran-

dom nondominated solutions among the current population
POP(𝑡); 𝑥𝑡

𝑟3
is a random solution among POP(𝑡) except for

𝑥𝑡
𝑟1
and 𝑥𝑡

𝑟2
; 𝑢𝑡
𝑖
is 𝑖th mutation offspring; 𝐿 is the scale factor

which is usually in (0, 1].
The crossover operator is described as follows:

V𝑡
𝑖,𝑗
= {

𝑢𝑡
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, if rand ≤ CR and 𝑙
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𝑗

𝑥𝑡
𝑖,𝑗
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where CR is the crossover rate which is usually in (0 1); 𝑙
𝑗
and

𝑢
𝑗
are the lower bound and upper bound of the variable 𝑥

𝑗
,

respectively; V𝑡
𝑖
= (V𝑡
𝑖,1
, . . . , V𝑡

𝑖,𝑛
) is the offspring.

In classical DE, the control parameters 𝐹 and CR highly
affect its performance. Different settings of those parameters
influence the quality of offspring which are generated by the
mutation and crossover. In this paper, a self-adjusted param-
eter control strategy is presented to balance exploration and
exploitation. For each solution 𝑥𝑡, its two control parameters
which are used to generate the offspring are determined as
follows:

CR = {
0.5, if rand < 0.5
𝑒−2𝑡/𝑔max , else,

𝐿 = {
0.5, if rand < 0.5
𝑒−2𝑡/𝑔max , else,

(8)

where 𝑔max is the maximal generation.
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(1) The population POP
(2) Each solution of POP is firstly considered as a non-dominate solution
(3) Determine the values of 𝑅 and 𝑃
(4) for each solution 𝑥 ∈ POP do
(5) 𝑖 = 1, while 𝑖 ≤ 𝑚
(6) Obtained the 𝑖th vector𝐷𝑖 by optimizing the formula (4);
(7) then set 𝑉𝑖 = 𝑅 ∗ 𝐷𝑖/‖𝐷𝑖‖

𝑃

(8) If 𝑉𝑖 dominates 𝐹(𝑥) then
(9) 𝑥 is a dominate solution and set 𝑖 = 𝑚 + 1
(10) else
(11) 𝑖 = 𝑖 + 1
(12) end if
(13) end while
(14) end for

Algorithm 1: The ranking algorithm.

Based on the above methods, a new multiobjective
differential evolution based on the new ranking method is
proposed (MODER) for many-objective optimization prob-
lems and the steps of the algorithmMODER are described as
follows.

Step 1 (initialization). Randomly generate an initial popula-
tion POP(𝑡) whose size is𝑁 and 𝑡 = 0.

Step 2 (fitness). Solutions of POP(𝑡) are firstly divided into
two sets (the set of nondominated solutions and the set
of dominated solutions) by the proposed ranking method
(Algorithm 1). For each set, the fitness value of each solution
in the set is calculated by the crowding distance. Then 𝑁
better solutions are selected from the population POP(𝑡) and
put these solutions into the population POP. In this work,
binary tournament selection is used.

Step 3 (new solutions). Apply (6)–(8) or simulated binary
crossover [26] to the parent population POP to generate
offspring. The set of all these offspring is denoted by 𝑂 and
its size is𝑁.

Step 4 (generate POP(𝑡 + 1)). Solutions of POP(𝑡) ∪ 𝑂 are
firstly divided into two sets by the proposed ranking method.
For each set, the fitness value of each solution in the set is
calculated by the crowding distance. Then𝑁 better solutions
are selected from the population POP(𝑡) ∪ 𝑂 and put these
solutions into the population POP(𝑡 + 1). Let 𝑡 = 𝑡 + 1.

Step 5 (termination). If stop condition is satisfied, stop;
otherwise, go to Step 2.

4. Experimental Studies

In order to validate our algorithm,MODER is fully compared
with MOEA/D [17], NSGAII [3], and NSGAII based on
contracting or expanding the solutions’ dominance area [22]
(denoted byNSGAII-CE) onDTLZ1 andDTLZ3 of theDTLZ
family [27], each with 5–50 objectives.

4.1. Experimental Setting. The experiments are carried out
on a personal computer (Intel Xeon CPU 2.53GHz, 3.98G
RAM).The solutions are all coded as real vectors. Polynomial
mutation [28] operators and differential evolution (DE) [24]
are applied directly to real vectors in three algorithms, that
is, MOEDR,MOEA/D, and NSGAII-CDAS.The distribution
index and crossover probability in polynomial mutation [28]
operators are set to 20 and 1/𝑛, respectively. The crossover
rate and scaling factor in DE operator are set to 1.0 and
0.5, respectively. The aggregate function of MOEA/D is the
Tchebycheff approach [15], and weight vectors are generated
by using the uniform design method for MOEA/D and
UREA/D. The number of the weight vectors in the neigh-
borhood in MOEA/D is set to 20 for all test problems. The
parameter of the ranking method 𝐻 is set to 2, and in each
generation, the value of 𝑃 is self-adaptive determined by the
following expression:

𝑃 =
{
{
{

𝑘, if 𝑅 (1) <
𝑅 (𝑘) (1 + √𝑚)

2
1, else,

(9)

where 𝑅(𝑘) = min{‖𝐹(𝑥)‖
𝑘
| 𝑥 ∈ POP} and 𝑚 is the number

of objectives. In this algorithm, we set 𝑘 = 2. The parameter
of CE is set to 0.25 for NSGAII-CE. 20 independent runs are
performed with population size of 100 for all these instances.
Themaximal number of function evaluations is set to 100000
for all test problems. The values of default parameters are the
same as in the corresponding papers.

4.2. Experimental Measures. In order to compare the per-
formance of the four compared algorithms quantitatively,
the following three widely used performance metrics are
adopted: generational distance (GD), inverted generational
distance (IGD) [29], andWilcoxon rank-sum test [30], where
GDmeasures how far the obtained Pareto front is away from
the true Pareto front, which allows us to observe whether
the algorithm can converge to the true PF. If GD is equal to
0, all points of the obtained PF belong to the true PF. IGD
measures how far the true PF is away from the obtained PF,
which shows whether points of the obtained PF are evenly
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Table 2: IGD, GD, and HV obtained by MODER, MOEA/D, NSGAII, and NSGAII-CE on DTLZ1.

IGD GD
Mean Std. Mean Std.

DTLZ1-5

MODER 0.0719 0.0067 0.0311 0.0025
MOEA/D 0.0756(+) 0.0074 0.0317(+) 0.0035
NSGAII 23.789(+) 15.261 233.69(+) 20.501

NSGAII-CE 0.2989(+) 0.1023 0.0124(−) 0.0202

DTLZ1-10

MODER 0.0921 0.0146 0.1160 0.0075
MOEA/D 0.1045(+) 0.0081 0.1141(=) 0.0242
NSGAII 25.065(+) 6.9643 343.45(+) 10.444

NSGAII-CE 0.3246(+) 0.0969 0.0055(−) 0.0079

DTLZ1-15

MODER 0.0968 0.0063 0.1925 0.0103
MOEA/D 0.1141(+) 0.0101 0.1340(−) 0.0198
NSGAII 15.866(+) 11.499 222.14(+) 5.2899

NSGAII-CE 0.4152(+) 0.0942 0.5510(+) 0.0457

DTLZ1-20

MODER 0.1523 0.0613 0.2289 0.0056
MOEA/D 0.1162(−) 0.0176 0.1542(−) 0.0133
NSGAII 32.596(−) 13.770 373.34(+) 5.1034

NSGAII-CE 0.4197(−) 0.0604 0.1218(−) 0.1244

DTLZ1-25

MODER 0.2030 0.0585 0.2679 0.0302
MOEA/D 0.1599(−) 0.0881 0.2165(−) 0.1604
NSGAII 37.273(+) 21.605 389.85(+) 6.1814

NSGAII-CE 0.4694(+) 0.0558 0.1237(−) 0.1144

DTLZ1-50

MODER 0.3180 0.0392 0.2865 0.0845
MOEA/D 0.1623(−) 0.0142 0.1570(−) 0.0290
NSGAII 33.276(+) 13.482 364.25(+) 9.7122

NSGAII-CE 1.1990(+) 2.3179 1.5583(+) 3.5537
“+” means that MODER outperforms its competitor algorithm, “−” means that MODER is outperformed by its competitor algorithm, and “=” means that the
competitor algorithm has the same performance as MODER.

distributed throughout the true PF. If IGD is equal to 0, the
obtained PF contains every point of the true PF. In particular,
GD and IGD indicators are used simultaneously to observe
whether the solutions are distributed over the entire PF or
the solutions concentrate in some regions of the true PF. In
our experiments, 100000 points which are generated by using
the uniform design [31] for all these test instances which are
uniformly sampled on the true PF are used to calculate the
metrics GD and IGD of solutions obtained by an algorithm.

Wilcoxon rank-sum test [30] is used in the sense of
statistics to compare the mean IGD and GD of the compared
algorithms. It tests whether the performance of MODER on
each test problem is better than (“+”), same as (“=”), or worse
than (“−”) that of the compared algorithms at a significance
level of 0.05 by a two-tailed test. These results are given in
Tables 2 and 3.

4.3. Comparisons of MODER with MOEA/D, NSGAII, and
NSGAII-CE. In this section, some simulation results and
comparisons that demonstrate the potential of MODER are
presented, and the comparisons mainly focus on two aspects:
(1) the ability of the ranking method to improve the selection
pressure and (2) the ability of the rankingmethod tomaintain
the diversity of solutions.

Tables 2 and 3 show the mean and standard deviation
of the GD metric and IGD metric obtained by these four
algorithms for test problems with 5–50 objectives, respec-
tively. DTLZ1-5 represents that the number of objectives of
DTLZ1 is 5. It can be seen from Tables 2 and 3 that, for the
IGDmetric, MODER outperforms NSGAII and NSGAII-CE
on all twelve test problems and outperforms MOEA/D on
nine test problems. For the GDmetric, MODER outperforms
NSGAII on all twelve test problems, outperforms NSGAII-
CE on eight test problems, outperforms MOEA/D on seven
test problems, and performs worse than NSGAII-CE and
MOEA/D on four test problems. These results indicate that
MODER outperforms all three compared algorithms.

These results of Tables 2 and 3 also show that the mean
values of GD and IGD obtained by NSGAII are the largest
among the four algorithms, which indicate that NSGAII has
the worst performance in the convergence to the true PF
among these four algorithms and Pareto dominance has little
selection pressure toward the true PF. For problem DTLZ1
with 20–50 objectives, the mean values of IGD obtained by
MODER are slightly larger than those obtained byMOEA/D,
which indicates that MOEA/D can better maintain the diver-
sity of solutions than MODER for these problems. However,
for problem DTLZ1 with 5–15 objectives, the mean values of
IGD obtained by MODER are smaller than those obtained
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Table 3: IGD, GD, and HV obtained by MODER, MOEA/D, NSGAII, and NSGAII-CE on DTLZ3.

IGD GD
Mean Std. Mean Std.

DTLZ3-5

MODER 0.231 0.0168 0.0837 0.0040
MOEA/D 0.2499(+) 0.0667 0.0869(+) 00071
NSGAII 0.6093(+) 0.1186 0.8738(+) 0.1039

NSGAII-CE 1.0903(+) 02406 0.0913(+) 0.0914

DTLZ3-10

MODER 0.4099 0.0171 0.3130 0.0126
MOEA/D 0.4264(+) 0.0585 0.3219(+) 0.0182
NSGAII 65.508(+) 14.659 812.75(+) 23.198

NSGAII-CE 1.0413(+) 0.3021 152.583(+) 234.71

DTLZ3-15

MODER 0.4723 0.0106 0.5662 0.0436
MOEA/D 0.6953(+) 0.0585 0.7038(+) 0.0703
NSGAII 85.563(+) 18.166 937.31(+) 22.914

NSGAII-CE 1.1584(+) 0.3419 20.217(+) 53.426

DTLZ3-20

MODER 0.5642 0.1296 0.8176 0.0746
MOEA/D 0.7542(+) 0.0233 1.0025(+) 0.0512
NSGAII 36.307(+) 17.207 573.32(+) 11.818

NSGAII-CE 1.2466(+) 0.3100 0.9260(+) 0.5774

DTLZ3-25

MODER 0.5292 0.0340 0.9388 0.0508
MOEA/D 0.7894(+) 0.1075 1.1898(+) 0.0433
NSGAII 90.042(+) 111.47 931.18(+) 14.475

NSGAII-CE 1.4141(+) 0.0002 6.7310(+) 15.187

DTLZ3-50

MODER 0.7507 0.0337 0.5076 0.0048
MOEA/D 0.9589(+) 0.2665 1.1179(+) 0.4531
NSGAII 71.523(+) 31.877 703.20(+) 284.21

NSGAII-CE 0.9211(+) 0.4885 1.9211(+) 0.4885
“+” means that MODER outperforms its competitor algorithm, “−” means that MODER is outperformed by its competitor algorithm, and “=” means that the
competitor algorithm has the same performance as MODER.

by MOEA/D, and for problem DTLZ1 with 5–50 objectives,
the mean values of IGD obtained by MODER are smaller
than those obtained by NSGAII-CE, which indicate that
MODER has a better ability to maintain the diversity than
NSGAII-CE and well maintains the diversity of obtained
solutions. These also show that the new ranking method can
better maintain the diversity of solutions than CE. For the
convergence metric GD, the mean values of GD obtained
by MODER are smaller than 0.29 for DTLZ1 with 5–50
objectives and are slightly larger than those obtained by
MOEA/D. MOEA/D decomposes a multiobjective problem
(MOP) into a number of scalar optimization subproblems
and solves them simultaneously.Theobjective of each of these
subproblems is an aggregation of all the objectives in the
MOP under consideration. Single objective is more likely to
converge to the optimal solution, and its degree of conver-
gence is relatively high. These show that the convergence of
solutions obtained by MODER to the true PF is good and
the new ranking method can enhance the selection pressure
toward the true PF. For problemDTLZ3with 5–50 objectives,
themean values of IGDobtained byMODERare smaller than
those obtained by MOEA/D and NSGAII-CE, which show
that the diversity of solutions obtained by MODER is better
than those obtained byMOEA/D and NSGAII-CE; the mean
values of GD obtained by MODER are smaller than those

obtained by MOEA/D and NSGAII-CE, which indicate that
the convergence of solutions obtained by MODER is better
than those obtained by MOEA/D and NSGAII-CE. These
imply thatMODER can converge to the true PF andmaintain
the diversity of obtained solutions; even for higher dimen-
sional objectives, its convergence and diversity performance
are still good. In other words, the new ranking method not
only can enhance the selection pressure toward the true PF
but also can well maintain the diversity of solutions.

5. Conclusions

In this work, a new ranking method for many-objective
optimization problems is proposed to decrease the number of
nondominated solutions and reduce the number of compar-
isons in the process of verifying the nondominated solutions.
For each solution 𝑥, the approach generates a small number
of virtual vectors which are evenly distributed around the
objective vector of the solution 𝑥 and can determine whether
𝑥 is a nondominated solution by onlymaking the comparison
between 𝐹(𝑥) and every virtual vector.Thus, this method not
only uses a small quantity of comparisons when determining
the nondominated solutions, but also is able to contract the
nondominated area of the solution to increase the selection
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pressure toward the true PF.Moreover, amultiobjective adap-
tive differential evolution algorithm based on the new rank-
ing method is designed for many-objective problems. The
algorithm was tested on problems with up to 50 objectives.
Compared with the existing algorithms, simulation results
show that the proposed algorithm is able to maintain the
diversity of the obtained solutions and has good convergence
ability on problems with large number of many objectives.
Future works include expanding the experiments to other
problems and search another crossover operator which is
more suitable for many-objective problems.
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