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This paper studies the remote filtering problemover a packet-droppingnetwork.A generalmultiple-input-multiple-output (MIMO)
discrete-time system is considered. The multiple measurements are sent over different communication channels every time step,
and the packet loss phenomenon in every communication channel is described by an independent and identically distributed
(i.i.d) Bernoulli process. A suboptimal filter is obtained which can minimize the mean squared estimation error. The convergence
properties of the estimation error covariance are studied, andmean square stability of the suboptimal filter is proved under standard
assumptions. A simulation example is exploited to demonstrate the effectiveness of the results.

1. Introduction

Filtering systems which transmit data packets through com-
munication networks are called network-based filtering sys-
tems [1].The introduction of networks bringsmany attractive
advantages, such as low cost, fast deployment, and flexible
installation. However, communication networks are usually
unreliable and may give rise to packet losses and network-
induced delays due to inherent limited bandwidth. The
packet losses and network-induced delays can degrade the
performance or even cause instability of the systems. Hence,
it is not surprising that, in the past few years, the study of the
state estimation problem for network-based filtering systems
with packet losses and time-delays has been an active research
area; see [2–7], to name a few. This paper is concerned with
the design of the filter for networked discrete-time systems
with random observation losses.

In the literature, there have been commonly two
approaches for modeling the packet loss phenomenon in the
network-based filtering systems. The first approach is to use
a system with Markovian jumping parameter to represent
random packet loss model [1]. Note that such class of systems
is a special class of Markovian jumping systems; hence, some
results of control synthesis [8, 9] and filtering methods [10]
for Markovian jumping systems may be extended to these
systems. The second approach is to view the packet loss as an

independent Bernoulli process. And such approach has been
used to deal with the estimation problems for network-based
filtering systems with missing or intermittent observations
[11–13].

As is well known, Kalman filtering [14] is one of the
most popular and useful approaches to the filtering problem.
In the literature, a few results have been reported on the
Kalman filtering problem with observation losses [11–13, 15–
17]. The early studies on the Kalman filtering with uncertain
observation can be traced back to [15], where the linear
minimummean squared error (LMMSE) estimation method
is considered. More recently, the LMMSE filter is obtained
for systems with multiple packet dropouts in [16], where the
number of possible consecutive packet dropouts is limited
by a known bound. Besides, by the state augmentation, the
LMMSE optimal filter, predictor, and smoother are designed
for systems with finite consecutive packet dropouts [17]. The
LMMSE filtering only uses the statistics of the unobserved
uncertainty sequence. In fact, the filter can get the informa-
tionwhether a packet has been delivered or not for networked
filtering systems. In recent years, the paper [11] proposes a
new filtering method which is called Kalman filtering with
intermittent observations. The filter proposed in this paper
exploits additional information regarding the packet arrival
indicator sequence. As a consequence, the filter in [11] can
give better performances. Nonetheless, the analysis of the

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 151836, 8 pages
http://dx.doi.org/10.1155/2014/151836



2 Mathematical Problems in Engineering

filter is only limited to the boundary analysis due to the
complex discussions [11, 12]. Motivated by the above analysis,
the paper [13] proposes a new suboptimal estimator under
a new performance index, which improves the performance
of the LMMSE Kalman filter and possesses better properties
of convergence and stability than the Kalman filter with
intermittent.

Our paper extends the results in [13] to a more general
case. In [13], the traditional assumption that all the measure-
ments are encoded together and transmitted to the remote
filter via a common communication channel is made. Thus
the measurements are either received in full or lost com-
pletely. However, in the practical networked filtering systems,
the measurements usually cannot be encapsulated into one
data packet and multiple measurements must be transmitted
through different communication channels. Moreover, the
packet loss processes in different channels are often distinct.
This is the motivation of the present paper. Our paper
investigates the suboptimal filtering problem for the discrete-
time systems with multichannel transmission mechanism.
The convergence of the estimation error covariance and the
mean square stability of the filter are proved. It should be
pointed out that the presented results can also be used for
the systems with all measurements sent via one common
communication channel.

This remainder of the paper is organized as follows. Sec-
tion 2 formulates the problem andmakes some preliminaries.
The main results of this paper are presented in Section 3.
The suboptimal filter is derived, and the convergence and
stability of the suboptimal filter are proved under standard
assumptions. A simulation example is given to demonstrate
the effectiveness of the approach in Section 4. Section 5
concludes the paper.

2. Problem Statements and Preliminaries

Consider the following network-based filtering system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑤 (𝑘) , (1)

𝑦 (𝑘) = 𝑈 (𝑘) 𝐶𝑥 (𝑘) + V (𝑘) , (2)

where𝑥(𝑘) ∈ 𝑅𝑛 is the system state,𝑦(𝑘) ∈ 𝑅𝑚 is themeasure-
ment, and𝑤(𝑘) ∈ 𝑅𝑛 and V(𝑘) ∈ 𝑅𝑚 are, respectively, the sys-
temnoise andmeasurement noisewith zeromean and covari-
ance matrices 𝐸{𝑤(𝑘)𝑤𝑇(𝑗)} = 𝑄𝛿

𝑘,𝑗
and 𝐸{V(𝑘)V𝑇(𝑗)} =

𝑅𝛿
𝑘,𝑗
, in which 𝑄 > 0, 𝑅 > 0, and 𝛿

𝑘,𝑗
is the Kronecker delta

function.The initial state𝑥(0) is also a randomvector ofmean
𝑥
0
and covariance𝑃

0
.𝐴 and𝐶 are constantmatrices of appro-

priate dimensions. The scenario under consideration is illus-
trated in Figure 1, where the measurement 𝑦(𝑘) is partitioned
into 𝑚 parts; that is, 𝑦(𝑘) = [𝑦

1
(𝑘) 𝑦

2
(𝑘) ⋅ ⋅ ⋅ 𝑦

𝑚
(𝑘)]

𝑇.
The measurement components are transmitted to the remote
filter through𝑚different communication channels.The inde-
pendent and identically distributed (i.i.d.) Bernoulli random
variables 𝛾

𝑖
(𝑘) (𝑖 = 1, 2, . . . , 𝑚) are employed to describe,

respectively, the packet dropout phenomenon in the 𝑚
channels with Pr{𝛾

𝑖
(𝑘) = 1} = 𝜆

𝑖
and Pr{𝛾

𝑖
(𝑘) = 0} = 1−𝜆

𝑖
. It

is further assumed that the packet arrival indicators 𝛾
𝑖
(𝑘) and
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Figure 1: Diagram of networked filtering system with random
packet losses.

𝛾
𝑗
(𝑙) (𝑘 ̸= 𝑙) are independent for every 𝑖 and 𝑗; then we have
𝐸{[𝛾
𝑖
(𝑘) − 𝜆

𝑖
][𝛾
𝑗
(𝑙) − 𝜆

𝑗
]} = 𝜆

𝑖
(1 − 𝜆

𝑖
)𝛿
𝑖,𝑗
𝛿
𝑘,𝑙
. From the above

assumption and analysis, themultiplicative noisematrix𝑈(𝑘)
can be expressed by the following diagonal binary random
matrix with entries of either 1 or 0 in the diagonal:

𝑈 (𝑘) = diag {𝛾
1
(𝑘) , 𝛾
2
(𝑘) , . . . , 𝛾

𝑚
(𝑘)} . (3)

It is noted that, as shown in Figure 1, 𝑚 measurements
are transmitted to the filter via 𝑚 channels. In fact, some
measurements may be encoded together and sent over the
network in a single packet; that is to say, the number of
communication channels can be smaller than that of themea-
surements. The model proposed in this paper can be easily
adjusted to describe the above case. For example, assume the
number of communication channels is 4. The first two mea-
surements are encoded together and transmitted by a com-
mon channel, and the last two measurements are transmitted
by another common channel. Thus 𝑈(𝑘) can be written as

𝑈 (𝑘) = diag {𝛾
1
(𝑘) , 𝛾
1
(𝑘) , 𝛾
2
(𝑘) , 𝛾
2
(𝑘)} . (4)

Throughout this paper, without loss of generality, the
following assumptions are made for technical convenience.

Assumption 1. The random processes 𝑤(𝑘), V(𝑘), 𝑈(𝑘) for all
𝑘 and the initial state 𝑥(0) are mutually independent.

Assumption 2. The remote filter can obtain the information
regarding 𝑈(𝑘) by employing the time-stamp technique.

Similar to [13], we introduce the following innovation
sequence {𝑒(𝑘)}:

𝑒 (𝑘) = 𝑦 (𝑘) − 𝑈 (𝑘) 𝐶𝑥 (𝑘 | 𝑘 − 1) , (5)

where
𝑥 (𝑘 + 1 | 𝑘) = 𝐴𝑥 (𝑘 | 𝑘 − 1) + 𝐾 (𝑘) 𝑒 (𝑘) ,

𝑥 (0 | −1) = 𝑥
0
,

(6)

and𝐾(𝑘) is the gain matrix of the filter, which can be chosen
such that the following is minimized:

𝐸 {[𝑥 (𝑘 + 1) − 𝑥 (𝑘 + 1 | 𝑘)] [𝑥 (𝑘 + 1) − 𝑥 (𝑘 + 1 | 𝑘)]
𝑇

} .

(7)

According to [13, Lemma 1], it is easy to obtain that
𝑒(𝑘) is mutually uncorrelated noise with zero mean. The
filtering problem considered in this paper is to find the state
estimation 𝑥(𝑘 + 1 | 𝑘) in (6), in which 𝐾(𝑘) is chosen such
that (7) is minimized.
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Remark 3. Our paper extends the results in [13] where all
the measurements are transmitted to the filter via a com-
mon communication channel. Assume that the packet loss
processes in all the channels are identical; the filter proposed
in this paper is equivalent to that in [13], which means that
the suboptimal filter in [13] can be regarded as a special case
of our filter.

Remark 4. Our estimation problem is different from [12]
where the expectation is only taken over the system noise
𝑤(𝑘) and the measurement noise V(𝑘). In this paper, the
expectation is taken over not only 𝑤(𝑘) and V(𝑘) but also
the multiplicative noise matrix 𝑈(𝑘) with entries 𝛾

𝑖
(𝑘) in the

diagonal. Moreover, it is assumed that the measurements are
sent to the filter via two communication channels for the
sake of simplicity in [12], and while we address the filtering
problem in the more general case, the observation processes
can be sent by multiple communication channels.

Remark 5. The filter proposed in this paper is also different
from the LMMSE optimal Kalman filter with multiplicative
noise [18] where the innovation sequence {𝑒

𝑝
(𝑘)} is defined

as
𝑒
𝑝
(𝑘) = 𝑦 (𝑘) −𝑀𝐶𝑥 (𝑘 | 𝑘 − 1) , (8)

in which𝑀 is the mean of the randommatrix𝑈(𝑘) and𝑀 =
diag(𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑚
). And the state estimation in [18] can be

written as
𝑥 (𝑘 + 1 | 𝑘) = 𝐴𝑥 (𝑘 | 𝑘 − 1)

+ 𝐾
𝑝
(𝑘) [𝑦 (𝑘) − 𝑀𝐶𝑥 (𝑘 | 𝑘 − 1)] .

(9)

The aim of [18] is to find 𝐾
𝑝
(𝑘) such that (7) is minimized.

Obviously, this filter only uses the statistics of the multi-
plicative noise matrix 𝑈(𝑘), while the filter proposed in this
paper exploits additional information regarding the packet
arrival indicator sequence. Hence, our filter may give better
performances.

3. Main Results

3.1. Suboptimal Filter Design. The following theorem gives
the recursive equations of the suboptimal filter defined in (6).

Theorem 6. Consider the systems (1) and (2); the suboptimal
filter defined in (6) is given as follows:
𝑥 (𝑘 + 1 | 𝑘) = 𝐴𝑥 (𝑘 | 𝑘 − 1)

+ 𝐾 (𝑘) [𝑦 (𝑘) − 𝑈 (𝑘) 𝐶𝑥 (𝑘 | 𝑘 − 1)] ,

𝑥 (0 | −1) = 𝑥
0
,

(10)

where the gain matrix 𝐾(𝑘) is calculated as

𝐾 (𝑘) = 𝐴𝑃 (𝑘) 𝐶
𝑇

𝑀[𝑆 (𝑘) + 𝑅]
−1

, (11)
and the state estimation error covariance 𝑃(𝑘) is given by

𝑃 (𝑘 + 1) = 𝐴𝑃 (𝑘)𝐴
𝑇

+ 𝑄 − 𝐾 (𝑘) [𝑆 (𝑘) + 𝑅]𝐾
𝑇

(𝑘) ,

𝑃 (0) = 𝑃
0
,

(12)

in which 𝑆(𝑘) is defined as in (15) below.

Proof. Let 𝑥(𝑘 | 𝑘 − 1) = 𝑥(𝑘) − 𝑥(𝑘 | 𝑘 − 1) and note (1), (5),
and (6); we have

𝑥 (𝑘 + 1 | 𝑘) = [𝐴 − 𝐾 (𝑘)𝑈 (𝑘) 𝐶] 𝑥 (𝑘 | 𝑘 − 1)

+ 𝑤 (𝑘) − 𝐾 (𝑘) V (𝑘) .
(13)

Taking expectation over 𝑤(𝑘), V(𝑘), and 𝑈(𝑘), we can obtain

𝐸 {𝑥 (𝑘 + 1 | 𝑘) 𝑥
𝑇

(𝑘 + 1 | 𝑘)}

= 𝐴𝑃 (𝑘)𝐴
𝑇

− 𝐴𝑃 (𝑘) 𝐶
𝑇

𝑀𝐾
𝑇

(𝑘)

− 𝐾 (𝑘)𝑀𝐶𝑃 (𝑘)𝐴
𝑇

+ 𝑄 + 𝐾 (𝑘) 𝑅𝐾
𝑇

(𝑘)

+ 𝐾 (𝑘) 𝐸 {𝑈 (𝑘) 𝐶𝑥 (𝑘 | 𝑘 − 1) 𝑥
𝑇

(𝑘 | 𝑘 − 1)

×𝐶
𝑇

𝑈 (𝑘)}𝐾
𝑇

(𝑘) ,

(14)

where 𝑃(𝑘) = 𝐸{𝑥(𝑘 | 𝑘 − 1)𝑥𝑇(𝑘 | 𝑘 − 1)}.
Define

𝑆 (𝑘) = 𝐸 {𝑈 (𝑘) 𝐶𝑥 (𝑘 | 𝑘 − 1) 𝑥
𝑇

(𝑘 | 𝑘 − 1) 𝐶
𝑇

𝑈 (𝑘)}

= (𝑠
𝑖𝑗
(𝑘))
𝑚×𝑚

,

(15)

𝐷 (𝑘) = 𝐶𝑃 (𝑘) 𝐶
𝑇

= (𝑑
𝑖𝑗
(𝑘))
𝑚×𝑚

, (16)

where

𝑠
𝑖𝑗
(𝑘) = {

𝜆
𝑖
𝑑
𝑖𝑗
(𝑘) 𝑖 = 𝑗

𝜆
𝑖
𝜆
𝑗
𝑑
𝑖𝑗
(𝑘) 𝑖 ̸= 𝑗.

(17)

Then we can rewrite (14) as

𝑃 (𝑘 + 1) = 𝐴𝑃 (𝑘)𝐴
𝑇

+ 𝑄

+ [𝐾 (𝑘) − 𝐾
∗

(𝑘)] [𝑆 (𝑘) + 𝑅] [𝐾 (𝑘) − 𝐾
∗

(𝑘)]
𝑇

− 𝐴𝑃 (𝑘) 𝐶
𝑇

𝑀[𝑆 (𝑘) + 𝑅]
−1

𝑀𝐶𝑃 (𝑘)𝐴
𝑇

,

(18)

where

𝐾
∗

(𝑘) = 𝐴𝑃 (𝑘) 𝐶
𝑇

𝑀[𝑆 (𝑘) + 𝑅]
−1

. (19)

If we choose 𝐾(𝑘) = 𝐾∗(𝑘), (18) can be minimized. This
completes the proof.

3.2. Convergence and Stability of the Suboptimal Filter. In this
subsection, the convergence and stability of the proposed
filter are studied. The following preliminary lemmas are
introduced before presenting the main objectives of this
paper.

Lemma 7. Consider the following operators:

𝑔
𝑀
(𝑋) = 𝐴𝑋𝐴

𝑇

+ 𝑄 − 𝐴𝑋𝐶
𝑇

𝑀(𝑆
𝑋
+ 𝑅)
−1

𝑀𝐶𝑋𝐴
𝑇

, (20)

𝜙
𝑀
(𝐿, 𝑋) = (𝐴 − 𝐿𝑀𝐶)𝑋(𝐴 − 𝐿𝑀𝐶)

𝑇

− 𝐿𝑀𝐶𝑋𝐶
𝑇

𝑀𝐿
𝑇

+ 𝑄 + 𝐿 (𝑆
𝑋
+ 𝑅) 𝐿

𝑇

,

(21)



4 Mathematical Problems in Engineering

where

𝑆
𝑋
= (𝑠
𝑖𝑗
)
𝑚×𝑚

= {

𝜆
𝑖
𝑓
𝑖𝑗

𝑖 = 𝑗

𝜆
𝑖
𝜆
𝑗
𝑓
𝑖𝑗
𝑖 ̸= 𝑗,

(22)

𝐹
𝑋
= 𝐶𝑋𝐶

𝑇

= (𝑓
𝑖𝑗
)
𝑚×𝑚

. (23)

Assume 𝑋 is symmetric and positive semidefinite; then the
following facts are true.

(i) With 𝐿
𝑋
= 𝐴𝑋𝐶

𝑇

𝑀(𝑆
𝑋
+ 𝑅)
−1, 𝑔
𝑀
(𝑋) = 𝜙

𝑀
(𝐿
𝑋
,

𝑋).
(ii) 𝑔
𝑀
(𝑋) = min

𝐿
𝜙
𝑀
(𝐿, 𝑋) ≤ 𝜙

𝑀
(𝐿, 𝑋), for all 𝐿.

(iii) If𝑋
1
≤ 𝑋
2
, then 𝑔

𝑀
(𝑋
1
) ≤ 𝑔
𝑀
(𝑋
2
).

Proof. (i) Fact (i) can be easily obtained by directly substi-
tuting 𝐿

𝑋
= 𝐴𝑋𝐶

𝑇

𝑀(𝑆
𝑋
+ 𝑅)
−1 into (21), and therefore it is

omitted.
(ii) The proof for fact (ii) is somewhat more technical

since 𝑆
𝑋
in the operator 𝜙

𝑀
(𝐿, 𝑋) is the implicit expression

of the vector 𝑋. In order to facilitate the proof of fact (ii), we
will transform (21) to the explicit expression of 𝑋. First, we
can rewrite (21) as follows:

𝜙
𝑀
(𝐿, 𝑋) = (𝐴 − 𝐿𝑀𝐶)𝑋(𝐴 − 𝐿𝑀𝐶)

𝑇

+ 𝑄

+ 𝐿 (𝑆
𝑋
− 𝐺
𝑋
+ 𝑅) 𝐿

𝑇

,

(24)

where

𝐺
𝑋
= 𝑀𝐹

𝑋
𝑀 = (𝑔

𝑖𝑗
)
𝑚×𝑚

, (25)

𝑔
𝑖𝑗
= 𝜆
𝑖
𝜆
𝑗
𝑓
𝑖𝑗
. (26)

Then, let us define

Γ
𝑋
= 𝑆
𝑋
− 𝐺
𝑋
. (27)

It is easy to obtain that

Γ
𝑋
= diag {𝜆

1
(1 − 𝜆

1
) 𝑓
11
, 𝜆
2
(1 − 𝜆

2
) 𝑓
22
, . . . ,

𝜆
𝑚
(1 − 𝜆

𝑚
) 𝑓
𝑚𝑚
} .

(28)

Note (23) and then we claim that (28) can be described by

Γ
𝑋
=

𝑚

∑

𝑖=1

𝐽
𝑖
𝐶𝑋𝐶
𝑇

𝐽
𝑖
, (29)

where 𝐽
𝑖
(𝑖 = 1, 2, . . . , 𝑚) are the diagonal matrices and

they have all diagonal elements being zeros except for the 𝑖th
element being √𝜆

𝑖
(1 − 𝜆

𝑖
). The above analysis leads to the

following expression of (24):

𝜙
𝑀
(𝐿, 𝑋) = (𝐴 − 𝐿𝑀𝐶)𝑋(𝐴 − 𝐿𝑀𝐶)

𝑇

+ 𝑄

+ 𝐿(

𝑚

∑

𝑖=1

𝐽
𝑖
𝐶𝑋𝐶
𝑇

𝐽
𝑖
+ 𝑅)𝐿

𝑇

.

(30)

It is clear that (30) is the explicit expression of vectors 𝑋 and
𝐿. We are now ready to derive fact (ii).

According to the similar idea in [11], 𝜙
𝑀
(𝐿, 𝑋) in (30) is

quadratic and convex in the variable 𝐿. By noting that 𝑋 ≥ 0
and 𝑅 > 0, therefore, the minimizer can be found by solving
(𝜕𝜙
𝑀
(𝐿, 𝑋))/(𝜕𝐿) = 0, which gives

2 (𝐴 − 𝐿𝑀𝐶)𝑋𝐶
𝑇

𝑀− 2𝐿(

𝑚

∑

𝑖=1

𝐽
𝑖
𝐶𝑋𝐶
𝑇

𝐽
𝑖
+ 𝑅) = 0, (31)

𝐿 = 𝐴𝑋𝐶
𝑇

𝑀(𝑀𝐶𝑋𝐶
𝑇

𝑀+

𝑚

∑

𝑖=1

𝐽
𝑖
𝐶𝑋𝐶
𝑇

𝐽
𝑖
+ 𝑅)

−1

. (32)

From (25), (27), and (29), we can rewrite (32) as

𝐿 = 𝐴𝑋𝐶
𝑇

𝑀(𝑆
𝑋
+ 𝑅)
−1

, (33)

which corresponds to 𝐿
𝑋
defined above, so fact (ii) follows

from fact (i).
(iii)Themonotonicity of 𝜙

𝑀
(𝐿, 𝑋) can be easily obtained

from (30). If𝑋
1
≤ 𝑋
2
,

𝑔
𝑀
(𝑋
1
) = 𝜙
𝑀
(𝐿
𝑋
1

, 𝑋
1
) ≤ 𝜙
𝑀
(𝐿
𝑋
2

, 𝑋
1
)

≤ 𝜙
𝑀
(𝐿
𝑋
2

, 𝑋
2
) = 𝑔
𝑀
(𝑋
2
) .

(34)

Lemma 8. Let the operator

𝜓
𝑀
(𝑋) = (𝐴 − 𝐿𝑀𝐶)𝑋(𝐴 − 𝐿𝑀𝐶)

𝑇

+ 𝐿(

𝑚

∑

𝑖=1

𝐽
𝑖
𝐶𝑋𝐶
𝑇

𝐽
𝑖
)𝐿
𝑇

.

(35)

Suppose there exists𝑋 > 0 such that 𝑋 > 𝜓
𝑀
(𝑋).

(i) For all 𝑍 ≥ 0, lim
𝑘→∞

𝜓
𝑘

𝑀
(𝑍) = 0.

(ii) Define the linear system

𝑍 (𝑘 + 1) = 𝜓
𝑀
(𝑍 (𝑘)) + 𝑈 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑡 𝑍

0
, (36)

where 𝑈 ≥ 0. Then, the sequence 𝑍(𝑘) is bounded.
The proof can be derived similarly to [11, Lemma 3];

therefore, it is omitted.

Theorem 9. Suppose there exists a matrix �̃� and a positive
definite matrix �̃� > 0 such that �̃� > 𝜙

𝑀
(�̃�, �̃�); then for any

initial condition 𝑃
0
, (12) converges to a unique positive semi-

definite matrix 𝑃. That is to say, lim
𝑘→∞

𝑃(𝑘) = 𝑃 ≥ 0.

Proof. Consider the operator

�̃�
𝑀
(𝑋) = (𝐴 − �̃�𝑀𝐶)𝑋(𝐴 − �̃�𝑀𝐶)

𝑇

+ �̃�(

𝑚

∑

𝑖=1

𝐽
𝑖
𝐶𝑋𝐶
𝑇

𝐽
𝑖
) �̃�
𝑇

.

(37)

Then we have

𝜙
𝑀
(�̃�, �̃�) = �̃�

𝑀
(�̃�) + 𝑄 + �̃�𝑅�̃�

𝑇

= �̃�
𝑀
(�̃�) + 𝑈. (38)
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Note that𝑈 = 𝑄+�̃�𝑅�̃�𝑇 > 0; we can easily obtain that𝜙
𝑀
(�̃�,

�̃�) > �̃�
𝑀
(�̃�). Then, in view of the assumption �̃� > 𝜙

𝑀
(�̃�, �̃�),

we have �̃� > �̃�
𝑀
(�̃�). Therefore, �̃�

𝑀
meets the condition of

Lemma 8.
Further, note (12) and (20); we get 𝑃(𝑘 + 1) = 𝑔

𝑀
(𝑃(𝑘)).

It follows from Lemma 7(ii) that

𝑃 (𝑘 + 1) ≤ 𝜙
𝑀
(�̃�, 𝑃 (𝑘)) = �̃�

𝑀
(𝑃 (𝑘)) + 𝑈. (39)

And using Lemma 8(ii), we have that 𝑃(𝑘) is bounded.
In the following, we show that (12) converges to the same

limit 𝑃 for three types of initial conditions: 𝑃(0) = 0, 𝑃(0) =
𝑅
0
≥ 𝑃, and 𝑃(0) = 𝑄

0
, where 𝑄

0
= 𝑅
0
− 𝑃 ≥ 0, respectively.

(i) 𝑃(0) = 0.
It is noteworthy that

𝑃
0

(1) = 𝑔
𝑀
(0) = 𝑄 > 0, (40)

which means 𝑃0(1) > 𝑃0(0). It follows from Lemma 7 (iii)
that

𝑃
0

(1) = 𝑔
𝑀
(0) ≤ 𝑔

𝑀
(𝑄) = 𝑃

0

(2) . (41)

Bymathematical induction, we can see that 𝑃0(𝑘) ≤ 𝑃0(𝑘+1)
for any time step 𝑘. So far, we can conclude that the sequence
𝑃
0

(𝑘) is bounded andmonotonically increasingwith 𝑘, which
implies lim

𝑘→∞
𝑃
0

(𝑘) = 𝑃 ≥ 0. Moreover, by taking limit on
(11), (12), (15), and (16) one has

𝐷 = 𝐶𝑃𝐶
𝑇

= (𝑑
𝑖𝑗
)
𝑚×𝑚

, (42)

𝑆 = (𝑠
𝑖𝑗
)
𝑚×𝑚

, where 𝑠
𝑖𝑗
= {

𝜆
𝑖
𝑑
𝑖𝑗

𝑖 = 𝑗

𝜆
𝑖
𝜆
𝑗
𝑑
𝑖𝑗
𝑖 ̸= 𝑗,

(43)

𝐾 = 𝐴𝑃𝐶
𝑇

𝑀(𝑆 + 𝑅)

−1

, (44)

𝑃 = 𝐴𝑃𝐴
𝑇

+ 𝑄 − 𝐾(𝑆 + 𝑅)𝐾

𝑇

. (45)

(ii) 𝑃(0) = 𝑅
0
≥ 𝑃.

In the following, we show that 𝑃(𝑘) initialized at 𝑃(0) =
𝑅
0
≥ 𝑃 also converges to the same limit 𝑃.
It follows from Lemma 7 (iii) that

𝑃
𝑅
0
(1) = 𝑔

𝑀
(𝑅
0
) ≥ 𝑔
𝑀
(𝑃) = 𝑃. (46)

By induction, 𝑃𝑅0(𝑘) ≥ 𝑃 holds for any 𝑘.
Now we define

𝜓
𝑀
(𝑋) = (𝐴 − 𝐾𝑀𝐶)𝑋(𝐴 − 𝐾𝑀𝐶)

𝑇

+ 𝐾(

𝑚

∑

𝑖=1

𝐽
𝑖
𝐶𝑋𝐶
𝑇

𝐽
𝑖
)𝐾

𝑇

,

(47)

and then we have

𝑃 = 𝑔
𝑀
(𝑃) = 𝜙

𝑀
(𝐾, 𝑃) = 𝜓

𝑀
(𝑃) + 𝑄 + 𝐾𝑅𝐾

𝑇

. (48)

Therefore, 𝜓
𝑀

meets the condition of Lemma 8. Using
Lemma 7 (i), (ii), and (30), we can obtain

0 ≤ 𝑃
𝑅
0
(𝑘) − 𝑃

= 𝜙
𝑀
(𝐾
𝑅
0
(𝑘) , 𝑃

𝑅
0
(𝑘)) − 𝜙

𝑀
(𝐾, 𝑃)

≤ 𝜙
𝑀
(𝐾, 𝑃
𝑅
0
(𝑘)) − 𝜙

𝑀
(𝐾, 𝑃)

= 𝜓
𝑀
(𝑃
𝑅
0
(𝑘) − 𝑃) .

(49)

Since 𝜓
𝑀

meets the condition of Lemma 8, from the above
analysis, we have

0 ≤ lim
𝑘→∞

[𝑃
𝑅
0
(𝑘 + 1) − 𝑃] = 0. (50)

Thus we claim that 𝑃(𝑘) initialized at 𝑃(0) = 𝑅
0
≥ 𝑃 also

converges to the same limit 𝑃.
(iii) 𝑃(0) = 𝑄

0
, 𝑄
0
= 𝑅
0
− 𝑃 ≥ 0.

We now establish that the sequence 𝑃(𝑘) converges to 𝑃
for all initial conditions.

Note that

𝑃
0

(𝑘) ≤ 𝑃
𝑄
0
(𝑘) ≤ 𝑃

𝑅
0
(𝑘) , ∀𝑘. (51)

Since 𝑃0(𝑘) and 𝑃𝑅0(𝑘) converge to the same limit 𝑃,
lim
𝑘→∞

𝑃
𝑄
0
(𝑘) = 𝑃 holds. This completes the proof.

Taking limits in (10), we can rewrite the estimator (10) as

𝑥 (𝑘 + 1 | 𝑘) = (𝐴 − 𝐾𝑈 (𝑘) 𝐶) 𝑥 (𝑘 | 𝑘 − 1) + 𝐾𝑦 (𝑘) . (52)

Next, wewill present the result that (52) ismean square stable.

Theorem 10. Suppose there exists a matrix �̃� and a positive
definite matrix �̃� > 0 such that �̃� > 𝜙

𝑀
(�̃�, �̃�); the filter (52)

is mean square stable if the limit 𝑃 of (12) is exactly positive
definite.

Proof. First it is obvious that the mean square stability of the
following system is equivalent to that of the filter (52):

𝑥 (𝑘 + 1 | 𝑘) = (𝐴 − 𝐾𝑈 (𝑘) 𝐶)

𝑇

𝑥 (𝑘 | 𝑘 − 1) . (53)

From Lyapunov inequality in [19], we conclude that if we can
find a positive definite matrix 𝑃

1
> 0 satisfying

𝐸 {(𝐴 − 𝐾𝑈 (𝑘) 𝐶) 𝑃
1
(𝐴 − 𝐾𝑈 (𝑘) 𝐶)

𝑇

} − 𝑃
1
< 0, (54)

then (53) is mean square stable. Choosing 𝑃
1
= 𝑃 and

considering (44), we can rewrite (54) as

𝐴𝑃𝐴
𝑇

− 𝐾(𝑆 + 2𝑅)𝐾

𝑇

− 𝑃 < 0. (55)

From (45) and the assumption 𝑃 > 0, it is obvious that
there exists 𝑃

1
= 𝑃 such that (55) holds. Hence the proof is

complete.
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Figure 2: Tracking performance of the proposed filter. (a) The first component of 𝑥(𝑘). (b) The second component of 𝑥(𝑘).
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Figure 3: Covariance comparison for the proposed filter and the LMMSE estimator: (a) 𝑝
11
(𝑘) of proposed filter; (b) 𝑝

11
(𝑘) of LMMSE

estimator; (c) 𝑝
12
(𝑘) of proposed filter; (d) 𝑝

12
(𝑘) of LMMSE estimator; (e) 𝑝

22
(𝑘) of proposed filter; (f) 𝑝

22
(𝑘) of LMMSE estimator.
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4. Simulation Example

In this section, for the purpose of illustrating the effectiveness
of the filter proposed in this paper, we present a simulation
example as follows:

𝑥 (𝑘 + 1) = [

1.01 0

−0.2 0.9
] 𝑥 (𝑘) + 𝑤 (𝑘) ,

𝑦 (𝑘) = 𝑈 (𝑘) [

−0.7 0

0.3 −0.9
] 𝑥 (𝑘) + V (𝑘) ,

(56)

where 𝑤(𝑘) and V(𝑘) are Gaussian random noises with zero
means and covariances 𝑄 = 𝑅 = diag{1, 1}. Assume that two
sensors which are not located together are used to measure
the outputs of the system; thus the two measurements are
transmitted to the filter via two distinct communication
channels. The packet loss processes in the two channels are
different from each other and are described by two i.i.d.
Bernoulli random processes {𝛾

1
(𝑘)} and {𝛾

2
(𝑘)}, respectively.

Moreover, the processes {𝛾
1
(𝑘)} and {𝛾

2
(𝑘)} are mutually

independent, which means 𝑈(𝑘) = diag{𝛾
1
(𝑘), 𝛾
2
(𝑘)}. Fur-

thermore, we assume that Pr{𝛾
1
(𝑘) = 1} = 0.9 and Pr{𝛾

2
(𝑘) =

1} = 0.8. With the initial condition 𝑥(−1 | 0) = [4 4]𝑇,
the tracking performance of the proposed suboptimal filter
is shown in Figure 2, which shows that our filter is effective.
Then we design the LMMSE filter for this example and
compare it with the proposed filter in Figure 3. Note that the
error covariance matrix 𝑃(𝑘) = 𝐸{𝑥(𝑘 | 𝑘− 1)𝑥𝑇(𝑘 | 𝑘− 1)} =
(𝑝
𝑖𝑗
(𝑘)) is a symmetricmatrix; that is to say,𝑝

12
(𝑘) = 𝑝

21
(𝑘) in

this example, so we just show𝑝
11
(𝑘),𝑝
12
(𝑘) and𝑝

22
(𝑘) in Fig-

ure 3. From Figure 3, we can see that our filter’s covariance is
convergent while the covariance of the LMMSE filter is diver-
gent. Moreover, the error covariance matrix 𝑃(𝑘) of the new
proposed filter converges to a positive semidefinite matrix

𝑃 = [

2.1987 −0.1167

−0.1167 1.8740
] . (57)

5. Conclusions

This paper extends the suboptimal estimation method [13] to
a more general and practical case that the measurements are
allowed to be transmitted through distinct communication
channels with packet losses and each measurement loss
process is described by an i.i.d Bernoulli process. If packet loss
processes in all the communication channels are identical,
our filter is equivalent to the estimator in [13].The suboptimal
filter is designed which can minimize the mean squared
estimation error. Furthermore, under standard assumptions,
the convergence properties of the error covariance are studied
and the suboptimal filter designed is proved to be stable.
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