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It is frequent to encounter integer-valued time series which are small in value and show a trend having relatively large fluctuation. To
handle such amatter, we present a newfirst order integer-valuedmoving averagemodel process with structural changes.Themodels
provide a flexible framework for modelling a wide range of dependence structures. Some statistical properties of the process are
discussed andmoment estimation is also given. Simulations are provided to give additional insight into the finite sample behaviour
of the estimators.

1. Introduction

Integer-valued time series occur in many situations, often as
counts of events in consecutive points of time, for example,
the number of births at a hospital in successive months, the
number of road accidents in a city in successive months, and
big numbers even for frequently traded stocks. Integer-valued
time series represent an important class of discrete-valued
time series models. Because of the broad field of potential
applications, a number of time series models for counts have
been proposed in literature. McKenzie [1] introduced the
first order integer-valued autoregressive, INAR(1), model.
The statistical properties of the INAR(1) are discussed in
McKenzie [2], Al-Osh and Alzaid [3]. The model is fur-
ther generalized to a 𝑝th-order autoregression, INAR(𝑝),
by Alzaid and Al-Osh [4] and Du and Li [5]. The 𝑞th-
order integer-valued moving average model, INMA(𝑞), was
introduced by Al-Osh and Alzaid [6] and in a slightly
different form by McKenzie [7]. Ferland et al. [8] proposed
an integer-valued GARCH model to study overdispersed
counts, and Fokianos and Fried [9], Weiß [10], and Zhu and
Wang [11–13]made further studies. Györfi et al. [14] proposed
a nonstationary inhomogeneous INAR(1) process, where
the autoregressive type coefficient slowly converges to one.
Bakouch and Ristić [15] introduced a new stationary integer-
valued autoregressive process of the first orderwith zero trun-
cated Poisson marginal distribution. Kachour and Yao [16]

introduced a class of autoregressivemodels for integer-valued
time series using the rounding operator. Kim and Park
[17] proposed an extension of integer-valued autoregressive
INAR models by using a signed version of the thinning
operator. Zheng et al. [18] proposed a first order random
coefficient integer-valued autoregressive model and got its
ergodicity, moments, and autocovariance functions of the
process. Gomes and Canto e Castro [19] presented a random
coefficient autoregressive process for count data based on a
generalized thinning operator. Existence and weak station-
arity conditions for these models were established. A simple
bivariate integer-valued time seriesmodelwith positively cor-
related geometric marginals based on the negative binomial
thinning mechanism was presented by Ristić et al. [20], and
some properties of the model are also considered. Pedeli
and Karlis [21] considered a bivariate INAR(1) (BINAR(1))
process where cross correlation is introduced through the use
of copulas for the specification of the joint distribution of the
innovations.

Structural changes in economic data frequently corre-
spond to instabilities in the real world.However,mostwork in
this area has been concentrated onmodels without structural
changes. It seems that the integer-valued autoregressive
moving average (INARMA) model with break point has not
attracted too much attention. For instance, a new method
for modelling the dynamics of rain sampled by a tipping
bucket rain gauge was proposed by Thyregod et al. [22].
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The models take the autocorrelation and discrete nature of
the data into account. First order, second order, and threshold
models are presented together with methods to estimate the
parameters of each model. Monteiro et al. [23] introduced a
class of self-exciting threshold integer-valued autoregressive
models driven by independent Poisson-distributed random
variables. Basic probabilistic and statistical properties of
this class of models were discussed. Moreover, parameter
estimation was also addressed. Hudecová [24] suggested a
procedure for testing a change in the autoregressive models
for binary time series. The test statistic is a maximum of
normalized sums of estimated residuals from the model,
and thus it is sensitive to any change which leads to a
change in the unconditional success probability. Structural
change is a statement about parameters, which only have
meaning in the context of a model. In our discussion, we will
focus on structural change in the simple count data model,
the first order integer-valued moving average model, whose
coefficient varies with the value of innovation. One of the
leading reasons is that piecewise linear functions can offer
a relatively simple approximation to the complex nonlinear
dynamics.

The rest of this paper is divided into four sections. In
Section 2, we give the definition and basic properties of
the new INMA(1) model with structural changes. Section 3
discusses the estimation of the unknown parameters. We test
the accuracy of the estimation via simulations in Section 4.
Section 5 includes some concluding remarks.

2. Definition and Basic Properties

Definition 1. Let {𝑋
𝑡
} be a process with state space N

0
; let

0 < 𝛼
𝑖
< 1, 𝑖 = 1, . . . , 𝑚, and 𝜏

𝑖
, 𝑖 = 1, . . . , 𝑚 − 1, be

positive integers. The process {𝑋
𝑡
} is said to be first order

integer-valued moving average model with structural change
(INMASC(1)) if𝑋

𝑡
satisfies the following equation:

𝑋
𝑡
=

{{{{{{{

{{{{{{{

{

𝛼
1
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

0
≤ 𝜀
𝑡−1
≤ 𝜏
1

𝛼
2
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

1
< 𝜀
𝑡−1
≤ 𝜏
2

...
𝛼
𝑚−1

∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

𝑚−2
< 𝜀
𝑡−1
≤ 𝜏
𝑚−1

𝛼
𝑚
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

𝑚−1
< 𝜀
𝑡−1
< 𝜏
𝑚
,

(1)

where {𝜀
𝑡
} is a sequence of independent and identically

distributed Poisson random variables with mean 𝜆 and 𝜏
0
:=

0, 𝜏
𝑚
:= ∞.

The aim of this section is to provide expressions for
the moments and stationary of INMASC(1) model. For this
purpose, we introduce the following notations:

𝑝
𝑖
:= 𝑃 (𝜏

𝑖−1
< 𝜀
𝑡
≤ 𝜏
𝑖
) , 𝑢

𝑖
:= 𝐸 (𝜏

𝑖−1
< 𝜀
𝑡−1
≤ 𝜏
𝑖
) ,

𝜎
2

𝑖
:= Var (𝜏

𝑖−1
< 𝜀
𝑡−1
≤ 𝜏
𝑖
) , 𝑞

𝑖
:= 1 − 𝑝

𝑖
,

𝐼
𝑡−1,𝑖

:= {
1, if 𝜏

𝑖−1
< 𝜀
𝑡−1
≤ 𝜏
𝑖

0, otherwise,
𝑖 = 1, . . . , 𝑚.

(2)

Theorem 2. The numerical characteristics of {𝑋
𝑡
} are as

follows:

(𝑖) 𝜇
𝑋
:= 𝐸 (𝑋

𝑡
) =

𝑚

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
+ 𝜆,

(𝑖𝑖) 𝜎
2

𝑋
:= Var (𝑋

𝑡
)

=

𝑚

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
[𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
) + (1 − 𝛼

𝑖
) 𝑢
𝑖
]

− (

𝑚

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
)

2

+ 𝜆,

(𝑖𝑖𝑖) 𝛾
𝑋
(𝑘) := cov (𝑋

𝑡
, 𝑋
𝑡−𝑘
)

=
{{

{{

{

𝑚

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
(𝑢2
𝑖
+ 𝜎2
𝑖
− 𝜆𝑢
𝑖
) , 𝑘 = 1

0, 𝑘 ≥ 2.

(3)

Proof. (i) It is easy to get themean and variance of𝑋
𝑡
by using

the law of iterated expectations:

𝐸 (𝑋
𝑡
) = 𝐸 [𝐼

𝑡−1,1
(𝛼
1
∘ 𝜀
𝑡−1
) + ⋅ ⋅ ⋅ + 𝐼

𝑡−1,𝑚
(𝛼
𝑚
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
]

= 𝐸 {𝐸 [𝐼
𝑡−1,1

(𝛼
1
∘ 𝜀
𝑡−1
)

+ ⋅ ⋅ ⋅ + 𝐼
𝑡−1,𝑚

(𝛼
𝑚
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
]} + 𝐸 (𝜀

𝑡
)

= 𝛼
1
𝐸 (𝐼
𝑡−1,1

𝜀
𝑡−1
) + ⋅ ⋅ ⋅ + 𝛼

𝑚
𝐸 (𝐼
𝑡−1,𝑚

𝜀
𝑡−1
) + 𝐸 (𝜀

𝑡
)

=

𝑚

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
+ 𝜆.

(4)

(ii) Moreover,

Var (𝑋
𝑡
)

= Var (𝐼
𝑡−1,1

(𝛼
1
∘ 𝜀
𝑡−1
) + ⋅ ⋅ ⋅ + 𝐼

𝑡−1,𝑚
(𝛼
𝑚
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
)

=

𝑚

∑
𝑖=1

Var (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
)) + Var (𝜀

𝑡
)

+ 2∑
𝑖<𝑗

cov (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) , 𝐼
𝑡−1,𝑗

(𝛼
𝑗
∘ 𝜀
𝑡−1
))

=

𝑚

∑
𝑖=1

{Var (𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
])

+ 𝐸 (Var [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
])} + 𝜆

+ 2∑
𝑖<𝑗

{𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝐼
𝑡−1,𝑗

(𝛼
𝑗
∘ 𝜀
𝑡−1
)]

− 2𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
)] 𝐸 [𝐼

𝑡−1,𝑗
(𝛼
𝑗
∘ 𝜀
𝑡−1
)]}

=

𝑚

∑
𝑖=1

[𝛼
2

𝑖
Var (𝐼

𝑡−1,𝑖
𝜀
𝑡−1
)+𝛼
𝑖
(1−𝛼
𝑖
) 𝐸 (𝐼
𝑡−1,𝑖
𝜀
𝑡−1
)]+𝜆

− 2∑
𝑖<𝑗

𝐸 {𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
]}

× 𝐸 {𝐸 [𝐼
𝑡−1,𝑗

(𝛼
𝑗
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
]}
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=

𝑚

∑
𝑖=1

{[𝛼
2

𝑖
𝐸 (𝐼
2

𝑡−1
𝜀
2

𝑡−1
) −𝐸
2
(𝐼
𝑡−1,𝑖
𝜀
𝑡−1
)]

+ 𝑝
𝑖
𝛼
𝑖
(1 − 𝛼

𝑖
) 𝑢
𝑖
} + 𝜆

− 2∑
𝑖<𝑗

𝛼
𝑖
𝛼
𝑗
𝐸 (𝐼
𝑡−1,𝑖
𝜀
𝑡−1
) 𝐸 (𝐼
𝑡−1,𝑗

𝜀
𝑡−1
)

=

𝑚

∑
𝑖=1

{[𝑝
𝑖
𝛼
2

𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
) − 𝑝
2

𝑖
𝛼
2

𝑖
𝑢
2

𝑖
] + 𝑝
𝑖
𝛼
𝑖
(1 − 𝛼

𝑖
) 𝑢
𝑖
} + 𝜆

− 2∑
𝑖<𝑗

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
𝑝
𝑗
𝛼
𝑗
𝑢
𝑗

=

𝑚

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
[𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
) + (1 − 𝛼

𝑖
) 𝑢
𝑖
] − (

𝑚

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
)

2

+ 𝜆.

(5)

(iii) Note the correlation between 𝛼
𝑖
∘ 𝜀
𝑡−1

and 𝜀
𝑡−1

; we
have

cov (𝑋
𝑡
, 𝑋
𝑡−1
)

=cov(
𝑚

∑
𝑖=1

𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
)+𝜀
𝑡
,

𝑚

∑
𝑗=1

𝐼
𝑡−2,𝑗

(𝛼
𝑗
∘ 𝜀
𝑡−2
)+𝜀
𝑡−1
)

=

𝑚

∑
𝑖=1

cov (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
, 𝜀
𝑡−1
)

=

𝑚

∑
𝑖=1

{𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
𝑡−1
] − 𝐸 [𝐼

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
)] 𝐸 (𝜀

𝑡−1
)}

=

𝑚

∑
𝑖=1

{𝐸 [𝐸 (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
𝑡−1
| 𝜀
𝑡−1
)]

− 𝐸 [𝐸 (𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) | 𝜀
𝑡−1
)] 𝐸 (𝜀

𝑡−1
)}

=

𝑚

∑
𝑖=1

𝛼
𝑖
[𝐸 (𝐼
𝑡−1,𝑖
𝜀
2

𝑡−1
) − 𝜆𝛼

𝑖
𝐸 (𝐼
𝑡−1,𝑖
𝜀
𝑡−1
)]

=

𝑚

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
− 𝜆𝑢
𝑖
) .

(6)

Theorem 3. Let 𝑋
𝑡
be the process defined by the equation in

(1); then the {𝑋
𝑡
} is a covariance stationary process.

Proof. Both the unconditional mean and the unconditional
variance of the {𝑋

𝑡
} are finite constant. And the autocovari-

ance function does not change with time. Thus {𝑋
𝑡
} is a

stationary process.

Theorem 4. Suppose {𝑋
𝑡
} is INMASC(1) process. Then

(i) √𝑇(𝑋 − 𝜇
𝑋
)
𝐿

󳨀→ 𝑁(0, 𝜎2
𝑋
+ 2𝛾
𝑋
(1));

(ii) 𝐸(𝑋𝑘
𝑡
| 𝐼
𝑡−1,𝑖

= 1) < ∞, 𝑘 = 1, 2, 3, 𝑖 = 1, . . . , 𝑚.

Proof. (i) From definition and Theorem 2, we have that
(𝑋
1
, . . . , 𝑋

𝑖
) and (𝑋

𝑗
, 𝑋
𝑗+1
, . . .) are independent whenever

𝑗 − 𝑖 > 1. According to Theorem 9.1 of DasGupta [25], the
process {𝑋

𝑡
} is a stationary 1-dependent sequence. Therefore

we can complete the proof.
(ii) For 𝑘 = 1, it follows that

𝐸 (𝑋
𝑡
) ≤ max {𝐸 [𝐼

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
] , 𝑖 = 1, . . . , 𝑚}

≤ max {𝐸 (𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝐸 (𝜀

𝑡
) , 𝑖 = 1, . . . , 𝑚}

≤ 𝜆 (𝛼max + 1) < ∞, 𝛼max = max (𝛼
1
, . . . , 𝛼

𝑚
) .

(7)

For 𝑘 = 2,

𝐸 (𝑋
2

𝑡
) ≤ max {𝐸[𝐼

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
]
2
, 𝑖 = 1, . . . , 𝑚}

= max {𝐸[𝐼
𝑡−𝑖,1

(𝛼
𝑖
∘ 𝜀
𝑡−1
)]
2

+ 𝐸 (𝜀
2

𝑡
)

+2𝐸 [𝐼
𝑡−𝑖,1

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
𝑡
] , 𝑖 = 1, . . . , 𝑚}

≤ max {𝐸[(𝛼
𝑖
∘ 𝜀
𝑡−1
)]
2

+ 𝐸 (𝜀
2

𝑡
)

+2𝐸 [(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
𝑡
] , 𝑖 = 1, . . . , 𝑚}

= max {[(𝜆 + 𝜆2) 𝛼2
𝑖
+ 𝜆𝛼
𝑖
(1 − 𝛼

𝑖
)]

+ (𝜆 + 𝜆
2
) + 𝜆
2
𝛼
𝑖
, 𝑖 = 1, . . . , 𝑚}

≤ 2 (𝜆 + 𝜆
2
) 𝛼max + 0.25𝜆 + 𝜆

2
𝛼max < ∞.

(8)

For 𝑘 = 3,

𝐸 (𝑋
3

𝑡
) ≤ max {𝐸[𝐼

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
) + 𝜀
𝑡
]
3

, 𝑖 = 1, . . . , 𝑚}

= max {𝐸[𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
)]
3

+ 𝐸 (𝜀
3

𝑡
)

+ 3𝐸 [𝐼
2

𝑡−1,𝑖
(𝛼
𝑖
∘ 𝜀
𝑡−1
)
2
𝜀
𝑡
]

+ 3𝐸 [𝐼
𝑡−1,𝑖

(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
2

𝑡
] , 𝑖 = 1, . . . , 𝑚}

≤ max {𝐸(𝛼
𝑖
∘ 𝜀
𝑡−1
)
3

+ 𝐸 (𝜀
3

𝑡
) + 3𝐸 [(𝛼

𝑖
∘ 𝜀
𝑡−1
)
2

𝜀
𝑡
]

+3𝐸 [(𝛼
𝑖
∘ 𝜀
𝑡−1
) 𝜀
2

𝑡
] , 𝑖 = 1, . . . , 𝑚}

≤ max {[𝛼3
𝑖
𝜏
1
+ 3𝛼
2

𝑖
(1 − 𝛼

𝑖
) 𝜏
2

+ (𝛼
𝑖
− 3𝛼
2

𝑖
(1 − 𝛼

𝑖
) − 𝛼
3

𝑖
) 𝜆]

+ 𝜏
1
+ 3 {[𝛼

2

𝑖
𝜏
2
+ 𝛼
𝑖
(1 − 𝛼

𝑖
) 𝜆] 𝜆}

+3𝜆𝛼
𝑖
𝜏
2
, 𝑖 = 1, . . . , 𝑚}

≤ 𝜆𝛼max [𝛼
2

max (𝜏1 − 1 − 3𝜆)

+3𝜏
2
(𝛼max + 1) + 3𝜆 + 1] + 𝜏1 < ∞,

(9)

where 𝜏
1
:= 𝜆3 + 3𝜆2 + 𝜆, 𝜏

2
:= 𝜆2 + 𝜆, and 𝛼max =

max(𝛼
1
, . . . , 𝛼

𝑚
). Then note that 𝐸(𝑋𝑘

𝑡
) < ∞ implies 𝐸(𝑋𝑘

𝑡
|

𝐼
𝑡−1,𝑖

= 1) < ∞ for 𝑘 = 1, 2, 3, 𝑖 = 1, 2, . . . , 𝑚.
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Theorem 5. Let {𝑋
𝑡
} be a INMASC(1) process according to

Definition 1. Let 𝑋 be the sample mean of {𝑋
𝑡
}; then the

stochastic process {𝑋
𝑡
} is ergodic in the mean.

Proof. Since 𝛾
𝑋
(𝑘) → 0, 𝑘 → ∞.

FromTheorem 7.1.1 in Brockwell and Davis [26], we get

Var (𝑋
𝑇
) = 𝐸(𝑋

𝑇
− 𝜇
𝑋
)
2

󳨀→ 0. (10)

Then 𝑋
𝑇

converges in probability to 𝜇
𝑋
. Therefore, the

process {𝑋
𝑡
} is ergodic in the mean.

Theorem 6. Suppose {𝑋
𝑡
} is a INMASC(1) process; then

𝑃 (
󵄨󵄨󵄨󵄨𝛾𝑋 (𝑘) − 𝛾𝑋 (𝑘)

󵄨󵄨󵄨󵄨 ≥ 𝜀)
𝑃

󳨀→ 0, (11)

where 𝛾
𝑋
(𝑘) := (1/𝑇)∑

𝑇−𝑘

𝑡=1
(𝑋
𝑡+𝑘
− 𝑋
𝑇
)(𝑋
𝑡
− 𝑋
𝑇
).

The proof of Theorem 6 is similar to Theorem 4 given in
Yu et al. [27]. It is easy to verify; we skip the details.

3. Estimation of Parameters

In this paper, we consider one method, namely, moment
estimation. An advantage of the method is that it is simple
and often produces good results. The estimation problem
of INMASC(1) parameters is complex. In fact, for the
INMASC(1) processes, the conditional distribution of the𝑋

𝑡

given 𝜀
𝑡−1

is the convolution of the distribution of the arrival
process 𝜀

𝑡
and one thinning operation 𝛼

𝑖
∘ 𝜀
𝑡−1

. On the other
hand, there are too many unknown parameters of the model,
such as 𝜆, 𝛼

𝑖
, 𝑝
𝑖
, 𝑢
𝑖
, and 𝜎2

𝑖
, 𝑖 = 1, . . . , 𝑚, whereas the number

of moment conditions is small.
Therefore we cannot estimate all the parameters unless

additional assumptions are made. Then, we assume that the
number of break point𝑚 is two and assume that the value of
break point 𝜏

𝑖
, 𝑖 = 1, . . . , 𝑚, and the mean of innovation 𝜆

are also known. Thus, here we estimate INMASC(1) model
with two break points. Under these assumptions, all the
parameters 𝜆, 𝑝

𝑖
, 𝑢
𝑖
, and 𝜎2

𝑖
, 𝑖 = 1, 2, 3, are known. We only

need to estimate the autoregressive coefficients 𝛼
1
, 𝛼
2
, and

𝛼
3
. Using the sample mean and sample covariance function,

we can get the moment estimators via solving the following
equations:

𝛾 (0) =

3

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
[𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
) + (1 − 𝛼

𝑖
) 𝑢
𝑖
]

− (

3

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
)

2

+ 𝜆

𝛾 (1) =

3

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
(𝑢
2

𝑖
+ 𝜎
2

𝑖
− 𝜆𝑢
𝑖
)

𝑋 =

3

∑
𝑖=1

𝑝
𝑖
𝛼
𝑖
𝑢
𝑖
+ 𝜆.

(12)

Table 1: Bias and mean square error for models A, B, and C.

Model Parameter Sample size
50 200 500

A

𝛼
1

0.0267
(0.3948)

0.0097
(0.0753)

0.0034
(0.0453)

Bias
MSE

𝛼
2

0.0645
(0.4731)

0.0115
(0.1314)

0.0025
(0.0376)

Bias
MSE

𝛼
3

0.0417
(0.2908)

0.0083
(0.0811)

0.0046
(0.0342)

Bias
MSE

B

𝛼
1

0.0335
(0.4623)

0.0127
(0.1803)

0.0036
(0.0745)

Bias
MSE

𝛼
2

0.0297
(0.2806)

0.0103
(0.3449)

0.0054
(0.0847)

Bias
MSE

𝛼
3

0.0251
(0.3408)

0.0081
(0.0372)

0.0024
(0.0165)

Bias
MSE

C

𝛼
1

0.0736
(1.0435)

0.0178
(0.3562)

0.0068
(0.0357)

Bias
MSE

𝛼
2

0.0582
(0.4127)

0.0215
(0.0433)

0.0049
(0.0212)

Bias
MSE

𝛼
2

0.0237
(0.3205)

0.0081
(0.0547)

0.0031
(0.0274)

Bias
MSE

If you want to estimate all parameters, you can use GMM
method based on probability generating functions intro-
duced by BräKnnäK andHall [28]. But they found covariance
matrix of estimators depends on 𝑧 and the orders besides
the model parameters in a highly complex way. Thus we do
not use this method here. In next section, simulations are
provided to give insight into the finite sample behaviour of
these estimators.

4. Simulation Study

Consider the following INMASC(1)model:

𝑋
𝑡
=

{{

{{

{

𝛼
1
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜀

𝑡−1
≤ 𝜏
1

𝛼
2
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

1
< 𝜀
𝑡−1
≤ 𝜏
2

𝛼
3
∘ 𝜀
𝑡−1
+ 𝜀
𝑡
, for 𝜏

2
< 𝜀
𝑡−1
,

(13)

where {𝜀
𝑡
} is a sequence of i.i.d. For fixed 𝑡, 𝜀

𝑡
follows a Poisson

distribution with mean 𝜆.
The parameters values considered in this model are listed

as follows:

(model A) (𝛼
1
, 𝛼
2
, 𝛼
3
) = (0.1, 0.1, 0.1), with 𝜏

1
= 3,

𝜏
2
= 10, 𝜆 = 1;

(model B) (𝛼
1
, 𝛼
2
, 𝛼
3
) = (0.2, 0.3, 0.1), with 𝜏

1
= 8,

𝜏
2
= 17, 𝜆 = 10;

(model C) (𝛼
1
, 𝛼
2
, 𝛼
3
) = (0.4, 0.3, 0.1), with 𝜏

1
= 21,

𝜏
2
= 43, 𝜆 = 50.

We use the above models to generate data and then use
moment methods to estimate the parameters. We computed
the empirical bias and the mean square error (MSE) based
on 300 replications for each parameter combination. These
values are reported within parenthesis in Table 1.

From the results in Table 1, we can seemoment estimation
is good estimationmethods producing estimators whose bias
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and MSEs are small when the sample sizes are larger. In
addition, this method is fast and easy to implement. It is
perhaps not surprising that the MSEs are larger when these
sample sizes are smaller. As to be expected, both the bias and
the MSEs converge to zero with increasing sample size 𝑇.

5. Conclusion

Based on some limitations of the present count data models,
a new INMA model is introduced to model structural
changes. Expressions for mean, variance, and autocorrelation
functions are given. Stationary and other basic statistical
properties are also obtained. We derived moment estimators
of the unknown parameters. Furthermore, we constructed
several simulations to evaluate the performance of the esti-
mators of model parameters.
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