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We focus on the two-center hybrid flow shop scheduling problem with identical parallel machines and removal times. The job
removal time is the required duration to remove it from a machine after its processing. The objective is to minimize the maximum
completion time (makespan). A heuristic and a lower bound are proposed for this NP-Hard problem. These procedures are based
on the optimal solution of the parallel machine scheduling problemwith release dates and delivery times.The heuristic is composed
of two phases. The first one is a constructive phase in which an initial feasible solution is provided, while the second phase is an
improvement one. Intensive computational experiments have been conducted to confirm the good performance of the proposed
procedures.

1. Introduction

The hybrid flow shop (HFS) manufacturing systems are
frequently encountered in the electronic industry, such as in
PCB fabrication and integrated circuit (IC) packaging. HFS
is composed of a series of production centers. Each one of
these production centers includes several parallel machines.
Some centers may contain only one machine but at least
one center contains more than one machine. These parallel
machines (for each center) are intended to treat several jobs
simultaneously and may be identical, unrelated, or uniform.

The jobs have to follow the same route from the first
center to the last one during the processing (this is the flow
side of the HFS). Each job can be treated by any one of
the machines included in a center but must be processed by
only one machine. Each machine can process one job at the
same time without preemption for a fixed amount of time. In
addition, the buffer capacity between the consecutive centers
is assumed to be unlimited. The main purpose is to find a
feasible schedule that minimizes a given criterion such as the
maximum completion time or the mean flow time.

During the modeling phase, several practical assump-
tions are neglected in order to simplify the mathematical
treatment of the corresponding scheduling problem. Indeed,

despite its practical importance in some manufacturing
systems, the removal time is commonly either ignored or
considered as a hidden part of the processing time. Thus
taking into account the removal time will reduce the gap
between theory and practice.

The removal time for a job is the required time to remove
it from a given machine after being processed. The removal
of the treated jobs from machines may be a time consuming
procedure; thus accuratemodels have to consider the removal
times. The removal time is of two types:

(i) sequence-independent removal time: the removal
time depends only on the considered job;

(ii) sequence-dependent removal time: the removal time
depends on the considered job and its predecessor.

The scheduling problems with removal times are in
general NP-Hard even for a small system [1]. While checking
the literature on the scheduling problemswith removal times,
only few papers have been found; among them we quote
[2–9].

Hybrid flow shop scheduling problemwith removal times
(HFSRT) is further challenging because it is more complex
than the small systems.More precisely, the HFSRT is strongly
NP-Hard, since a particular case which is the two-center
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hybrid flow shop scheduling problem is strongly NP-Hard
[10].Moreover,HFSRT is of a practical interest since itmodels
several real life situations in manufacturing. Surprisingly,
the literature for HFSRT is scant and only a few papers
on the subject were provided. In this context, the authors
in [11] addressed the two-center hybrid flow shop problem
with removal and setup times and they developed several
heuristics to minimize the makespan. In [12], the hybrid flow
shop scheduling problem with setup times, removal times,
due dates, and precedence constraints is addressed and six
heuristics are developed to minimize the maximum lateness.

In this paper, we focus on the two-center hybrid flow shop
scheduling problem with sequence-independent removal
times. We develop a new two-phase heuristic procedure,
which utilizes iteratively the optimal solution of the parallel
machine scheduling problem. In addition, we propose a lower
bound which is based on relaxing the two-center hybrid
flow shop scheduling problem with sequence-independent
removal times into two parallel machine scheduling prob-
lems. These two parallel machine scheduling problems are
solved optimally. The developed lower bound is intended to
evaluate the performance of the proposed heuristic.

The rest of this paper is organized as follows. In Section 2,
a formal definition of the studied scheduling pro-
blem is given, along with some useful properties. Section 3
introduces the parallel machine scheduling problem. A lower
bounding scheme is presented in Section 4. The developed
heuristic algorithm is detailed in Section 5. Section 6 is
devoted to test the performance of the proposed procedures.
Finally, some conclusions and future directions are presented
in Section 7.

2. Problem Description

In this paper we address the two-center hybrid flow shop
scheduling problem with identical parallel machines and
removal times (HFSRT). The HFSRT is stated as follows. We
are given a set 𝐽 = {1, 2, . . . , 𝑛} of 𝑛 jobs and two centers
𝐶
1
and 𝐶

2
. Each center 𝐶

𝑖
contains 𝑚

𝑖
(𝑖 = 1, 2) identical

parallel machines, 𝑀
𝑖,1
,𝑀
𝑖,2
, . . . ,𝑀

𝑖,𝑚𝑖
. Each job 𝑗 ∈ 𝐽 has

to be processed first on a machine of the first center 𝐶
1
,

without preemption, during 𝑝
1,𝑗

units of time. Once the
processing of the job 𝑗 is completed, a removal time 𝑟𝑚

1,𝑗

is required to remove the job 𝑗 from the machine on which
it has been treated. After that, the job 𝑗 is transferred to the
second center 𝐶

2
where it will be processed on an available

machine, without preemption, for𝑝
2,𝑗

units of time.After that
its removal will last 𝑟𝑚

2,𝑗
units of time.The objective is to find

a feasible schedule thatminimizes the last completion time or
the makespan 𝐶max.

All jobs and all machines are available from time zero. All
the processing times 𝑝

𝑖𝑗
and the removal times 𝑟𝑚

𝑖,𝑗
(𝑖 = 1, 2

and 𝑗 ∈ 𝐽) are integer and deterministic. In addition, the
intermediate storage between the two centers is assumed to
be unlimited. Following the three-field notation 𝛼|𝛽|𝛾, the
HFSRT problem is noted 𝐹

2
(𝑃
𝑚1
, 𝑃
𝑚2
)|𝑟𝑚
𝑖𝑗
|𝐶max [13]. In the

following, we define the modified processing time of the job
𝑗 ∈ 𝐽 in center 𝐶

𝑖
(𝑖 = 1, 2) as 𝑝

𝑖𝑗
= 𝑝
𝑖𝑗
+ 𝑟𝑚
𝑖,𝑗
.

Example 1. We consider the following instance:𝑚
1
= 𝑚
2
= 2

and 𝑛 = 5. The processing times of Example and the removal
times are displayed as follows:

𝑗 1 2 3 4 5

𝑝
1𝑗
8 1 17 19 3

𝑟𝑚
1𝑗
4 9 1 10 13

𝑝
2𝑗
24 19 2 38 13

𝑟𝑚
2𝑗
15 19 19 10 19

(1)

A feasible schedule for Example 1 with maximum com-
pletion time 𝐶max = 125 is given by

Sequence of jobs
𝑀
11
: 5, 1, 3.

𝑀
12
: 4, 2.

𝑀
21
: 5, 1, 2.

𝑀
22
: 4, 3.

(2)

In order to enhance the value of the makespan we intro-
duce the reverse problem of 𝐹

2
(𝑃
𝑚1
, 𝑃
𝑚2
)|𝑟𝑚
𝑖𝑗
|𝐶max which is

the problem obtained by inverting the roles of the centers in
addition to the permutation of the processing and removal
times. More precisely, if 𝐶𝑅

𝑖
(𝑖 = 1, 2) denotes the 𝑖th center

for the reverse problem, then we have 𝐶𝑅
1
= 𝐶
2
and 𝐶𝑅

2
=

𝐶
1
. In addition, if 𝑝𝑅

𝑖𝑗
, 𝑟𝑚𝑅
𝑖,𝑗
(𝑖 = 1, 2 and 𝑗 ∈ 𝐽) are the

processing times and removal times for the reverse problem,
respectively, then 𝑝𝑅

1𝑗
= 𝑟𝑚
2,𝑗
, 𝑟𝑚𝑅
1,𝑗
= 𝑝
2𝑗
, 𝑝𝑅
2𝑗
= 𝑟𝑚
1,𝑗
, and

𝑟𝑚
𝑅

2,𝑗
= 𝑝
1𝑗
(𝑗 ∈ 𝐽). The reverse problem is an interesting one

since it has the same optimal makespan as for the original
problem. This claim can be proved by considering the linear
transformation 𝑡𝑅 = 𝐶max − 𝑡, where 𝑡 is the time in the
original problem and 𝑡𝑅 is the time in the reverse problem.

3. The Parallel Machine Scheduling Problem
with Release Dates and Delivery Times

The proposed upper and lower bounding procedures are
based on the optimal solution of the parallel machine
scheduling problem with release dates and delivery times,
which is defined as follows. A set 𝐽 = {1, 2, . . . , 𝑛} of 𝑛 jobs
has to be processed on 𝑚 parallel machines𝑀

1
,𝑀
2
, . . . ,𝑀

𝑚

without preemption. Each machine can handle one job at
most at the same time and each job 𝑗 ∈ 𝐽 is characterized
by the following:

(i) 𝑟
𝑗
: a release date from which the job 𝑗 is ready to be

treated;
(ii) 𝑝
𝑗
: a processing time;

(iii) 𝑞
𝑗
: a delivery timewhich is theminimumelapsed time

between the completion of the job 𝑗 and exiting the
system.

If 𝑡
𝑗
is the starting time of the job 𝑗 in a feasible

schedule then its completion time is 𝑐
𝑗
= 𝑡
𝑗
+ 𝑝
𝑗
+ 𝑞
𝑗

and the makespan is 𝐶max = max
𝑗∈𝐽
(𝑐
𝑗
). The objective is

to find a feasible schedule that minimizes the makespan.
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This problem is denoted by 𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max. This problem is

well studied in the literature and a plenty of papers have
been provided. The 𝑃

𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max is strongly NP-Hard [14].

In order to solve this problem, several exact methods have
been proposed and the most efficient method is presented
in [15], which will be used in this work. It is worth noting
that this exact algorithm is based on a Branch and Bound
procedure, where a fixed time limit is set to solve the
𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problem. If the exact algorithm fails to reach

an optimal solution for the𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problemwithin this

time limit, the best lower and upper bounds are retrieved.
Interestingly, the 𝑃

𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problem is equivalent to the

the parallel machine scheduling problem with release dates
and maximum lateness: 𝑃

𝑚
|𝑟
𝑗
, 𝑑
𝑗
|𝐿max, where

(i) 𝑟
𝑗
: a release date from which the job 𝑗 is ready to be

treated;
(ii) 𝑑
𝑗
: the due date;

(iii) 𝐿max = max
𝑗∈𝐽
𝐿
𝑗
and 𝐿

𝑗
= 𝑡
𝑗
+ 𝑝
𝑗
− 𝑑
𝑗
, 𝑡
𝑗
being the

starting time of the job 𝑗.

The 𝑃
𝑚
|𝑟
𝑗
, 𝑑
𝑗
|𝐿max problem is required for some steps in

the development of the heuristic procedure for the two-center
hybrid flow shop scheduling problem with identical parallel
machines and removal times.

4. A Lower Bounding Procedure

In this section, we present a lower bound for the HFSRT. For
that aim, we define for each job 𝑗 ∈ 𝐽 and for each center
𝐶
𝑖
(𝑖 = 1, 2) a release date 𝑟

𝑖𝑗
and a delivery time 𝑞

𝑖𝑗
that are

expressed as follows:

𝑟
𝑖𝑗
= 0 if 𝑖 = 1,

𝑟
𝑖𝑗
= 𝑝
1𝑗

if 𝑖 = 2,

𝑞
𝑖𝑗
= 𝑝
2𝑗

if 𝑖 = 1,

𝑞
𝑖𝑗
= 0 if 𝑖 = 2.

(3)

(i) By relaxing the capacity of the second center 𝐶
2
(i.e.,

the number ofmachines𝑚
2
is assumed to be infinite),

we obtain in the first center 𝐶
1
a parallel machine

scheduling problem with release dates and delivery
times 𝑃

𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max. The data is as follows:

𝑚 = 𝑚
1
,

𝑟
𝑗
= 𝑟
1𝑗
= 0,

𝑝
𝑗
= 𝑝
1𝑗
,

𝑞
𝑗
= 𝑞
1𝑗
= 𝑝
2𝑗
.

(4)

The optimal value while solving the corresponding
𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problem provides the first lower bound 𝐿𝐵

1
.

(ii) Similarly, by relaxing the capacity of the first center
𝐶
1
(i.e., the number of machines𝑚

1
is assumed to be

infinite), we obtain in the second center 𝐶
2
a parallel

machine scheduling problem with release date and
delivery time 𝑃

𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max. The data is as follows:

𝑚 = 𝑚
2
,

𝑟
𝑗
= 𝑟
2𝑗
= 𝑝
1𝑗
,

𝑝
𝑗
= 𝑝
2𝑗
,

𝑞
𝑗
= 𝑞
2𝑗
= 0.

(5)

The optimal value while solving the corresponding
𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problemprovides the second lower boundLB

2
.

Obviously, a valid lower bound for the HFSRT is

LB = max (LB
1
, LB
2
) . (6)

In order to illustrate the computation of the lower bound
LB, we reconsider the data given in Example 1.

(iii) By relaxing the capacity of the second center,
we obtain a parallel machine scheduling problem
𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max in the first center with 𝑚 = 𝑚

1
= 2.

Data after relaxing the capacity of 𝐶
2
is

𝑗 1 2 3 4 5

𝑟
𝑗
0 0 0 0 0

𝑝
𝑗
12 10 18 29 16

𝑞
𝑗
39 38 21 48 32

(7)

The optimal schedule is given by the sequence
(4, 3) on machine 𝑀

11
and the sequence (1, 2, 5) on

machine 𝑀
12
. The optimal solution value is 𝐶∗max =

77. Consequently, 𝐿𝐵
1
= 77.

(iv) Similarly, the relaxation of the capacity of the first
center yields a parallel scheduling problem in the
second center with 𝑚 = 𝑚

1
= 2. Data after relaxing

the capacity of 𝐶
1
is

𝑗 1 2 3 4 5

𝑟
𝑗
12 10 18 29 16

𝑝
𝑗
39 38 21 48 32

𝑞
𝑗
0 0 0 0 0

(8)

The corresponding optimal schedule is the sequence (4, 1)
on machine𝑀

21
and the sequence (3, 5, 2) on machine𝑀

22
.

The optimal solution 𝐶∗max = 101; thus LB
2
= 101.

Consequently, LB = max(LB
1
, LB
2
) = 101.

5. A Heuristic Approach

This section is devoted to the presentation of the developed
heuristic for the HFSRT. This heuristic is a two-phase pro-
cedure. The first one is constructive phase in which an initial
feasible solution is provided.The second phase is an improve-
ment phase. The core of this heuristic is the utilization of the
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optimal solution of the parallel machine scheduling problem
with release dates and delivery times 𝑃

𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max and its

equivalent version, which is the parallel machine scheduling
problem with release dates and maximum lateness criterion
𝑃
𝑚
|𝑟
𝑗
, 𝑑
𝑗
|𝐿max. The two phases of the heuristic are detailed in

the following.

Phase 1 (initial feasible solution).

Step 1.1. For each job 𝑗 ∈ 𝐽, set 𝑟
𝑗
= 0, 𝑝

𝑗
= 𝑝
1𝑗
, 𝑞
𝑗
= 𝑝
2𝑗
, and

the number of machines𝑚 = 𝑚
1
.

Step 1.2. Solve optimally the 𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problem, with the

given data in Step 1.1. Denote by 𝑐1j the obtained completion
time for 𝑗 ∈ 𝐽.

Step 1.3. For each job 𝑗 ∈ 𝐽, set 𝑟
𝑗
= 𝑐1j, 𝑝𝑗 = 𝑝2𝑗, 𝑞𝑗 = 0, and

the number of machines𝑚 = 𝑚
2
.

Step 1.4. Solve optimally the 𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problem, with the

given data in Step 1.3. Denote by 𝑡2j the obtained starting time
of job 𝑗 ∈ 𝐽.

Step 1.5. Set 𝑈𝐵 = max
𝑗∈𝐽
{𝑡
2𝑗
+ 𝑝
2𝑗
}.

Phase 2 (improvement phase).

Step 2.1. For each job 𝑗 ∈ 𝐽, set 𝑟
𝑗
= 0, 𝑝

𝑗
= 𝑝
1𝑗
, 𝑑
𝑗
= 𝑡
2𝑗
, and

the number of machines𝑚 = 𝑚
1
.

Step 2.2. Solve optimally the 𝑃
𝑚
|𝑟
𝑗
|𝐿max problem, with the

given data in Step 2.1. Denote by 𝑐1j the obtained completion
time for 𝑗 ∈ 𝐽. If 𝐿max = 0 then STOP, or else set 𝑈𝐵 :=
𝑈𝐵 + 𝐿max.

Step 2.3. For each job 𝑗 ∈ 𝐽, set 𝑟
𝑗
= 𝑐1j, 𝑝𝑗 = 𝑝2𝑗, 𝑞𝑗 = 0, and

the number of machines𝑚 = 𝑚
2
.

Step 2.4. Solve optimally the𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problem, with the

given data in Step 2.3. Denote by 𝑡
2𝑗

the obtained starting
time for 𝑗 ∈ 𝐽. If 𝐶max < 𝑈𝐵 then set 𝑈𝐵 := 𝐶max.

Step 2.5. Go to Step 2.1.

In the first phase, Step 1.1 and Step 1.2 provide a feasible
schedule on the first center. During Step 1.3 and Step 1.4 a
feasible schedule in the second center is constructed. The
latter schedule does not contradict the first one since the
release date in the second center is the completion time in
the first center for each job. Thus, a concatenation of the two
schedules is possible. This allows to get of a feasible schedule
for the HFSRT with makespan 𝑈𝐵.

In the second phase, we first fix the schedule in the second
center and we try to reschedule the jobs in the first center in
order to reduce themakespan. Since we have set the due dates
𝑑
𝑗
in the first center as the starting time 𝑡2j on the second

center, we ensure the existence of a feasible schedule (the
existing one) in the first center and consequently 𝐿max ≤ 0. If
𝐿max < 0 then the obtained schedule in the first center allows
the improvement of the makespan by 𝑈𝐵 + 𝐿max. Now, we

fix the schedule in the first center and we try to reschedule
the jobs in the second center. If the obtained schedule has
a makespan 𝐶max < 𝑈𝐵, then there is an improvement and
𝑈𝐵 := 𝐶max. All the previous operations are repeated until
no improvement is reached. In the sequel we illustrate all the
steps of the heuristic on Example 1.

Example 1 (continued).

Step 1.1.Thedata for the parallelmachine scheduling problem
in the first center are given as follows:

𝑗 1 2 3 4 5

𝑟
𝑗
0 0 0 0 0

𝑝
𝑗
12 10 18 29 16

𝑞
𝑗
39 38 21 48 32

(9)

Step 1.2. After solving optimally the 𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problem,

with the given data in Step 1.1, the obtained completion times
after Step 1.1 are given as follows:

𝑗 1 2 3 4 5

𝑐
1𝑗
12 22 47 29 38

(10)

Step 1.3. Thus, the data for the parallel machine scheduling
problem in the second center are given as follows:

𝑗 1 2 3 4 5

𝑟
𝑗
12 22 47 29 38

𝑝
𝑗
39 38 21 48 32

𝑞
𝑗
0 0 0 0 0

(11)

Step 1.4. After solving the 𝑃
𝑚
|𝑟
𝑗
, 𝑞
𝑗
|𝐶max problem, we obtain

the optimal schedule with the sequence (1, 3, 5) on machine
𝑀
21

and the sequence (2, 4) on machine 𝑀
22
. The optimal

value is 𝐶∗max = 𝑈𝐵 = 108 and the starting times 𝑡2j are given
as follows:

𝑗 1 2 3 4 5

𝑡
2𝑗
12 22 51 60 72

(12)

Step 1.5. The obtained maximum completion time is 𝑈𝐵 =
108.

Step 2.1. The data for 𝑃
𝑚
|𝑟
𝑗
|𝐿max are given as follows:

𝑗 1 2 3 4 5

𝑟
𝑗
0 0 0 0 0

𝑝
𝑗
12 10 18 29 16

𝑑
𝑗
12 22 51 60 72

(13)

Step 2.2. After solving the 𝑃
𝑚
|𝑟
𝑗
|𝐿max problem, we get the

sequence (2, 3, 5) on𝑀
21
and the sequence (1, 4) on machine

𝑀
22
. The optimal value is 𝐿∗max = −4. Thus, the makespan is

improved and 𝑈𝐵 = 𝑈𝐵 + 𝐿∗max = 104. The completion times
are given as follows:

𝑗 1 2 3 4 5

𝑐
1𝑗
12 10 28 41 44

(14)
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Step 2.3. For this step the data is given as follows:

𝑗 1 2 3 4 5

𝑟
𝑗
12 10 28 41 44

𝑝
𝑗
39 38 21 48 32

𝑞
𝑗
0 0 0 0 0

(15)

The optimal makespan is 𝑈𝐵 = 101. Therefore, we have
𝑈𝐵 = LB = 101 and an optimal solution is reached. The
optimal sequences are (2, 3, 5) on𝑀

11
and𝑀

21
and (1, 4) on

𝑀
12
and𝑀

22
.

It is worth noting that the heuristic is systematically
applied to the reverse problem in order to improve the
obtained value of the makespan. For instance, investigating
the reverse problem of Example 1 will provide 𝑈𝐵𝑅 = 101 in
the first phase of the heuristic.

6. Numerical Experiments

In the sequel, we analyze the empirical performance of the
developed procedures. These procedures are coded in C
and implemented on a Pentium dual core, 1.7 GHz Personal
Computer with 504Mo RAM.

6.1. Test Problems. The instances are generated as for [16].

(i) The number of jobs 𝑛 ∈ {10, 20, 50, 100, 200}.
(ii) The number of machines (𝑚

1
, 𝑚
2
) ∈ {(2, 2), (2, 4),

(4, 2), (4, 4)}.
(iii) The processing times and the removal times 𝑝

1,𝑗
, 𝑝
2,𝑗
,

𝑟𝑚
1,𝑗
, and 𝑟𝑚

2,𝑗
(𝑗 ∈ 𝐽) are generated as follows:

(a) 𝑝
1,𝑗

is generated uniformly from [1, 𝑎],
(b) 𝑟𝑚

1,𝑗
is generated uniformly from [1, 𝑏],

(c) 𝑝
2,𝑗

is generated uniformly from [1, 𝑐],
(d) 𝑟𝑚

2,𝑗
is generated uniformly from [1, 𝑑].

With 𝑎 = 𝑐 = 20 and 𝑏, 𝑑 ∈ {20, 40}, for each combination
𝑛,𝑚
1
, 𝑚
2
, 𝑎, 𝑏, 𝑐, and 𝑑, 10 instances are generated which

result in 800 instances.

6.2. Performance Analysis. The relative gap which is defined
by 𝐺 = 100 × ((𝑈𝐵 − LB)/LB) is intended to assess the
performance of the proposed heuristic. According to the
experimental results, we observe that the proposed proce-
dures are very effective since the mean relative gap is 0.506%
and the percentage of the optimally solved instances (i.e.,
𝑈𝐵 = LB) is 77.5%. In addition, the mean required time
for providing a feasible solution is 7.105 seconds. A more
detailed analysis for each combination (80 combinations with
10 instances per combination) is presented in Tables 1, 2, 3,
and 4, where

(i) %𝑆: percent of solved instances;
(ii) MT: mean required time for solving an instance (in

seconds);

Table 1: Performance for 𝑎 = 𝑏 = 𝑐 = 𝑑 = 20.

𝑛 𝑚
1
𝑚
2

%𝑆 MT (s) MG Max𝐺
10 2 2 40 0.058 1.988 6.977
10 2 4 100 0.011 0.000 0.000
10 4 2 90 0.030 0.455 4.545
10 4 4 60 0.030 2.262 7.229
20 2 2 40 0.075 1.693 5.742
20 2 4 100 0.016 0.000 0.000
20 4 2 100 4.924 0.000 0.000
20 4 4 10 1.458 5.531 15.000
50 2 2 60 10.120 1.032 5.351
50 2 4 100 0.047 0.000 0.000
50 4 2 100 3.453 0.000 0.000
50 4 4 50 13.014 1.192 3.676
100 2 2 40 30.514 0.311 0.898
100 2 4 100 0.183 0.000 0.000
100 4 2 90 1.697 0.010 0.097
100 4 4 50 5.355 0.726 3.429
200 2 2 90 32.933 0.034 0.344
200 2 4 80 2.250 0.010 0.049
200 4 2 80 6.156 0.014 0.093
200 4 4 60 20.451 0.370 1.507

Table 2: Performance for 𝑎 = 𝑏 = 𝑐 = 20 and 𝑑 = 40.

𝑛 𝑚
1
𝑚
2

%𝑆 MT (s) MG Max𝐺
10 2 2 70 0.178 0.497 2.158
10 2 4 70 0.008 0.959 5.785
10 4 2 100 0.256 0.000 0.000
10 4 4 50 0.025 1.779 8.642
20 2 2 90 2.042 0.159 1.587
20 2 4 100 0.230 0.000 0.000
20 4 2 100 2.598 0.000 0.000
20 4 4 80 6.378 0.311 2.548
50 2 2 70 0.128 0.050 0.247
50 2 4 80 0.138 0.140 0.840
50 4 2 100 0.783 0.000 0.000
50 4 4 90 16.527 0.026 0.264
100 2 2 70 10.617 0.051 0.385
100 2 4 90 0.772 0.062 0.618
100 4 2 100 1.449 0.000 0.000
100 4 4 80 25.697 0.027 0.135
200 2 2 90 4.339 0.006 0.064
200 2 4 100 2.058 0.000 0.000
200 4 2 100 7.931 0.000 0.000
200 4 4 70 6.305 0.026 0.133

(iii) MG: the mean relative gap;
(iv) Max𝐺: the maximum relative gap.

Based onTables 1, 2, 3, and 4we observe that the proposed
procedures are able to solve large instances (up to 200 jobs)
within moderate time. In addition, the instances with bal-
anced workload in the two centers ((𝑎 + 𝑏)/𝑚

1
= (𝑐 + 𝑑)/𝑚

2
)
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Table 3: Performance for 𝑎 = 𝑐 = 𝑑 = 20 and 𝑏 = 40.

𝑛 𝑚
1
𝑚
2

%𝑆 MT (s) MG Max𝐺
10 2 2 60 0.100 0.812 3.185
10 2 4 100 0.230 0.000 0.000
10 4 2 90 0.052 0.087 0.870
10 4 4 60 0.020 1.450 7.317
20 2 2 70 10.016 0.356 1.608
20 2 4 100 0.008 0.000 0.000
20 4 2 50 23.989 0.399 2.155
20 4 4 90 6.234 0.357 3.571
50 2 2 80 0.059 0.051 0.385
50 2 4 100 0.042 0.000 0.000
50 4 2 70 12.025 0.133 0.575
50 4 4 80 48.123 0.053 0.270
100 2 2 100 0.266 0.000 0.000
100 2 4 100 0.520 0.000 0.000
100 4 2 90 9.955 0.010 0.099
100 4 4 80 25.181 0.054 0.409
200 2 2 90 12.427 0.007 0.065
200 2 4 100 2.447 0.000 0.000
200 4 2 90 11.502 0.005 0.049
200 4 4 70 8.006 0.039 0.195

Table 4: Performance for 𝑎 = 𝑐 = 20 and 𝑏 = 𝑑 = 40.

𝑛 𝑚
1
𝑚
2

%𝑆 MT (s) MG Max𝐺
10 2 2 50 0.097 3.812 10.417
10 2 4 100 0.109 0.000 0.000
10 4 2 100 0.155 0.000 0.000
10 4 4 10 0.028 5.153 11.628
20 2 2 30 1.725 1.679 5.519
20 2 4 100 0.072 0.000 0.000
20 4 2 100 0.107 0.000 0.000
20 4 4 10 17.413 2.381 7.222
50 2 2 60 0.177 0.449 1.906
50 2 4 100 0.078 0.000 0.000
50 4 2 100 6.909 0.000 0.000
50 4 4 20 21.588 1.705 5.600
100 2 2 70 14.164 0.286 1.613
100 2 4 100 0.373 0.000 0.000
100 4 2 100 3.602 0.000 0.000
100 4 4 40 20.481 0.825 2.857
200 2 2 70 13.336 0.154 0.790
200 2 4 90 2.313 0.010 0.099
200 4 2 80 27.520 0.016 0.127
200 4 4 60 45.717 0.464 1.570

are the most hard instances to be solved. Furthermore, the
increasing of the number of machines makes also instances
hard to solve. If the workload in the two centers is not
balanced ((𝑎 + 𝑏)/𝑚

1
̸= (𝑐 + 𝑑)/𝑚

2
), most of the instances

are solved. We observe also that the balanced small sized
instances (10 and 20 jobs) are harder to be solved than the
balanced large sized ones.

7. Conclusion

In this paper, we proposed a lower bound and a heuristic
for the two-center hybrid flow shop scheduling problem with
identical parallel machines and removal times. The scope
of this paper is the consideration of the removal times for
such a scheduling problem.The proposed bounding schemes
are based on the optimal solution of the parallel machine
scheduling problemwith release dates and delivery times.The
lower bound is intended to evaluate the performance of the
heuristic through the relative gap. The proposed heuristic is
a two-phase algorithm, where the first phase is a constructive
one and the second phase is an improvement phase. Intensive
experimental computations are conducted and the results
demonstrate the efficiency of the proposed procedures, since
the mean relative gap is about 0.506%.

Future research is required for the 𝐹
2
(𝑃
𝑚1
, 𝑃
𝑚2
)|𝑟𝑚
𝑖𝑗
|𝐶max

scheduling problem, especially in terms of the development
of exact solutions. In addition, other variants of the current
studied scheduling problem have to be investigated such as
the consideration of the learning effect. More attention must
be paid for the balanced small sized instances by proposing,
for example, linear programming models.
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