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The ability to identify the fault type and to locate the fault in extra high voltage transmission lines is very important for the economic
operation of modern power systems. Accurate algorithms for fault classification and location based on artificial neural network are
suggested in this paper. Two fault classification algorithms are presented; the first one uses the single ANN approach and the second
one uses the modular ANN approach. A comparative study of two classifiers is done in order to choose which ANN fault classifier
structure leads to the best performance. Design and implementation of modular ANN-based fault locator are presented.Three fault
locators are proposed and a comparative study of the three fault locators is carried out in order to determine which fault locator
architecture leads to the accurate fault location. Instantaneous current and/or voltage samples were used as inputs to ANNs. For
fault classification, only the pre-fault and post-fault samples of three-phase currents were used. For fault location, pre-fault and
post-fault samples of three-phase currents and/or voltages were used.The proposed algorithms were evaluated under different fault
scenarios. Studied simulation results which are presented confirm the effectiveness of the proposed algorithms.

1. Introduction

The design of the high performance protection techniques
remains an important subject for the development within the
university community and the industry. Indeed, a transmis-
sion line is an important element of the electrical power sys-
tem.Nevertheless, transmission lines present the highest fault
appearance rate considering the environmental conditions
which are subjected. Hence, the protective relaying systems
are integrated in transmission lines to quickly detect faults
occurrence and to isolate the faulted part from the rest of
power system as soon as possible. These protective relaying
systems serve to ensure the power system stability, minimize
damage equipment, and restore the service quality. For trans-
mission line protections, various algorithms were proposed
in the literature. In the 70s, travelling wave techniques were
introduced into the transmission line protection algorithms
[1]. However, most researchers [2–4] mentioned that the
method founded on the travelling wave does not function
well for the faults near the relaying site and for faults having
small fault inception angles. The synchronized measurement

technology seems to be a promising perspective to obtain
real time protection. With the global positioning system
(GPS), digital measurement of the three-phase current and
voltage signals for the two line ends can be carried out
into a synchronous manner [5–8]. These techniques are
more precise than the distance relaying protection algorithms
which are affected by the insufficient transmission line
modeling and the parameter uncertainty due to the aging of
lines. Moreover, these techniques require the installation of
a GPS where the measurements are synchronized compared
to a GPS clock. Nevertheless, the synchronized measurement
technology presents many drawbacks as the high cost and
the presence of a communication channel between the line
terminals which is not available in the majority of lines.
Therefore, the fault diagnosis techniques using one-terminal
data could be more attractive for researchers. In this context,
it is necessary to develop algorithms having the ability to
adapt dynamically with the system operating conditions such
as the system configuration changes and the fault conditions
(fault resistance, fault inception angle, and fault position).
Recently, modern technologies of the protection relays are
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based on artificial intelligence tools such as fuzzy logic (FL),
artificial neural networks (ANNs), and the adaptive network-
based fuzzy inference system (ANFIS). Fuzzy logic-based
transmission line relaying techniques for fault classification
and fault location are proposed by many researchers [9–
11]. However, these techniques cannot in any way guarantee
precision results: for wide variation of faultconditions (high
fault resistance, high fault inception angle, and far distance
location from relay site). A recent study [12] has proposed an
algorithm having the synergy to calculate with high precision
the fault locations at distances less than 80%of the line length.
In [13] a fault classification algorithm based on fuzzy logic
system is presented. Nevertheless, this algorithm is valid only
for a less range variety of fault resistance.

Other protection relaying researchers have used the
adaptive network-based fuzzy inference system (ANFIS) [14–
17]. In [18], a fault detection and classification scheme is
developed. This technique uses three-phase currents and
zero sequence current but the fault location procedure is
not indicated. In [19] a fault classification and location
algorithms for combined overhead transmission line have
been proposed. The current and voltage samples are used
for the proposed scheme. These values were obtained within
one cycle after the fault inception that implies a response
time superior than one operating cycle. The protection fault
approaches based on fuzzy logic (FL) and adaptive network
fuzzy inference system (ANFIS) techniques are sensitive to
the system frequency variations and require large training
sets.

The artificial neural networks were integrated in the pro-
tection relaying techniques. These techniques used samples
of current and/or voltage without calculating the symmet-
rical components [1]. Various neural network types such
as the multilayer perceptron (MLP), radial basis function
(RBF), and probabilistic neural network are applied for
fault diagnosis in transmission lines [20–24]. The protection
approaches based on ANNs were used for the development
of reliable, accurate, and rapid algorithms in real time for
fault detection, classification, and location. In this context,
[25] developed an application of radial basic function (RBF)
neural network applied to fault location in transmission lines.
The maximum error of the proposed algorithm is equal to
0.5. Besides, [26, 27] developed neural network approaches
for fault detection and fault location in transmission lines.
Nevertheless, these approaches detect only the faults which
appeared in the first zone of the line, namely, 80% of the
transmission line length. In [28] a fault location algorithm
for transmission lines was developed. The algorithm uses
a single artificial neural network based on the Levenberg-
Marquardt optimization technique. However, the fault type
is not indicated and the percentage error of the algorithm
is maintained below 0.65%. In [29] fault classification and
location schemes are proposed. These schemes use three-
phase currents and voltages waveforms at one terminal line.
The response time of the proposed scheme is not indicated
and the percentage error for fault location is equal to 3%. In
[30] a new scheme for fault classification and fault location
is presented. The maximum error of the proposed scheme is
3.05%, and the response time is not indicated. Reference [31]

proposed a fault location module for fault diagnosis which
incorporates two stages adaptive structures neural network.
The fault detection, classification, and location algorithms
are presented with average fault location error of 0.4% and
0.5411%. The results show clearly that this approach leads to
a reliable location for all types of faults. The operating time
of this method is equal to 1.28 cycles after inception fault. In
[32], fault distance and direction estimation based on ANN
for protection of doubly fed transmission lines are proposed,
but the fault type is not indicated. The operating time of this
approach is about 1.5 cycles and the percentage error rate of
fault location lies between 0.052% and 1.57%.

In order to develop fault classification and location
algorithms leading to desired results with a good precision
and fast response time compared to former work, we have
proposed in the present paper a new fault classification and
location algorithms based on ANNs. Thus, optimal neural
networks architecture used in the fault classification and
location algorithms (number of hidden layers, number of
neurons in hidden layers, reduced training sets, fast conver-
gence to the desired results, and reliability and precision of
protection algorithms) were proposed. These algorithms are
based on artificial neural networks (ANNs) (feed-forward)
trained by a supervised learning algorithm called back-
propagation. In this context, two fault classifiers are proposed:
the first one uses a single ANN approach and the second
one uses a modular ANN approach. A comparative study of
the proposed two fault classifiers is carried out in order to
determine which reliable and effective ANN fault classifier
leads to the best performance. For fault location, three fault
locators based on modular ANN approach are proposed in
order to choose an optimal architecture strategy with a high
precision and fast convergence to the exact fault location.The
fault neural classifiers and locators were trained and tested
under different fault conditions (fault types, fault locations,
fault resistances, and fault inception angles). The simulation
results show clearly the high accuracy of the proposed fault
classification and location algorithms.

2. Power System under Study

To evaluate the performance of the proposed neural network-
based fault detector and locator, a 400 kV, 100 km transmis-
sion line extending between two sources is considered in this
study. The power system model simulated using MATLAB
software is shown in Figure 1. It contains a synchronous
generator (driven by hydraulic turbine) connected to an
infinite bus. The transmission line has been represented by
distributed parameter of one line model using Power System
toolbox of MATLAB software and the frequency dependence
of the line parameters is taken into account. The proposed
fault classification and location algorithms require only the
three-phase voltages and/or currents samples at the sending
end of the transmission lines. A large number of fault samples
data have been generated using MATLAB considering wide
variations on fault conditions such as fault locations, fault
resistances, fault inception angle, and fault types. Using these
data, fault classification and location have been carried out
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Figure 1: System under study.

by means of MATLAB that make use of its “neural network
toolbox.”

The transmission line parameters are as follows:

(i) line length = 100 km;
(ii) voltage = 400Kv;
(iii) transmission line impedance:

(a) positive sequence impedance = 0.0275 +
𝑗0.422Ω/km;

(b) zero sequence impedance = 0.275 +
𝑗1.169Ω/km;

(c) positive sequence capacitance = 9.483 nF/km;
(d) zero sequence capacitance = 6.711 nF/km.

We adopted for the synchronous generator a fourth state
order model as follows [33–37]:
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where
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respectively, the (𝑑, 𝑞) axe reactances and the (𝑑, 𝑞)
axe transient reactances.𝐷 is the damping coefficient.
𝑀 is the inertia constant.
𝑃
𝑒
, 𝑃
𝑚
, 𝜔, and 𝛿 are, respectively, the electrical power,

mechanical power, speed, and the rotor angle.

In order to identify the fault type and to reach a high
degree of accuracy in the location of a fault in transmission
lines, a series of contributions have been introduced to
estimate the fault distance for transmission lines. Currently,
the most widely used method of transmission lines fault
location is to determine the apparent reactance of the line
during the time that the fault current is flowing and to convert
the ohmic result into a distance based on the parameters of
the line. It is widely recognized that this method is subject to
errors when the fault resistance is high and the line is fed from
both ends [38].

There is a need for the measuring algorithms that have
the ability to adapt dynamically to the system operating
conditions such as changes in the system configuration,
source impedances, and fault resistances. Many successful
applications based on artificial neural networks to power sys-
tems have been demonstrated including security assessment
[39] and load forecasting control [40]. Recent applications
in protection have covered fault diagnosis for electric power
systems [41]. Hence, in order to improve the former work
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Figure 2: Multilayer network model.

results for fault classification and location in transmission
lines, we have resorted towards the artificial neural networks
tools.

3. Artificial Neural Networks

The ANN represents a parallel multilayer information pro-
cessing structure. The characteristic feature of this network
is that it considers the accumulated knowledge acquired
during training and responds to new events in the most
appropriate manner, given the experiences gained during the
training process. ANNs imitate the learning process of the
human brain and can process problems involving nonlinear
and complex data even if the data are imprecise and noisy.
The model of the ANN is determined according to network
architecture, transfer function, and the learning algorithms.
Given their diversification, all the types of neural networks
available nowadays cannot be listed easily. The researchers
are constantly endeavored to invent new types better suited
to resolve specific problems. Among neural networks types,
multilayer perceptron (MLP), recurrent neural network,
Hopfield neural networks, Kohonen neural networks, and so
forth can be cited.

In the recent years, the memristor-based recurrent neu-
ral networks represent the main advanced neural network
technologies which have been proposed and implemented in
various applications fields. Some works of synchronization
control problem of this type of networks have been evoked,
studied, and discussed by [42].

Authors have employed the differential inclusions theory
and the Lyapunov functional method in order to ensure the
convergence of the system to the equilibrium point. Fur-
thermore, other several new neural networks architectures
have been proposed, namely, the dynamic recurrent neural

networks. For these kinds of neural networks, the dynamics
analysis study is generally imposed [43–45].

Once the type and the architecture of a neural network
are selected for a given application, it is necessary to perform
learning algorithms able to determine the weight values
allowing the output of the neural network from being as near
as possible to the referred aim.

Learning neural network techniques are based on opti-
mization algorithms that seek to minimize the gap between
the actual responses of the network and the desired responses,
and this by changing the settings successively for any step
(called “epochs”). Many learning algorithms have been used
such as back-propagation algorithm, conjugate gradient algo-
rithms, quasi-Newton algorithms, and Levenberg-Marquardt
algorithm. Recently, new learning algorithm is used for
training the ANN such as genetic algorithms GA [46–48],
particle swarm optimization algorithm PSO [49–51], and
chaotic ant swarm optimization algorithm CAS [52–56].

In this paper, the multilayer perceptron (MLP) neural
network was used and trained with a supervised learning
algorithm called back-propagation.

3.1. Multilayer Perceptron Neural Network. Multilayer per-
ceptron (MLP) is one of the most frequently used neural
network architectures in various applications, and it belongs
to the class of supervised neural networks. A typical multi-
layer (MLP) neural network consists of three layers: an input
layer, an output layer, and one or more hidden layers. Each
layer consists of a predefined number of neurons. We recall
that the neural network is a collection of cells of neurons
interconnected by synaptic weights and biases. The inputs
are connected to the first hidden layer. Each hidden layer is
connected to the next hidden layer, and the last hidden layer
is connected to the output layer (Figure 2).
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The neuron used is a standard type. It consists in making
the sum of all the weighted inputs through its synaptic
coefficients which represents the linear output and then
applying it to an activation function. The output obtained
is then connected to all inputs of the next layer. The basic
structure of a neuron is shown in Figure 3.

Aneuronmathematicalmodel has a very simple structure
compared to a biological neuron [57–59]. Hence, a neuron j
can be describedmathematically with the following equation:
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where
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represents the connection weight between the

neuron 𝑘 in the output layer and the 𝑗th neuron of
the hidden layer.
𝑓out is the activation function of the output layer.

The error in the output layer between the output 𝑦
𝑘
and

its desired value 𝑦
𝑘-desired (𝑦𝑘 − 𝑦𝑘-desired) is minimized by the

mean square error at the output layer, defined as follows:

Error = 1
2

𝑅

∑
𝑘=1

(𝑦
𝑘-desired − 𝑦𝑘)

2

. (5)

3.2. Back-Propagation Algorithm. Back-propagation training
algorithm (BP) is an iterative gradient descent algorithm
which is a simple way to train multilayer feed-forward
neural networks. The BP algorithm has become the standard
algorithm used for training multilayer perceptron. It is a gen-
eralized least mean squares (LMS) algorithm that minimizes
the sumof the squares of the errors between the actual and the
desired outputs. During training, the weights and biases of
the network are iteratively adjusted to minimize the network
performance function.

The main steps of the back-propagation algorithm are
sum raised as in Algorithm 1.

The training data set of an ANN should contain the
necessary information to generalize the problem. In this
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work, different combinations of various fault conditions
were considered and training patterns were generated by
simulating a different fault situation on the power system
study. Fault conditions such as fault resistance, fault location,
and fault inception angle were changed to obtain training
patterns covering a wide range of different power system
conditions.

4. Configuration of Fault Classification and
Location System Using ANN

The fault classifier and fault locator configuration is shown
in Figure 4. The protection relay inputs are presented by the
voltage and current waveforms acquired at the line end (relay
location) via current transformer CT and voltage transformer
VT. These signals are used as inputs to the ANN-based fault
classifier and fault locator. The phase current and voltage
signals extracted from the simulation at the relay location
are processed with an anti-aliasing filter in order to filter the

Step. BP.1: Initialization
Initialize random matrices synoptic weight:
𝑊[𝑠]: 𝑠 = 1, . . . , 𝐿
Step.BP.2: Propagation
Calculate for each layer 𝑠 = 1, . . . , 𝐿:
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= 𝑓 (𝑢[𝑠]

𝑗
)

Step.BP.3: Errors calculation
Calculate local errors for:
(i) Output layer:
𝛿[𝐿]
𝑗𝑝
= 𝑒[𝐿]
𝑗𝑝
𝑓󸀠 (𝑢[𝐿]
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)

(ii) Layers: 𝑠 = 𝐿 − 1, . . . , 1

𝛿
[𝑠]
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𝑗𝑝
)

𝑛
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∑
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(𝛿
[𝑠+1]

𝑗𝑝
𝑤
[𝑠+1]

𝑟𝑗
)

𝑊[𝑠+1] is deprived of its first line
Step.BP.4: Adaptation
Modify the following synaptic weights:
Δ𝑤
[𝑠]

𝑗𝑖
(𝑘) = 𝜇𝑦

[𝑠−1]

𝑖𝑝
𝛿
[𝑠]

𝑗𝑝
: 𝑠 = 1, . . . , 𝐿

Step.BP.5: Stop test
Test the total squared Error.

Algorithm 1: Steps of the back-propagation algorithm.

higher order harmonics. A simple 2nd-order low-pass Butter
worth filter with cut-off frequency of 400Hz has been used.
Three-phase voltages and currents waveforms are sampled
at a sampling frequency of 1 KHz. This sampling rate is
compatiblewith sampling rates presently used in digital relays
[38]. Furthermore, a discrete Fourier transform (DFT) is used
to extract the fundamental components of these signalswhich
are used as inputs to the ANN-based fault classifier and fault
locator. On one side, the proposed fault classifier is designed
to identify the fault type and on the other side the fault
locator is designed to estimate the exact fault location in the
transmission line.

The design process of the fault classifier and the fault
locator based on ANN is given by the following algorithm
depicted in Figure 5.

4.1. Fault Classification

4.1.1. Inputs and Outputs. A feed-forward neural network
of three layers trained by the back-propagation algorithm is
selected for the fault classification task. In this section, two
neural fault classifiers are developed.The first classifier (FC

1
)

based on the integration of single artificial neural network is
used to classify the fault type which can affect a transmission
line. The block diagram of the proposed single ANN-based
fault classifier (FC

1
) is illustrated in Figure 6. The single

neural network, conceived for the proposed fault classifier
(FC
1
), takes into consideration the fundamental signals of the

three-phase currents and the zero sequence currents. These
signals are sampled at a frequency of 1 kHz (20 samples per
50Hz cycle). The inputs data for the single ANN-based-fault
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classifier are four prefault and four postfault for each phase
current and for the zero sequence current.

The (𝐼
𝑖
(𝑘)/𝐼
𝑖−PF(𝑘), with 𝑖 = {𝑅, 𝑆, 𝑇}) are the per-unit

values calculated by the division of the samples currents in
fault time 𝐼

𝑖
(𝑘) (postfault) to the prefault samples current

𝐼
𝑖−PF(𝑘) in related phase. Consequently, the selected input
numbers for the fault classification algorithm (FC

1
) are equal

to 16: four current samples for each phase (𝑅, 𝑆 and 𝑇) and
four samples for zero sequence current. The input vector is
presented according to the following equation:

𝑋FC
1

= [
𝐼
𝑅
(𝑘)

𝐼
𝑅−PF (𝑘)

, . . . ,
𝐼
𝑅
(𝑘 + 3)

𝐼
𝑅−PF (𝑘 − 3)

;

𝐼
𝑆
(𝑘)

𝐼
𝑆−PF (𝑘)

, . . . ,
𝐼
𝑆
(𝑘 + 3)

𝐼
𝑆−PF (𝑘 − 3)

;

1

1
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Figure 6: A feed-forward multilayer for the fault classifier (FC
1
).

𝐼
𝑇
(𝑘)

𝐼
𝑇−PF (𝑘)

, . . . ,
𝐼
𝑇
(𝑘 + 3)

𝐼
𝑇−PF (𝑘 − 3)

; 𝐼
0
(𝑘) , . . . , 𝐼

0
(𝑘 + 3)] .

(6)

The ANN outputs related to FC
1
are called 𝑅, 𝑆, 𝑇, and 𝐺,

which represent the three phases and the ground. If each
of the outputs 𝑅, 𝑆, and 𝑇 is near to 1 this indicates that
fault occurred in this phase. When the output 𝐺 takes the
value 1, in this case the fault is related to ground. Taking the
following example, if the fault classifier output is 0101, this
indicates that the appearing fault is a single-phase fault which
has occurred in the phase 𝐵 and connected to ground (𝐵-𝐺).
In the same context, an output 0110 shows that the fault which
has occurred is a two-phase fault (𝐵-𝐶).

The second proposed fault classifier (FC
2
) used the mod-

ular ANN approach. The proposed approach based on fault
classification consists of four independent artificial neural
networks, one for each phase (𝑅, 𝑆, and 𝑇) and another for
faults involving ground (𝐺), which are called ANN-𝑅, ANN-
𝑆, ANN-𝑇, and ANN-𝐺, respectively. The ANNs inputs are
the samples of currents signals and the outputs are presented
by the logic values (0 or 1). All network outputs are integrated
to determine the fault type via a logic circuit; see Figure 7.
Each network designed (ANN-𝑖 with 𝑖 = 𝑅, 𝑆, and 𝑇)
treated four prefault and four postfault samples for each
phase current. Thus the ANN-𝐺 treats four samples of zero
sequence current. Figure 6 shows the schematic diagram of
the proposed fault classification algorithm. Consequently, the
input numbers selected for each ANN-j(j = {R, S,T,G}) is
equal to four currents samples.Thus, the total inputs number
necessary to carry out the fault classification task via the
modular ANN technique is equal to 16 normalized samples.
The input vector of each ANN-𝑖 (𝑖 = 𝑅, 𝑆, and 𝑇) is called
𝑋𝑖FC
2

and for ANN-𝐺 is called 𝑋𝐺FC
2

shown by the following
equation system:

𝑋
𝑖

FC
2

= [
𝐼
𝑖
(𝑘)

𝐼
𝑖−PF (𝑘)

, . . . ,
𝐼
𝑖
(𝑘 + 3)

𝐼
𝑖−PF (𝑘 − 3)

] 𝑖 = {𝑅, 𝑆, 𝑇} ,

𝑋
𝐺

FC
2

= [𝐼
0
(𝑘) , . . . , 𝐼

0
(𝑘 + 3)] .

(7)

The suggested modular structure of the proposed fault
classifier (FC

2
) based on four independent artificial neural
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Figure 7: Modular ANN-based fault classifier (FC
2
).

Table 1: Neural network desired outputs.

Type of faults Desired network outputs
𝑅 𝑆 𝑇 𝐺

𝑅-𝐺 fault 1 0 0 1
𝑆-𝐺 fault 0 1 0 1
𝑇-𝐺 fault 0 0 1 1
𝑅-𝑆 fault 1 1 0 0
𝑅-𝑇 fault 1 0 1 0
𝑇-𝑆 fault 0 1 1 0
𝑅-𝑆-𝐺 fault 1 1 0 1
𝑅-𝑇-𝐺 fault 1 0 1 1
𝑇-𝑆-𝐺 fault 0 1 1 1
𝑅-𝑆-𝑇 fault 1 1 1 0

networks (ANN-𝑅, ANN-𝑆, ANN-𝑇, and ANN-𝐺) at four
outputs is detailed in Figure 7. Each artificial neural network
(ANN-𝑅, ANN-𝑆, and ANN-𝑇) is designed to indicate the
presence or not of a fault in related phases (𝑅, 𝑆, and 𝑇), and
the ANN-𝐺 is designed to indicate the involvement or not of
the ground throughout the fault.Thus the ANNs outputs take
the logic value (0 or 1), indicating the absence or the presence
of a fault on the corresponding phase (𝑅, 𝑆, and 𝑇) and if
the fault is related to ground or not (𝐺). We notice that the
outputs admitting a value higher than 0.9 will be considered
to be active (presence of fault) and the outputs having a value
smaller than 0.1 (absence of fault) will be considered to be
inactive. The various possible combinations can design the
fault type. The proposed modular neural network should be
able to distinguish with precision between the ten faults types
affecting one transmission line. The neural network desired
outputs for all the ten fault types are shown in Table 1.

4.1.2. Training Data. To lead to optimal and effective ANN
architectures conceived for the fault classification task for
the two suggested fault classifiers (FC

1
and FC

2
), a suitable

Table 2: Training and test generation data of FC1 and FC2.

Parameter Training Testing

Fault type

𝐿-g: 𝑅-𝐺, 𝑆-𝐺, 𝑇-𝐺
𝐿-𝐿: 𝑅-𝑆, 𝑅-𝑇, 𝑇-𝑆
𝐿-𝐿-g: 𝑅-𝑆-𝐺,
𝑅-𝑇-𝐺, 𝑇-𝑆-𝐺,
𝐿-𝐿-𝐿: 𝑅-𝑆-𝑇

𝐿-g: 𝑅-𝐺, 𝑆-𝐺, 𝑇-𝐺
𝐿-𝐿: 𝑅-𝑆, 𝑅-𝑇, 𝑇-𝑆
𝐿-𝐿-g: 𝑅-𝑆-𝐺,
𝑅-𝑇-𝐺, 𝑇-𝑆-𝐺,
𝐿-𝐿-𝐿: 𝑅-𝑆-𝑇

Fault location
𝐿
𝑓
(km)

1, 10, 20, 30, . . . , 80,
and 90 km 12, 56, 78, and 94

Fault inception
angle FIA (∘) 0∘ and 180∘ 0∘, 75∘, 135∘, and

225∘

Fault resistance
𝑅
𝑓
(Ω) 0.1 and 100Ω 2, 33, 99, and 199

number of representative examples of the phenomenon in
question must be selected. Moreover, the neural networks
ANNs can learn the fundamental characteristics of the
problem and provide correct outputs in new situations which
are not considered during the training process. In order to
train each ANN to obtain sufficient examples, we considered
various fault scenarios at different fault conditions such as
different fault locations (between 0 and 100% of line length)
with various fault resistances𝑅

𝑓
(0.1, 100Ω) and various fault

inception angles FIA (0 and 90∘). The number of these full
scenarios is 10 fault locations ∗ 2 fault resistances ∗ 2 fault
inception angles ∗ 10 fault types = 400 fault cases destined
for the ANN training process. The parameter values used to
generate the data training sets and the ANN tests models for
the two adopted fault classifier types are illustrated in Table 2.

4.1.3. Structure of the Neural Fault Classifier. The determina-
tion of hidden layers number and the number of neurons per
layer is very important considering that it affects the training
time and the generalization property of the neural network.
The most used approach to find adequate architectures is
based mainly on the various tests and various network
configurations. After a series of ANN structure tests and
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Figure 8: Architecture of ANN-based fault classifier (FC
1
and FC

2
).

Table 3: Architecture of modular ANN-based fault classifier (FC2).

Modular ANN-based fault classifier Architecture Mean square error (MSE) Number of epochs
ANN-𝑅 4-6-1 5.91e − 06 12
ANN-𝑆 4-5-1 7.85e − 06 14
ANN-𝑇 4-8-1 4.88e − 06 10
ANN-𝐺 4-6-1 5.97e − 06 13

modification, the best architecture obtained of each ANN
is that which provides satisfactory results. In this work, the
best performance of the two proposed fault classifiers (FC

1

and FC
2
) is obtained by the three-layer neural network. For

all ANNs used for the two proposed fault classifiers (FC
1

and FC
2
), a “tan-sigmoid” function was used as activation

function of the input layer and “purelin” function in the
output layer. Figure 8 shows the architecture of each ANN
based on fault classifier (FC

1
and FC

2
).

The numbers of hidden layer neuron for single ANN
approach based fault classifier (FC

1
) are chosen initially as 5

and then increased in step to 10, 15, 20, 25 to 30 as described
above. The best performance is achieved by using a three-
layer neural network with 16 inputs and 4 outputs, and the
optimal number of neurons in the hidden layer was found to
be 30 neurons. In this learning strategy, themean square error
(mse) decreases in 100 epochs to 6.67𝑒−06 in around 8min
and 35 sec learning time on a PC (P4, 2.13 GHz, 2GB RAM).
The single ANN approach based fault classifier (FC

1
) requires

large training sets and long training time. Also the network
complexity is higher, and it has slower learning capability.
Although the procedure for development of the architecture
of modular ANN-based fault classifier is the same as that of
single ANN-based fault classifier, the training time is very
less for modular networks approximately 1min and 49 sec for
all four modules and the final architecture of modular ANN-
based fault classifier is shown in Table 3.

4.1.4. Testing of the Fault Classifier. In order to evaluate the
performances of the proposed fault classification algorithms
(FC
1
and FC

2
) based, respectively, on the single neural

network approach and themodular artificial neural networks
approach, we consider various fault scenarios more than
those taken into account during the training process. These
scenarios are subjected under various fault conditions such
as different fault locations 𝐿

𝑓
, different fault resistances 𝑅

𝑓
,

and different fault inception angles FIA. The tests results of
the two proposed fault classifiers (FC

1
and FC

2
) are presented

in Table 4.

The simulation results prove well the precision of the two
proposed algorithms. Indeed ANN outputs converge to the
desired values (either very near to zero or one). However, it
can be seen that, from the tests results presented in Table 4,
the modular artificial neural network based on fault classifier
(FC
2
) is more precise than the single artificial neural network

based on fault classifier (FC
1
) since the first one converges

towards the desired results with a minimum error compared
to the second classifier.

An output of 0.8 or 0.9, given by one of the two suggested
fault classification algorithms, represents the same result in
fault classification task and indicates at the same time a
faulty phase, whereas, for a fault location task, an output
of 0.8 implies a fault produced at a distance of 80% from
the line length and an output of 0.9 means that the fault is
produced at a distance of 90% from the line length. The fault
location requires more precision than the fault classification.
So the use of single ANN approach for the fault location
task presents disadvantages such as complexity, ANN long
training time, and less accuracy compared to the modular
ANN approach, as already seen for the fault classification
task. Consequently, in order to estimate the exact fault
location, it was decided to develop an accurate fault location
algorithm based on modular artificial neural networks.

4.2. Fault Location. The proposed fault location algorithms
in this part are based on the modular ANN approach. In
this approach, during the appearance of a fault in transmis-
sion line, the fault detection and fault classification units
identify the fault appearance and its type. Then it activates
the fault location unit. The fault classification unit will be
capable of determining the fault type if it is single line to
ground (𝐿-𝐺), double lines (𝐿-𝐿), double lines to ground
(𝐿-𝐿-𝐺), or three-line fault (𝐿-𝐿-𝐿). The proposed fault
classification unit based on modular ANN approach detects
and identifies the fault type. Thus the outputs generated by
the fault classification unit activate the particular module
of fault locator; see Figure 9. The proposed fault location
algorithm consists of four independent ANNs when each
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Figure 9: The proposed modular ANN-based fault locator.

fault type is trained by a neural network ANN-𝑘 with
𝑘 = {𝐿-𝐺, 𝐿-𝐿, 𝐿-𝐿-𝐺, and 𝐿-𝐿-𝐿}. The block diagram of the
proposed fault location is shown in Figure 9.

4.2.1. Inputs and Outputs. The determination of the inputs
and outputs number presents the principal factor in deter-
mining the adequate size and the best architecture for
the neural network. Hence, the sufficient inputs data to
characterize the problem must be assured. In this context,
three fault locators are presented. The first (FL

1
) uses only

the magnitudes of the fundamental components of three-
phase currents, the second (FL

2
) uses only the magnitudes

of the fundamental components of three-phase voltages, and
the third (FL

3
) uses at the same time the magnitudes of

the fundamental components of three-phase currents and
voltages. The purpose of the fault location task is to estimate
the exact fault location. Consequently, only obtained outputs
by the fault location algorithm corresponding to the fault
distance will be provided by the proposed modular neural
network based on fault locator.

Thus we indicated by InputFL
1

, InputFL
2

, and InputFL
3

the
inputs vectors taken by each proposed fault locator based on
modular ANN approach:

InputFL
1

= [
𝐼
𝑅
(𝑘)

𝐼
𝑅−PF (𝑘)

,
𝐼
𝑆
(𝑘)

𝐼
𝑆−PF (𝑘)

,
𝐼
𝑇
(𝑘)

𝐼
𝑇−PF (𝑘)

] ,

InputFL
2

= [
𝑉
𝑅
(𝑘)

𝑉
𝑅−PF (𝑘)

,
𝑉
𝑆
(𝑘)

𝑉
𝑆−PF (𝑘)

,
𝑉
𝑇
(𝑘)

𝑉
𝑇−PF (𝑘)

] ,
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Table 5: Training and test generation data of FL1, FL2, and FL3.

Parameter Training Testing

Fault type
𝐿-g: 𝑅-𝐺, 𝑆-𝐺, 𝑇-𝐺
𝐿-𝐿: 𝑅-𝑆, 𝑅-𝑇, 𝑇-𝑆

𝐿-𝐿-g: 𝑅-𝑆-𝐺, 𝑅-𝑇-𝐺, 𝑇-𝑆-𝐺,
𝐿-𝐿-𝐿: 𝑅-𝑆-𝑇

L-g: 𝑅-𝐺, 𝑆-𝐺, 𝑇-𝐺
L-L: 𝑅-𝑆, 𝑅-𝑇, 𝑇-𝑆

L-L-g: 𝑅-𝑆-𝐺, 𝑅-𝑇-𝐺, 𝑇-𝑆-𝐺,
L-L-L: 𝑅-𝑆-𝑇

Fault location 𝐿
𝑓
(km) 1, 10, 20, 30, . . . , 80, and 90 km 05, 06, 07, 09, 12, 13, 14, 23, . . . , 90, 94, 96 km

Fault inception angle FIA (∘) 0∘, 180∘, and 270∘ 5∘, 10∘, 25∘, 40∘, . . . , 225∘, 315∘, 360∘

Fault resistance 𝑅
𝑓
(Ω) 0.1, 50, 100, and 150Ω 2.6, 10, 22, 26, . . . , 190, 195Ω

InputFL
3

= [
𝐼
𝑅
(𝑘)

𝐼
𝑅−PF (𝑘)

,
𝐼
𝑆
(𝑘)

𝐼
𝑆−PF (𝑘)

,
𝐼
𝑇
(𝑘)

𝐼
𝑇−PF (𝑘)

,

𝑉
𝑅
(𝑘)

𝑉
𝑅−PF (𝑘)

,
𝑉
𝑆
(𝑘)

𝑉
𝑆−PF (𝑘)

,
𝑉
𝑇
(𝑘)

𝑉
𝑇−PF (𝑘)

] .

(8)

The output for fault location task is given by

OutputFL = [𝐿𝑓] . (9)

4.2.2. Training Data. A large number of training data for
different ANNs based on fault location task were generated
using MATLAB software, taking into account various fault
scenarios subjected under different fault conditions such as
different fault locations 𝐿

𝑓
(1%, 10%, 20%, 30%, . . . , 90% of

line length), different fault inception angles FIA (0∘, 180∘,
and 270∘), and various fault resistances 𝑅

𝑓
(0.1Ω, 50Ω,

100Ω, and 150Ω). Thus, the simulated fault numbers for
the ANNs training process are equal to 648 for the fault
related to ground: 6 (fault types) ∗ 9 (fault location) ∗ 4 (fault
resistance) ∗ 3 (fault inception angles). For faults which did
not involve ground the number of fault simulation is equal
to 108 simulation cases: 9 (fault locations) × 4 (fault types) ×
3 (fault inception angles). Consequently, the full number of
simulated faults is 756. Table 5 presents the parameter values
used to generate the data training sets and test models for the
three proposed fault locators.

4.2.3. Structure of the Neural Fault Locator. Once the inputs
and outputs numbers of each proposed fault locator based
on the modular ANN are determined, it is necessary to
determine the number of hidden layers and the number
of neurons in each hidden layer. The major problems in
the ANN architecture design are to make sure that the
numbers of hidden layers and the number of neurons in each
hidden layers converges to the adequate results (exact fault
location with a minimum error) with a fast response time.
ANNs architectures, including the input network number,
the hidden layers number, and the neurons number in each
hidden layer are given due to an experimental study with
various network configurations.Through a series of tests and
modifications of ANNs architectures, the final architecture
for the different ANNs leads to the best performance that
is obtained using a neural network with three layers. The

number of neurons in the input layer corresponds to the
inputs variable number in ANNs. The number of neurons
in the hidden layers was given after a series of tests, and for
the output layer only one neuron corresponds to the fault
distance.

All computation time for the three adopted fault locators
(FL
1
, FL
2
, and FL

3
) is carried on a PC (P4, 2.13 GHz, and 2GB

RAM). The training time for the first fault locator (FL
1
) is

approximately 11min and 35 sec for all four modules. For the
second fault locator (FL

2
) the training time is about 12min

and 31 sec for all four modules. The third fault locator (FL
3
)

has a training time equal to 8min and 17 sec for all four
modules. Hence, it can be seen that the third fault locator
(FL
3
), which uses current and voltage phasor magnitudes,

presents a fast training time compared to the other fault
locator algorithms.

The final architectures of the proposed modular ANN-
based fault locator for each algorithm are given by Table 6.

4.2.4. Testing of the Fault Locator. Once the ANNs training
procedure is entirely carried out, the fault locators FL

1
, FL
2
,

and FL
3
based on modular ANN approach are tested with

various fault scenarios which are not presented during the
training process. These lasts are tested under various fault
conditions, such as different fault location (𝐿

𝑓
= 0–100% of

the line length), different values of the fault resistances (𝑅
𝑓
=

0–200Ω), and various fault inception angles (FIA = 0∘–360∘).
Furthermore, the influences of the fault condition variation
were tested.

The percentage error relating to fault location task is
based on the following equation:

Absolute Error

=
|Estimated Distance − Actual Distance|

Length of line
∗ 100.

(10)

(1) Influence of the Fault Type and the Fault Location.
Table 7 presents the effect of the fault type on the proposed
fault location algorithms (FL

1
, FL
2
, and FL

3
). Indeed, the

examined fault types are phase-ground faults (𝐿-𝐺), phase-
phase-ground faults (𝐿-𝐿-𝐺), phase-phase faults (𝐿-𝐿), and
phase-phase-phase faults (𝐿-𝐿-𝐿). According to the test
results in Table 7, the percentage error, for the fault location
algorithm FL

1
which uses only currents magnitudes of the

fundamental components (50Hz) of three phases (𝑅, 𝑆, and
𝑇), lies between 0.1007% and 1.4599%. For the algorithm
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Table 6: Architectures of ANN based fault locators (FL1, FL2, and FL3).

Modular ANN-based fault locator Proposed fault locator Architecture Mean square error (MSE) Training time (min)

1 phase to ground
FL1 3-14-1 4.23e − 04 2.80
FL2 3-16-1 5.38e − 03 3.32
FL3 6-32-1 9.71e − 06 2.43

Phase to phase
FL1 3-16-1 3.27e − 04 2.19
FL2 3-18-1 4.99e − 04 2.92
FL3 6-28-1 8.66e − 05 2.88

2 phases to ground
FL1 3-13-1 3.88e − 03 3.14
FL2 3-18-1 4.99e − 04 3.28
FL3 6-30-1 6.82e − 05 2.12

3 phases
FL1 3-8-1 3.62e − 04 2.82
FL2 3-14-1 3.74e − 04 2.79
FL3 6-18-1 7.33e − 05 2.34

FL
2
which uses only voltages magnitudes of the fundamental

components (50Hz) of three phases (𝑅, 𝑆, and 𝑇), the
percentage error varies between 0.1086% and 1.2862%. For
the third proposed algorithm FL

3
using the magnitudes of

the fundamental components of three-phase currents and
voltages, the percentage error is within 0.0175% and 0.3041%.
Thus, it can be seen from the test results that the proposed
fault locator algorithm (FL

3
) is more accurate than FL

1
and

FL
2
. Thus, the percentages errors prove well the capacity

of the proposed modular ANN-based fault locator FL
3
to

determine the exact fault distance, compared to FL
1
and FL

2
.

(2) Influence of the Fault Resistance. The effect of the fault
resistance on the precisions of the proposed fault location
algorithms (FL

1
, FL
2
, and FL

3
) was tested on the power

system study. The simulation results given by Table 8 show
the effects of 𝑅

𝑓
on accuracy of the proposed algorithms.

In addition, these algorithms were tested for various fault
resistances 𝑅

𝑓
for a “phase-ground fault (𝑅-𝐺)” among a

fault distance equal to 75Km and for an inception angle FIA
equal to 10∘. During the test the percentage error estimated by
the proposed fault location algorithms lies between 0.1111%
and 1.2019% for FL

1
, 0.2218% and 1.9713% for FL

2
, and

0.0912% and 0.3071% for FL
3
. Consequently, the proposed

modular ANN-based fault locator uses the magnitudes of
the fundamental components of three-phase currents and
voltages (FL

3
), is highly accurate compared to FL

1
and FL

2
,

and is practically independent of the fault resistance.
The criteria for evaluating the performance characteris-

tics of the proposed fault locator based on modular ANN are
translated by the stability of ANNoutput values in the normal
situation and in the fault situation. Thus, minimal response
time 𝑇

𝑟
, which presents the difference between the fault

appearance time 𝑇
𝑓
and the time 𝑇

𝑒
where the ANN output

indicates the exact fault location, is expressed as follows:
𝑇
𝑟
= 𝑇
𝑓
− 𝑇
𝑒
. (11)

The best ANN based on fault locator is obtained by the
stability of ANN outputs under minimal response time.
Therefore, the ANN output is stable in the normal situation
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Figure 10: Test result of FL
3
during 𝑅-𝐺 fault with 𝐿

𝑓
= 75Km,

𝑅
𝑓
= 200Ω, and FIA = 10∘.

and in the fault situation and capable of providing fast and
exact fault location with a wide variety of fault conditions.
In our study case the ANN-based fault locator is trained to
show the output as 110 Km for no fault situation or for fault
outside the line segment. For faults which appeared on the
line segment, the ANN is trained to show the output as the
exact fault position.

In a perspective to evaluate the response time of the
proposed algorithm, we simulated a single phase to ground
fault (𝑅-𝐺) with𝐿

𝑓
= 75 km,𝑅

𝑓
= 200Ω, and a fault inception

angle FIA = 10∘ corresponding to the occurrence fault at time
69ms; see Figure 10.The output of the proposed fault location
algorithm FL

3
converges to 75.1297 km at time equal to 92ms

as against the set value of 75 km. The response time 𝑇
𝑟
of

the proposed algorithm is about 23ms. This proves that the
modular ANN-based fault locator responds quickly to the
desired outputs with minimum error.

(3) Influence of the Fault Inception Angle. In practice, the
faults can occur at any line location; that is, the fault
inception angle FIA cannot be defined in advance. Thus,
it is important to check the performance of the proposed
algorithm with various fault inception angles FIA. In this
context, we simulated a double phase to ground fault with
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Table 8: The effect of the fault resistance of modular ANN-based fault locators (FL1, FL2, and FL3).

Fault conditions Desired output (Km) Actual output (Km) Error (%)
Fault type FIA (∘) 𝑅

𝑓
(Ω) FL1 FL2 FL3 FL1 FL2 FL3

𝑅-𝐺 10∘ 0 75 74.8889 75.3175 75.0912 0.1111 0.3175 0.0912
𝑅-𝐺 10∘ 10 75 74.7792 74.7782 75.1008 0.2208 0.2218 0.1008
𝑅-𝐺 10∘ 100 75 75.8217 75.3390 73.7193 0.8217 1.3390 0.2807
𝑅-𝐺 10∘ 150 75 75.8944 75.6008 75.3071 0.8944 0.6008 0.3071
𝑅-𝐺 10∘ 200 75 76.2019 76.9713 75.1297 1.2019 1.9713 0.1297

Table 9: The effect of the fault inception angle of modular ANN-based fault locators (FL1, FL2, and FL3).

Fault conditions Desired output (Km) Actual output (Km) Error (%)
Fault type 𝑅

𝑓
(Ω) FIA (∘) FL1 FL2 FL3 FL1 FL2 FL3

𝑅-𝑆-𝐺 33 30∘ 11 11.3129 10.9023 11.0009 0.3129 0.0977 0.0009
𝑅-𝑆-𝐺 33 60∘ 11 10.6189 10.7948 10.8984 0.3811 0.2052 0.0967
𝑅-𝑆-𝐺 33 90∘ 11 11.2009 11.2078 11.1299 0.2009 0.2078 0.1299
𝑅-𝑆-𝐺 33 180∘ 11 11.3914 11.5851 11.1007 0.3914 0.4149 0.1007
𝑅-𝑆-𝐺 33 360∘ 11 11.4015 11.4197 10.8392 0.4015 0.4197 0.1608

Table 10: The effect of critical fault condition of modular ANN-based fault locators (FL1, FL2, and FL3).

Fault conditions Desired output (Km) Actual output (Km) Error (%)
Fault type FIA (∘) 𝑅

𝑓
(Ω) FL1 FL2 FL3 FL1 FL2 FL3

𝑆-𝐺 360∘ 199 96 93.7422 93.5863 95.8197 2.2578 2.4137 0.1803
𝑆-𝑇 360∘ — 96 96.7001 96.8100 95.7881 0.7001 0.8100 0.2119
𝑆-𝑇-𝐺 360∘ 199 96 93.8066 97.9806 96.3011 2.1934 1.9806 0.3011
𝑅-𝑆-𝑇 360∘ — 96 95.0009 97.1732 96.2999 0.9991 1.1732 0.2999
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Figure 11: Test result of FL
3
during 𝑅-𝑆-𝐺 fault with 𝐿

𝑓
= 11Km,

𝑅
𝑓
= 33Ω, and FIA = 60∘.

fault resistance 𝑅
𝑓
= 33Ω, fault location 𝐿

𝑓
= 11Km, and

various fault inception angles FIA (30∘, 60∘, 90∘, 180∘, and
360∘). The simulation results are presented in Table 9. It can
be seen from these results that the percentage error for the
estimation of the fault using FL

3
is between 0.0009% and

0.1608%, that of FL
1
is between 0.2009% and 0.4015%, and

that of FL
2
lies between 0.0977% and 0.4197%. Consequently,

it is clearly obvious that algorithm FL
3
is more accurately

compared to other algorithms (FL
1
and FL

2
). Consequently,

the proposed algorithm (FL
3
) is practically independent of

the fault inception angle.

In order to show the fast convergence of the proposed
algorithm FL

3
under the influence of fault inception angle

FIA, a double phase to ground fault (𝑅-𝑆-𝐺) with fault
location 𝐿

𝑓
= 11 km, fault resistance 𝑅

𝑓
= 33Ω, and

fault inception angle FIA = 60∘, a fault occurrence at time
70ms was simulated; see Figure 11. We noticed that the fault
locator (FL

3
) makes it possible to locate the fault with a good

precision and a fast convergence time. The fault occurrence
at time 𝑇

𝑓
= 70ms was located at time 𝑇

𝑒
= 92ms at a

distance 𝐿
𝑓
= 11.0967, which implies a fast response time

about 𝑇
𝑟
= 22ms and a precision of 0.0967%. Thus it is clear

that the proposed fault locator based on modular ANN (FL
3
)

can accurately locate the fault with high fault inception angle
FIA.

(4) Influence of Critical Fault Conditions. In this context, we
simulated various fault types under extreme fault conditions
such as maximum fault resistance (𝑅

𝑓max), maximum fault
inception angle (FIAmax), and a fault location created at
96Km for the transmission line (𝐿

𝑓max). Hence, the three
proposed algorithms were tested on the four fault types and
the simulation results are illustrated in Table 10. Thus, it can
be seen that the proposed algorithm FL

3
is more accurate

and presents high performances especially for critical fault
conditions compared to other algorithms FL

1
and FL

2
. The

corresponding percentage error represents very satisfactory
results.
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Table 11: Comparison of ANN-based fault classification and location schemes.

Algorithms suggested Fault classifier
inputs Fault locator inputs FIA range

(∘)
𝐿
𝑓
range
(%)

𝑅
𝑓
range
(Ω)

%Error
range

Response
time

Joorabian et al. [22]

Five consecutive
samples of
three-phase
currents and
voltages

Five consecutive
samples of
three-phase
currents and
voltages

0–90∘ 0–94% 0–100 0.0397% to
0.4123%

Not
indicated

Mahanty and Gupta
[10]

Five consecutive
samples of
three-phase
currents

Five consecutive
samples of
three-phase
currents and
voltages

0–90∘ 0–82% 0–200 0.0007%
to 4.45%

Not
indicated

Jiang et al. [31]

Negative-sequence
components of
three-phase
currents and

voltages quantities

Negative-sequence
components of
three-phase
currents and

voltages quantities

Not
indicated

Not
indicated

Not
indicated

0.41% to
0.54% 1.28 cycles

Yadav andThoke [32] No method for
fault classification

Three consecutive
samples of
three-phase
currents and
voltages

Not
indicated 0–90% 0–100 0.052% to

1.5693% 1.5 cycles

Proposed scheme

Four consecutive
samples of
three-phase
currents

Magnitudes of
fundamental
components of
three-phase
currents and
voltages

0–360∘ 0–96% 0–200 0.0175% to
0.3041%

1 cycle
time from
inception
of fault

In the same way, this algorithm is qualified effective since
it presents a fast response time in convergence to the desired
results. Indeed, we simulated two phases to ground faults
(𝑆-𝑇-𝐺) at time 75ms with 𝐿

𝑓max = 96 km, 𝑅
𝑓max = 199Ω,

and a fault inception angle FIA = 360∘; see Figure 12. We
noticed that the proposed fault locator (FL

3
) located the

fault at time 𝑇
𝑒
= 100ms at a distance 𝐿

𝑓
= 96.2999

which implies a fast response time equal to 𝑇
𝑟
= 25ms and

a precision of 0.2999%; see Figure 12. This shows that the
modular ANN-based fault locator converges correctly with
fast time when the transmission line is affected by several
faults under extreme fault conditions.

5. Comparison between Proposed
and Existing Schemes

The suggested fault classification and location algorithms,
based on modular ANN, are compared with some former
works. These proposed algorithms are developed for all the
ten fault types, which can affect a transmission line, under
various fault conditions such as wider range of fault resistance
𝑅
𝑓
, different fault inception angles FIA, and different fault

location 𝐿
𝑓
. The main features of certain existing artificial

neural network-based fault classification and location algo-
rithms are presented in Table 11.

The accuracy of the proposed fault location algorithm
(FL
3
) lies between 0.0175% and 0.3041%, as indicated in

Table 11. This shows the high performance of the (FL
3
)
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Figure 12: Test result of FL
3
during 𝑆-𝑇-𝐺 fault with 𝐿

𝑓
= 96Km,

𝑅
𝑓
= 199Ω, and FIA = 360∘.

algorithm and proves that it ismore accurate than the existing
algorithms. Thus in this present work, we proved that the
response time of the proposed fault classification and fault
location algorithms is estimated to one cycle from the fault
occurrence. This response time is comparable to the classical
distance relay protection [32].

6. Conclusion

An efficient fault classification and location algorithms in
extra high voltage (EHV) transmission lines based on arti-
ficial neural networks were presented. For fault classification,
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two algorithms were proposed: the first one used a single
ANN approach, and the other used the modular ANN
approach. Prefault and postfault samples of three-phase cur-
rents were used as inputs for these algorithms. A comparative
study of the single and modular neural network shows that
the modular approach gives more accuracy in order to iden-
tify the fault type. For fault location, three algorithms were
developed. The first treats only the fundamental magnitudes
of the three-phase currents samples, the second treats the
fundamentalmagnitudes of the three-phase voltages samples,
and the third uses the fundamental magnitudes of three-
phase currents and voltages samples. The modular approach
of neural networks was applied to evaluate these algorithms.
The simulation results of these algorithms have been shown
under a variety of fault situations such as different fault
locations, different fault inception angles, and different fault
resistances. The obtained results prove that the proposed
modular ANN-based fault distance locator algorithm which
uses fundamental magnitudes of three-phase currents and
voltages is the most effective fault locator. The obtained
results indicate that the proposed fault protection algorithm
based on modular ANNs approach is capable of identifying
all fault types and of estimating the exact fault location in
the transmission lines with high accuracy. Moreover, the
response of the proposed fault protection algorithm requires
one cycle from the inception fault. Therefore, the modular
ANN-based fault protection can be used for online fault
classification and location in transmission lines.
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