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This paper investigates the solution of Ordinary Differential Equations (ODEs) with initial conditions using Regression Based
Algorithm (RBA) and compares the results with arbitrary- and regression-based initial weights for different numbers of nodes in
hidden layer.Here, we have used feed forward neural network and error back propagationmethod forminimizing the error function
and for themodification of the parameters (weights and biases). Initial weights are taken as combination of random as well as by the
proposed regression based model. We present the method for solving a variety of problems and the results are compared. Here, the
number of nodes in hidden layer has been fixed according to the degree of polynomial in the regression fitting. For this, the input
and output data are fitted first with various degree polynomials using regression analysis and the coefficients involved are taken as
initial weights to start with the neural training. Fixing of the hidden nodes depends upon the degree of the polynomial. For the
example problems, the analytical results have been compared with neural results with arbitrary and regression based weights with
four, five, and six nodes in hidden layer and are found to be in good agreement.

1. Introduction

Differential equations play vital role in various fields of
engineering and science. The exact solution of differential
equations may not be always possible [1]. So various types
of well known numerical methods such as Euler, Runge-
kutta, Predictor-Corrector, finite element, and finite differ-
encemethods, are used for solving these equations. Although
these numericalmethods provide good approximations to the
solution, but these may be challenging for higher dimension
problems. In recent years, many researchers tried to find
new methods for solving differential equations. As such here
Artificial Neural Network (ANN) based models are used to
solve ordinary differential equations with initial conditions.

Lee and Kang [2] first introduced a method to solve first
order differential equation using Hopfield neural network
models. Then, another approach by Meade and Fernandez
[3, 4] has been proposed for both linear and nonlinear
differential equations using 𝐵

1
-splines and feed forward

neural network. Artificial neural networks based onBroyden-
Fletcher-Goldfarb-Shanno (BFGS) optimization technique

for solving ordinary and partial differential equations have
been excellently presented by Lagaris et al. [5]. Also Lagaris
et al. [6] investigated neural network methods for boundary
value problems with irregular boundaries. Parisi et al. [7]
presented unsupervised feed forward neural network for
the solution of differential equations. The potential of the
hybrid and optimization technique to deal with differential
equation of lower order as well as higher order has been
presented by Malek and Shekari Beidokhti [8]. Choi and Lee
[9] discussed comparison of generalizing ability on solving
differential equation using back propagation and reformu-
lated radial basis function network. Yazdi et al. [10] used
unsupervised kernel least mean square algorithm for solving
ordinary differential equations. A new algorithm for solving
matrix Riccati differential equations has been developed by
Selvaraju and Abdul Samant [11]. He et al. [12] investigated a
class of partial differential equations using multilayer neural
network. Kumar and Yadav [13] surveyed multilayer per-
ceptrons and radial basis function neural network methods
for the solution of differential equations. Tsoulos et al. [14]
solved differential equations with neural networks using
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a scheme based on grammatical evolution. Numerical solu-
tion of elliptic partial differential equation using radial basis
function neural networks has been presented by Jianyu et
al. [15]. Shirvany et al. [16] proposed multilayer perceptron
and radial basis function (RBF) neural networks with a
new unsupervised training method for numerical solution of
partial differential equations. Mai-Duy and Tran-Cong [17]
discussed numerical solution of differential equations using
multiquadric radial basis function networks. Fuzzy linguistic
model in neural network to solve differential equations is
presented by Leephakpreeda [18]. Franke and Schaback [19]
solved partial differential equations by collocation using
radial basis functions. Smaoui and Al-Enezi [20] presented
the dynamics of two nonlinear partial differential equations
using artificial neural networks. Differential equations with
genetic programming have been analyzed by Tsoulos and
Lagaris [21]. McFall and Mahan [22] used artificial neural
network for solution of boundary value problems with exact
satisfaction of arbitrary boundary conditions. Hoda and
Nagla [23] solved mixed boundary value problems using
multilayer perceptron neural network method.

As per the review of the literatures, it reveals that authors
have taken the parameters (weights/biases) as arbitrary
(random) and the numbers of nodes in hidden layer are
considered by trial and error method. In this paper, we
propose a method for solving ordinary differential equations
using feed forward neural network as a basic approximation
element and error back propagation algorithm [24, 25]
by fixing hidden nodes as per the required accuracy. The
trial solution of the model is generated by training the
algorithm. The approximate solution by ANN has many
benefits compared with traditional numerical methods. The
ANN trial solution is written as sum of two terms, first
one satisfies initial/boundary conditions and the second part
involves regression based neural network with adjustable
parameters. The computational complexity does not increase
considerably with the number of sampling points. The
method is general so it can be applied to solve linear and
nonlinear ordinary and partial differential equations. The
modification of parameters has been done without direct use
of optimization technique. For which computation of the
gradient of error with respect to the network parameters is
required. A regression based artificial neural network with
combinations of initial weights (arbitrary and regression
based) in the connections is first proposed by Chakraverty
et al. [26] and then by Singh et al. [27]. Here, number of
nodes in hidden layer may be fixed according to the degree
of polynomial required for the accuracy. We have considered
a first order and an application problem such as damped free
vibration problem to show the comparison of different ANN
models. Mall and Chakraverty [28] proposed regression-
based neural network model for solving ordinary differential
equations.

Rest of the paper is organized as follows. In Section 2, we
describe the general formulation of the proposed approach
and computation of gradient of the error function. Section 3
gives details of problem formulation and construction of the
appropriate form of trial solution. The proposed regression
based artificial neural networkmethod has been presented in

Section 4.Numerical examples and its results are presented in
Section 5. In this section, we compare arbitrary and regres-
sion based weight results and those are shown graphically.
Section 6 incorporates the discussion and analysis part. Lastly
conclusion is outlined in Section 7.

2. General Formulation for
Differential Equations

Let us consider the following general differential equations
which represent both ordinary and partial differential equa-
tions [4]:

𝐺(𝑥, 𝜓 (𝑥) , ∇𝜓 (𝑥) , ∇
2
𝜓 (𝑥) ⋅ ⋅ ⋅ ) = 0, 𝑥 ∈ 𝐷, (1)

subject to some initial or boundary conditions, where 𝑥 =
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑅

𝑛, 𝐷 ⊂ 𝑅𝑛 denotes the domain, and
𝜓(𝑥) is the solution to be computed. Here, 𝐺 is the function
which defines the structure of the differential equation and
∇ is a differential operator. For the solution of the differential
equation, a discretized domain𝐷 over finite set of points in𝐷
is considered.Thus, the problem transformed into the system
of equations as follows:

𝐺(𝑥
𝑖
, 𝜓 (𝑥
𝑖
) , ∇𝜓 (𝑥

𝑖
) , ∇
2
𝜓 (𝑥
𝑖
) ⋅ ⋅ ⋅ ) = 0, 𝑥 ∈ 𝐷. (2)

Let 𝜓
𝑡
(𝑥, 𝑝) denote the trail solution with adjustable param-

eters (weights, biases) 𝑝, and then the problem may be
formulated as

𝐺 (𝑥
𝑖
, 𝜓
𝑡
(𝑥
𝑖
, 𝑝) , ∇𝜓

𝑡
(𝑥
𝑖
, 𝑝) , . . . , ∇

𝑚
𝜓
𝑡
(𝑥
𝑖
, 𝑝) ⋅ ⋅ ⋅ ) = 0.

(3)

Corresponding error function with respect to every input
data is written as

min
𝑝
∑

𝑥𝑖∈𝐷

(𝐺 (𝑥
𝑖
, 𝜓
𝑡
(𝑥
𝑖
, 𝑝) , ∇𝜓

𝑡
(𝑥
𝑖
, 𝑝) , . . . , ∇

𝑚
𝜓
𝑡
(𝑥
𝑖
, 𝑝)))
2

.

(4)

Now, 𝜓
𝑡
(𝑥, 𝑝)may be written as the sum of two terms

𝜓
𝑡
(𝑥, 𝑝) = 𝐴 (𝑥) + 𝐹 (𝑥,𝑁 (𝑥, 𝑝)) , (5)

where 𝐴(𝑥) satisfies initial or boundary condition and
contains no adjustable parameters, whereas 𝑁(𝑥, 𝑝) is the
output of feed forward neural network with the parameters
𝑝 and input data 𝑥. The second term 𝐹(𝑥,𝑁(𝑥, 𝑝)) makes
no contribution to initial or boundary but this is used to a
neural network model whose weights and biases are adjusted
to minimize the error function.

2.1. Computation of the Gradient. The error computation
not only involves the outputs but also the derivatives of the
network output with respect to its inputs. So, it requires
finding out the gradient of the network derivatives with
respect to its inputs. Let us now consider a multilayered
perceptron with one input node, a hidden layer with𝑚 nodes
(fixed number of nods as proposed), and one output unit. For
the given inputs 𝑥 = (𝑥

1
, 𝑥
2
, . . . 𝑥
𝑛
), the output is given by

𝑁(𝑥, 𝑝) =

𝑚

∑

𝑗=1

V
𝑗
𝜎 (𝑧
𝑗
) , (6)
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where 𝑧
𝑗
= ∑
𝑛

𝑖=1
𝑤
𝑗𝑖
𝑥
𝑖
+𝑢
𝑗
, 𝑤
𝑗𝑖
denotes the weight from input

unit 𝑖 to the hidden unit 𝑗, V
𝑗
denotes weight from the hidden

unit 𝑗 to the output unit, 𝑢
𝑗
denotes the biases, and 𝜎(𝑧

𝑗
) is

the sigmoid activation function.
The derivatives of𝑁(𝑥, 𝑝) with respect to input 𝑥

𝑖
is

𝜕
𝑘
𝑁

𝜕𝑥
𝑘

𝑖

=

𝑚

∑

𝑗=1

V
𝑗
𝑤
𝑘

𝑗𝑖
𝜎
(𝑘)

𝑗
, (7)

where 𝜎 = 𝜎(𝑧
𝑗
) and 𝜎(𝑘) denotes the 𝑘th order derivative of

sigmoid function.
Let𝑁

𝜗
denote the derivative of the network with respect

to its inputs and then we have the following relation [4]:

𝑁
𝜗
= 𝐷
𝑛
𝑁 =

𝑛

∑

𝑖=1

V
𝑖
𝑃
𝑖
𝜎
(𝑛)

𝑖
, (8)

where

𝑃
𝑗
=

𝑛

∏

𝑘=1

𝑤
𝜆𝑘

𝑗𝑘
, 𝜅 =

𝑛

∑

𝑖=1

𝜆
𝑖
. (9)

The derivative of𝑁
𝜗
with respect to other parameters may be

obtained as

𝜕𝑁
𝜗

𝜕V
𝑗

= 𝑃
𝑗
𝜎
(𝜅)

𝑗
, (10)

𝜕𝑁
𝜗

𝜕𝑢
𝑗

= V
𝑗
𝑃
𝑗
𝜎
(𝜅+1)

𝑗
, (11)

𝜕𝑁
𝜗

𝜕𝑤
𝑗𝑖

= 𝑥
𝑖
V
𝑗
𝑃
𝑗
𝜎
(𝜅+1)

𝑗
+ V
𝑗
𝜆
𝑖
𝑤
𝜆𝑖−1

𝑗𝑖
( ∏

𝑘=1,𝑘 ̸= 𝑖

𝑤
𝜆𝑘

𝑗𝑖
)𝜎
(𝜅)

𝑗
. (12)

3. Formulation of First Order Ordinary
Differential Equation

Let us consider first order ordinary differential equation as
below

𝑑𝜓

𝑑𝑥
= 𝑓 (𝑥, 𝜓) , 𝑥 ∈ [𝑎, 𝑏] , (13)

with initial condition 𝜓(𝑎) = 𝐴.
In this case, the ANN trail solution may be written as

𝜓
𝑡
(𝑥, 𝑝) = 𝐴 + (𝑥 − 𝑎)𝑁 (𝑥, 𝑝) , (14)

where 𝑁(𝑥, 𝑝) is the neural output of the feed forward
network with one input data 𝑥 with parameters 𝑝. The trial
solution 𝜓

𝑡
(𝑥, 𝑝) satisfies the initial condition. We differenti-

ate the trial solution Ψ
𝑡
(𝑥, 𝑝) to get

𝑑𝜓
𝑡
(𝑥, 𝑝)

𝑑𝑥
= 𝑁 (𝑥, 𝑝) + (𝑥 − 𝑎)

𝑑𝑁 (𝑥, 𝑝)

𝑑𝑥
. (15)

For evaluating the derivative term in the right hand side of
(15), we use (5)–(11).

The error function for this case may be formulated as

𝐸 (𝑝) =

𝑛

∑

𝑖=1

(
𝑑𝜓
𝑡
(𝑥
𝑖
, 𝑝)

𝑑𝑥
− 𝑓 (𝑥

𝑖
, 𝜓
𝑡
(𝑥
𝑖
, 𝑝)))

2

. (16)

The weights from input to hidden are modified according to
the following rule

𝑤
𝑟+1

𝑗𝑖
= 𝑤
𝑟

𝑗𝑖
− 𝜂(

𝜕𝐸

𝜕𝑤
𝑟

𝑗𝑖

) , (17)

where

𝜕𝐸

𝜕𝑤
𝑟

𝑗𝑖

=
𝜕

𝜕𝑤
𝑟

𝑗𝑖

(

𝑛

∑

𝑖=1

(
𝑑𝜓
𝑡
(𝑥
𝑖
, 𝑝)

𝑑𝑥
− 𝑓 (𝑥

𝑖
, 𝜓
𝑡
(𝑥
𝑖
, 𝑝)))

2

) .

(18)

Here, 𝜂 is the learning rate and 𝑟 is the iteration step. The
weights from hidden to output layer may be updated in a
similar formulation as done for input to hidden.

3.1. Formulation of Second Order Ordinary Differential Equa-
tion. In this case, the second order ordinary differential
equation may be written in general as

𝑑
2
𝜓

𝑑𝑥
2
= 𝑓(𝑥, 𝜓,

𝑑𝜓

𝑑𝑥
) , 𝑥 ∈ [𝑎, 𝑏] , (19)

with initial conditions 𝜓(𝑎) = 𝐴, 𝜓(𝑎) = 𝐴.
The ANN trail solution may be discussed as

𝜓
𝑡
(𝑥, 𝑝) = 𝐴 + 𝐴


(𝑥 − 𝑎) + (𝑥 − 𝑎)

2
𝑁(𝑥, 𝑝) , (20)

where 𝑁(𝑥, 𝑝) is the neural output of the feed forward
networkwith one input data 𝑥with parameters𝑝 and the trial
solution 𝜓

𝑡
(𝑥, 𝑝) satisfies the initial conditions.

The error function to be minimized for second order
ordinary differential equation will be

𝐸 (𝑝) =

𝑛

∑

𝑖=1

(
𝑑
2
𝜓
𝑡
(𝑥
𝑖
, 𝑝)

𝑑𝑥2
− 𝑓(𝑥

𝑖
, 𝜓
𝑡
(𝑥
𝑖
, 𝑝) ,
𝑑𝜓

𝑑𝑥
))

2

.

(21)

Next, the following weight updating rule is applied for
weights from input to hidden connections:

𝑤
𝑟+1

𝑗𝑖
= 𝑤
𝑟

𝑗𝑖
− 𝜂(

𝜕𝐸

𝜕𝑤
𝑟

𝑗𝑖

) , (22)

where

𝜕𝐸

𝜕𝑤
𝑟

𝑗𝑖

=
𝜕

𝜕𝑤
𝑟

𝑗𝑖

(

𝑛

∑

𝑖=1

(
𝑑
2
𝜓
𝑡
(𝑥
𝑖
, 𝑝)

𝑑𝑥2

−𝑓[𝑥
𝑖
, 𝜓
𝑡
(𝑥
𝑖
, 𝑝) ,
𝑑𝜓

𝑑𝑥
])

2

) .

(23)

Again, we update the weights from hidden to output layer, as
discussed for input to hidden.
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Figure 1: Three-layered neural network architecture with single input and single output node.

4. Proposed Regression-Based Algorithm

Three layer architecture of ANN for the present problem is
considered. Usually numbers of nodes in the hidden layer are
taken by trial and error method. Here, we fix the number
of nodes in hidden layer by using regression-based weight
generation [24, 25]. Figure 1 shows the proposed model,
in which the input layer consist of single input unit and
the output layer consist of one output unit. Numbers of
nodes in the hidden layer are fixed according to degree
of polynomial to be considered. If 𝑛th degree polynomial
is considered, then the number of nodes in hidden layer
will be 𝑛 + 1 and coefficients (constants) of the polynomial
may be considered as initial weights from input to hidden
as well as hidden to output layers or any combination of
random and regression based weight. Network architecture
with five degree polynomial has been shown in Figure 1, the
six coefficients (constants) are taken as initial weights in two
stages from input to hidden and hidden to output layer. The
constants of the polynomial, that is, 𝑎

𝑖
are taken as initial

weights and six nodes for the six constants in the hidden layer
are considered.

5. Numerical Examples

In this section, we present solution of two example problems
as mentioned earlier. In all cases, we have used error back
propagation algorithm and one hidden layer. The weights are
taken as arbitrary and regression based for comparison of the
training method. Sigmoid function 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) is
considered as an activation function for hidden unit.

Example 1. Let us consider the first order ordinary differen-
tial equation as follows:

𝑑𝜓

𝑑𝑥
+ (𝑥 +

1 + 3𝑥
2

1 + 𝑥 + 𝑥
3
)𝜓 = 𝑥

3
+ 2𝑥 + 𝑥

2
(
1 + 3𝑥

2

1 + 𝑥 + 𝑥
3
) ,

𝑥 ∈ [0, 1] ,

(24)
with initial condition 𝜓(0) = 1.

The trial solution is written as

𝜓
𝑡
(𝑥, 𝑝) = 1 + 𝑥𝑁 (𝑥, 𝑝) . (25)

We have trained the network for 20 equidistant points in [0,
1] and compared results between analytical and neural with
arbitrary and regression based weights with four, five, and six
nodes fixed in hidden layer. Comparison between analytical
andneural resultswith arbitrary and regression basedweights
is given in Table 1. Analytic results are incorporated in second
column. Neural results for arbitrary weights 𝑤(𝐴) (from
input to hidden layer) and V(𝐴) (from hidden to output
layer) with four, five, and six nodes are cited in third, fifth,
and seventh column, respectively. Similarly neural results
with regression weights 𝑤(𝑅) (from input to hidden layer)
and V(𝑅) (from hidden to output layer) with four, five, and
six nodes are given in fourth, sixth, and ninth column,
respectively.

Analytical and neural results with arbitrary and regres-
sion basedweights for six nodes in hidden layer are compared
in Figures 2 and 3. The error plot is shown in Figure 4.
Absolute deviations in % values have been calculated in
Table 1 and the maximum deviation for arbitrary weights
neural results (six hidden nodes) is 3.67 (eighth column) and
for regression based weights it is 1.47 (tenth column). From
Figures 2 and 3, one may see that results from the regression-
basedweights agree exactly at all points with analytical results
but for resultswith arbitraryweights they are not so.Thus, one
may see that the neural results with regression based weights
are more accurate.

It may be seen that by increasing the number of nodes
in hidden layer from four to six, the results are found to
be better. Although the authors increased the number of
nodes in hidden layer beyond six, but the results were not
improving.

The first problem has also been solved by a well-known
numerical method, namely, using Euler and Runge-kutta
method. Table 2 shows comparison between the neural
results (with six hidden nodes) and other numerical results
(Euler and Runge-Kutta results).
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Table 1: Analytical and neural solutions with arbitrary and regression based weights (Example 1).

Input data Analytical
Neural results

𝑤(𝐴), V(𝐴)
(four nodes)

𝑤(𝑅), V(𝑅)
(four nodes)

𝑤(𝐴), V(𝐴)
(five nodes)

𝑤(𝑅), V(𝑅)
(five nodes)

𝑤(𝐴), V(𝐴)
(six nodes) Deviation% 𝑤(𝑅), V(𝑅)

(six nodes) Deviation%

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00 1.0000 0.00
0.05 0.9536 1.0015 0.9998 1.0002 0.9768 0.9886 3.67 0.9677 1.47
0.10 0.9137 0.9867 0.9593 0.9498 0.9203 0.9084 0.58 0.9159 0.24
0.15 0.8798 0.9248 0.8986 0.8906 0.8802 0.8906 1.22 0.8815 0.19
0.20 0.8514 0.9088 0.8869 0.8564 0.8666 0.8587 0.85 0.8531 0.19
0.25 0.8283 0.8749 0.8630 0.8509 0.8494 0.8309 0.31 0.8264 0.22
0.30 0.8104 0.8516 0.8481 0.8213 0.9289 0.8013 1.12 0.8114 0.12
0.35 0.7978 0.8264 0.8030 0.8186 0.8051 0.7999 0.26 0.7953 0.31
0.40 0.7905 0.8137 0.7910 0.8108 0.8083 0.7918 0.16 0.7894 0.13
0.45 0.7889 0.7951 0.7908 0.8028 0.7948 0.7828 0.77 0.7845 0.55
0.50 0.7931 0.8074 0.8063 0.8007 0.7960 0.8047 1.46 0.7957 0.32
0.55 0.8033 0.8177 0.8137 0.8276 0.8102 0.8076 0.53 0.8041 0.09
0.60 0.8200 0. 8211 0.8190 0.8362 0.8246 0.8152 0.58 0.8204 0.04
0.65 0.8431 0.8617 0.8578 0.8519 0.8501 0.8319 1.32 0.8399 0.37
0.70 0.8731 0.8896 0.8755 0.8685 0.8794 0.8592 1.59 0.8711 0.22
0.75 0.9101 0.9281 0.9231 0.9229 0.9139 0.9129 0.31 0.9151 0.54
0.80 0.9541 0.9777 0.9613 0.9897 0.9603 0.9755 2.24 0.9555 0.14
0.85 1.0053 1.0819 0.9930 0.9956 1. 0058 1.0056 0.03 0.9948 1.04
0.90 1.0637 1.0849 1.1020 1.0714 1.0663 1.0714 0.72 1.0662 0.23
0.95 1.1293 1.2011 1.1300 1.1588 1.1307 1.1281 0.11 1.1306 0.11
1.00 1.2022 1.2690 1.2195 1.2806 1.2139 1.2108 0.71 1.2058 0.29

Example 2. Let us consider the following second order
damped free vibration equation:

𝑑
2
𝜓

𝑑𝑥2
+ 4
𝑑𝜓

𝑑𝑥
+ 4𝜓 = 0, 𝑥 ∈ [0, 4] . (26)

With initial conditions 𝜓(0) = 1, 𝜓(0) = 1.
As discussed above, we can write the trail solution as

𝜓
𝑡
(𝑥, 𝑝) = 1 + 𝑥 + 𝑥

2
𝑁(𝑥, 𝑝) . (27)

Then, the network is trained for 40 equidistant points in
[0, 4] and with four, five, and six hidden nodes according
to arbitrary and regression-based algorithm. In Table 3, we
compare the analytical solutions with neural solutions taking
arbitrary- and regression-based weights for four, five, and
six nodes in hidden layer. Here, analytic results are cited in
second column of Table 3. Neural results for arbitrary weights
𝑤(𝐴) (from input to hidden layer) and V(𝐴) (from hidden
to output layer) with four, five, and six nodes are shown in
third, fifth, and seventh column, respectively. Neural results
with regression-based weights 𝑤(𝑅) (from input to hidden
layer) and V(𝑅) (from hidden to output layer) with four, five
and six nodes are cited in fourth, sixth, and eighth column,
respectively.

Analytical and neural results which are obtained for
random initial weights are depicted in Figure 5. Figure 6
shows comparison between analytical and neural results for

regression-based initial weights for six hidden nodes. Finally,
the error plot between analytical andRBNN results are shown
in Figure 7.

Example 3. Now we consider an initial value problem as
follows:

𝑑𝑦

𝑑𝑥
+ 5𝑦 = 𝑒

−3𝑥
, (28)

subject to 𝜓(0) = 0.
The ANN trial solution is written as

𝜓
𝑡
(𝑥, 𝑝) = 𝑥𝑁 (𝑥, 𝑝) . (29)

Ten equidistant points in the given domain which are taken
with four, five, and six hidden nodes according to arbi-
trary and regression-based algorithms have been considered.
Comparison of analytical and neural results with arbitrary-
and regression-based weights have been shown in Table 4.
Also, other numerical results, namely, Euler and Runge-Kutta
results are compared with neural results in this table.

Analytical and traditional neural results obtained using
random initial weights with six nodes are depicted in
Figure 8. Similarly, Figure 9 shows comparison between ana-
lytical and neural results with regression-based initial weights
for six hidden nodes. Finally, the error plot between analytical
and RBNN results are cited in Figure 10.
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Table 2: Comparison of the results (Example 1).

Input data Analytical Euler Runge-Kutta 𝑤(𝑅), V(𝑅)
(Six nodes)

0 1.0000 1.0000 1.0000 1.0000
0.0500 0.9536 0.9500 0.9536 0.9677
0.1000 0.9137 0.9072 0.9138 0.9159
0.1500 0.8798 0.8707 0.8799 0.8815
0.2000 0.8514 0.8401 0.8515 0.8531
0.2500 0.8283 0.8150 0.8283 0.8264
0.3000 0.8104 0.7953 0.8105 0.8114
0.3500 0.7978 0.7810 0.7979 0.7953
0.4000 0.7905 0.7721 0.7907 0.7894
0.4500 0.7889 0.7689 0.7890 0.7845
0.5000 0.7931 0.7717 0.7932 0.7957
0.5500 0.8033 0.7805 0.8035 0.8041
0.6000 0.8200 0.7958 0.8201 0.8204
0.6500 0.8431 0.8178 0.8433 0.8399
0.7000 0.8731 0.8467 0.8733 0.8711
0.7500 0.9101 0.8826 0.9102 0.9151
0.8000 0.9541 0.9258 0.9542 0.9555
0.8500 1.0053 0.9763 1.0054 0.9948
0.9000 1.0637 1.0342 1.0638 1.0662
0.9500 1.1293 1.0995 1.1294 1.1306
1.000 1.2022 1.1721 1.2022 1.2058

Example 4. Here, we consider a standard differential equa-
tion which represents exponential growth as follows:

𝑑𝑦

𝑑𝑥
= 𝛼𝑦, (30)

with initial condition 𝑦(0) = 1.
Here 1/𝛼 represents time constant or characteristic time.
Analytic result may be found as

𝑦 = 𝑒
𝛼𝑥
. (31)

Considering 𝛼 = 1, we have the analytical solution as 𝑦 = 𝑒𝑥.
The ANN trial solution in this case is

𝜓
𝑡
(𝑥, 𝑝) = 1 + 𝑥𝑁 (𝑥, 𝑝) . (32)

Now, the network is trained for ten equidistant points in the
domain [0, 1] with four, five, and six hidden nodes according
to arbitrary- and regression-based algorithm. Comparison
of analytical and neural results with arbitrary- (𝑤(𝐴), V(𝐴))
and regression-based weights (𝑤(𝑅), V(𝑅)) has been given
in Table 5. Analytical and traditional neural results obtained
using random initial weights with six nodes are shown in
Figure 11. Figure 12 depicts comparison between analytical
and neural results with regression-based initial weights for
six hidden nodes. Error plot between analytical and RBNN
results is cited in Figure 13.

Analytical results
Neural results with random weights
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Figure 2: Plot of comparison between (analytical results) and
(neural results) with arbitrary weights (Example 1).
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Figure 3: Plot of comparison between (analytical results) and (neu-
ral results) with regression-based weights for six nodes (Example 1).

6. Discussion and Analysis

In traditional artificial neural network, the parameters
(weights/biases) are usually taken as arbitrary (random) and
the number of nodes in hidden layer is considered by trial
and error method. Also, few authors have used optimization
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Table 3: Analytical and neural solutions with arbitrary- and regression-based weights (Example 2).

Input data Analytical
Neural results

𝑤(𝐴), V(𝐴)
(four nodes)

𝑤(𝑅), V(𝑅)
(four nodes)

𝑤(𝐴), V(𝐴)
(five nodes)

𝑤(𝑅), V(𝑅)
(five nodes)

𝑤(𝐴), V(𝐴)
(six nodes)

𝑤(𝑅), V(𝑅)
(six nodes)

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.0643 1.0900 1.0802 1.0910 1.0878 1.0923 1.0687
0.2 1.0725 1.1000 1.0918 1.0858 1.0715 1.0922 1.0812
0.3 1.0427 1.0993 1.0691 1.0997 1.0518 1.0542 1.0420
0.4 0.9885 0.9953 0.9732 0.9780 0.9741 0.8879 0.9851
0.5 0.9197 0.9208 0.9072 0.9650 0.9114 0.9790 0.9122
0.6 0.8433 0.8506 0.8207 0.8591 0.8497 0.8340 0.8082
0.7 0.7645 0.7840 0.7790 0.7819 0.7782 0.7723 0.7626
0.8 0.6864 0.7286 0.6991 0.7262 0.6545 0.6940 0.6844
0.9 0.6116 0.6552 0.5987 0.6412 0.6215 0.6527 0.6119
1.0 0.5413 0.5599 0.5467 0.5604 0.5341 0.5547 0.5445
1.1 0.4765 0.4724 0.4847 0.4900 0.4755 0.4555 0.4634
1.2 0.4173 0.4081 0.4035 0.4298 0.4202 0.4282 0.4172
1.3 0.3639 0.3849 0.3467 0.3907 0.3761 0.3619 0.3622
1.4 0.3162 0.3501 0.3315 0.3318 0.3274 0.3252 0.3100
1.5 0.2738 0.2980 0.2413 0.2942 0.2663 0.2773 0.2759
1.6 0.2364 0.2636 0.2507 0.2620 0.2439 0.2375 0.2320
1.7 0.2036 0.2183 0.2140 0.2161 0.2107 0.2177 0.1921
1.8 0.1749 0.2018 0.2007 0.1993 0.1916 0.1622 0.1705
1.9 0.1499 0.1740 0.1695 0.1665 0.1625 0.1512 0.1501
2.0 0.1282 0.1209 0.1204 0.1371 0.1299 0.1368 0.1245
2.1 0.1095 0.1236 0.1203 0.1368 0.1162 0.1029 0.1094
2.2 0.0933 0.0961 0.0942 0.0972 0.0949 0.0855 0.09207
2.3 0.0794 0.0818 0.0696 0.0860 0.0763 0.0721 0.0761
2.4 0.0675 0.0742 0.0715 0.0849 0.0706 0.0526 0.0640
2.5 0.0573 0.0584 0.0419 0.0609 0.0543 0.0582 0.0492
2.6 0.0485 0.0702 0.0335 0.0533 0.0458 0.0569 0.0477
2.7 0.0411 0.0674 0.0602 0.0581 0.0468 0.0462 0.0409
2.8 0.0348 0.0367 0.0337 0.0387 0.0328 0.0357 0.03460
2.9 0.0294 0.0380 0.0360 0.0346 0.0318 0.0316 0.0270
3.0 0.0248 0.0261 0.0207 0.0252 0.0250 0.0302 0.0247
3.1 0.0209 0.0429 0.0333 0.0324 0.0249 0.0241 0.0214
3.2 0.0176 0.0162 0.0179 0.0154 0.0169 0.0166 0.0174
3.3 0.0148 0.0159 0.0137 0.0158 0.0140 0.0153 0.0148
3.4 0.0125 0.0138 0.0135 0.0133 0.0130 0.0133 0.0129
3.5 0.0105 0.0179 0.0167 0.0121 0.0132 0.0100 0.0101
3.6 0.0088 0.0097 0.0096 0.0085 0.0923 0.0095 0.0090
3.7 0.0074 0.0094 0.0092 0.0091 0.0093 0.0064 0.0071
3.8 0.0062 0.0081 0.0078 0.0083 0.0070 0.0061 0.0060
3.9 0.0052 0.0063 0.0060 0.0068 0.0058 0.0058 0.0055
4.0 0.0044 0.0054 0.0052 0.0049 0.0049 0.0075 0.0046
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Table 4: Analytical and neural solutions with arbitrary- and regression-based weights (Example 3).

Input data Analytical Euler Runge-
Kutta

Neural results
𝑤(𝐴), V(𝐴)
(four nodes)

𝑤(𝑅), V(𝑅)
(four nodes)

𝑤(𝐴), V(𝐴)
(five nodes)

𝑤(𝑅), V(𝑅)
(five nodes)

𝑤(𝐴), V(𝐴)
(six nodes)

𝑤(𝑅), V(𝑅)
(six nodes)

0 0 0 0 0 0 0 0 0 0
0.1 0.0671 0.1000 0.0671 0.0440 0.0539 0.0701 0.0602 0.0565 0.0670
0.2 0.0905 0.1241 0.0904 0.0867 0.0938 0.0877 0.0927 0.0921 0.0907
0.3 0.0917 0.1169 0.0917 0.0849 0.0926 0.0889 0.0932 0.0931 0.0918
0.4 0.0829 0.0991 0.0829 0.0830 0.0876 0.0806 0.0811 0.0846 0.0824
0.5 0.0705 0.0797 0.0705 0.0760 0.0748 0.0728 0.0714 0.0717 0.0706
0.6 0.0578 0.0622 0.0577 0.0492 0.0599 0.0529 0.0593 0.0536 0.0597
0.7 0.0461 0.0476 0.0461 0.0433 0.0479 0.0410 0.0453 0.0450 0.0468
0.8 0.0362 0.0360 0.0362 0.0337 0.0319 0.0372 0.0370 0.0343 0.0355
0.9 0.0280 0.0271 0.0280 0.0324 0.0308 0.0309 0.0264 0.0249 0.0284
1.0 0.0215 0.0203 0.0215 0.0304 0.0282 0.0255 0.0247 0.0232 0.0217

Table 5: Analytical and neural solutions with arbitrary- and regression-based weights (Example 4).

Input data Analytical
Neural results

𝑤(𝐴), V(𝐴)
(four nodes)

𝑤(𝑅), V(𝑅)
(four nodes)

𝑤(𝐴), V(𝐴)
(five nodes)

𝑤(𝑅), V(𝑅)
(five nodes)

𝑤(𝐴), V(𝐴)
(six nodes)

𝑤(𝑅), V(𝑅)
(six nodes)

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1000 1.1052 1.1069 1.1061 1.1093 1.1060 1.1075 1.1051
0.2000 1.2214 1.2337 1.2300 1.2250 1.2235 1.2219 1.2217
0.3000 1.3499 1.3543 1.3512 1.3600 1.3502 1.3527 1.3498
0.4000 1.4918 1.4866 1.4921 1.4930 1.4928 1.4906 1.4915
0.5000 1.6487 1.6227 1.6310 1.6412 1.6456 1.6438 1.6493
0.6000 1.8221 1.8303 1.8257 1.8205 1.8245 1.8234 1.8220
0.7000 2.0138 2.0183 2.0155 2.0171 2.0153 2.0154 2.0140
0.8000 2.2255 2.2320 2.2302 2.2218 2.2288 2.2240 2.2266
0.9000 2.4596 2.4641 2.4625 2.4664 2.4621 2.4568 2.4597
1.0000 2.7183 2.7373 2.7293 2.7232 2.7177 2.7111 2.7186
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Figure 4: Error plot between analytical- and regression-based weights approximation solution (Example 1).
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Figure 5: Plot of comparison between (analytical results) and
(neural results) with arbitrary weights (for six nodes) (Example 2).
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Figure 6: Plot of comparison between (analytical solutions) and
(neural solutions) with regression based weights (for six nodes)
(Example 2).

technique to minimize the error. In this investigation, a
regression-based artificial neural network with combinations
of initial weights (arbitrary and regression based) in the
connections is considered. We have fixed the number of
nodes in hidden layer according to the degree of polynomial
of regression fitting. The initial weights from input to hidden
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Figure 7: Error plot between analytical, and regression-based
weights solution (Example 2).
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Figure 8: Plot of comparison between (analytical results) and
(neural results) with arbitrary weights (for six nodes) (Example 3).

and hidden to output layer are taken by using regression-
based weight generation. Back propagation algorithm has
been employed for modification of the parameters without
use of any optimization technique. Also, time of computation
is less than traditional artificial neural architecture. Table 6
shows the computation of training time in hours with four,
five, and six hidden nodes.

It is well known that the other numerical methods are
usually iterative in nature, where we fix the step size before
the start of the computation. After the solution is obtained,
if we want to know the solution in between steps, then
again the procedure is to be repeated from initial stage.
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Table 6: Time of computation.

Problems

Time of computation in hours

Traditional ANN Proposed
ANN

(four nodes)

Proposed
ANN

(five nodes)

Proposed
ANN

(six nodes)Four nodes Five nodes Six nodes
Example 1 1.57 hrs 1.51 1.49 1.31 1.27 1.09
Example 2 3.06 3.00 2.44 2.23 1.55 1.38
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Comparison of solutions

Analytical results
Regression based neural results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Figure 9: Plot of comparison between (analytical solutions) and
(neural solutions) with regression based weights (for six nodes)
(Example 3).

ANN may be one of the reliefs where we may overcome this
repetition of iterations. The authors are not claiming that the
method presented is most accurate. As it may be seen by
the comparison in Tables 2 and 4 that Runge-Kutta method
although it gives better result but the above repetitive nature
is required for each step size. Here, after getting the converged
ANN, we may use it as a black box to get numerical results of
any arbitrary point in the domain.

Here, we have considered three, four, and five degree
polynomial for regression fitting. One may consider higher
degree polynomial in the simulation but it has been seen that
by increasing the degree of the polynomials, the accuracy
does not usually increase. In the future, it needs to develop a
methodology about what degree polynomial one should use
to get a result with acceptable accuracy. This is however not
of the scope of this paper and the authors are working in this
direction and hope to communicate the findings in the future.
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Figure 10: Error plot between analytical, and regression-based
weights solution (Example 3).
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Figure 11: Plot of comparison between (analytical results) and
(neural results) with arbitrary weights (for six nodes) (Example 4).
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Figure 12: Plot of comparison between (analytical solutions) and
(neural solutions) with regression based weights (for six nodes)
(Example 4).
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Figure 13: Error plot between analytical and regression based
weights solution (Example 4).

7. Conclusion

This paper presents a new approach to solve ordinary dif-
ferential equations by using regression based artificial neural
network model. Accuracy of the proposed method has been
examined by solving a first order and a second order damped
free vibration problem. The main value of the paper is that
the numbers of nodes in hidden layer are fixed according to

the degree of polynomial in the regression. Accordingly, here,
comparisons of different neural architectures corresponding
to different regression models are investigated. Moreover, the
algorithm is unsupervised and error back propagation algo-
rithm is used to minimize the error function. Corresponding
initial weights from input to hidden and hidden to output are
all obtained by the proposed procedure. The trail solution is
closed and differentiable. One may see from the tables and
graphs that the initial weights generated by regression model
make the results more accurate. Lastly, it may be mentioned
that the implemented Regression Based Neural Network
(RBNN) algorithm is simple, computationally efficient, and
straight forward.
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