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Molodtsov’s soft set theory provides a general mathematical framework for dealing with uncertainty. The concepts of (𝑀,𝑁)-SI
implicative (Boolean) filters of BL-algebras are introduced. Some good examples are explored.The relationships between (𝑀,𝑁)-SI
filters and (𝑀,𝑁)-SI implicative filters are discussed. Some properties of (𝑀,𝑁)-SI implicative (Boolean) filters are investigated.
In particular, we show that (𝑀,𝑁)-SI implicative filters and (𝑀,𝑁)-SI Boolean filters are equivalent.

1. Introduction

We know that dealing with uncertainties is a major problem
in many areas such as economics, engineering, medical
sciences, and information science. These kinds of problems
cannot be dealt with by classical methods because some clas-
sical methods have inherent difficulties. To overcome them,
Molodtsov [1] introduced the concept of a soft set as a new
mathematical tool for dealing with uncertainties that is free
from the difficulties that have troubled the usual theoretical
approaches. Since then, especially soft set operations have
undergone tremendous studies; for examples, see [2–5]. At
the same time, soft set theory has been applied to algebraic
structures, such as [6–8]. We also note that soft set theory
emphasizes balanced coverage of both theory and practice.
Nowadays, it has promoted a breath of the discipline of
information sciences, decision support systems, knowledge
systems, decision-making, and so on; see [9–13].

𝐵𝐿-algebras, which have been introduced by Hájek [14]
as algebraic structures of basic logic, arise naturally in the
analysis of the proof theory of propositional fuzzy logic.
Turunen [15] proposed the concepts of implicative filters and
Boolean filters in 𝐵𝐿-algebras. Liu et al. [16, 17] applied fuzzy
set theory to 𝐵𝐿-algebras. After that, some researchers have
further investigated some properties of 𝐵𝐿-algebras. Further,
Ma et al. investigated some kinds of generalized fuzzy filters

𝐵𝐿-algebras and obtained some important results; see [18, 19].
Zhang et al. [20, 21] described the relations between pseudo-
BL, pseudo-effect algebras, and BCC-algebras, respectively.
The other related results can be found in [22, 23].

Recently, Çağman et al. put forward soft intersection
theory; see [24, 25]. Jun and Lee [26] applied this theory to
𝐵𝐿-algebras. Ma and Kim [27] introduced a new concept:
(𝑀,𝑁)-soft intersection set. They introduced the concept of
(𝑀,𝑁)-soft intersection filters of 𝐵𝐿-algebras and investi-
gated some related properties.

In this paper, we introduce the concept of (𝑀,𝑁)-
soft intersection implicative filters of 𝐵𝐿-algebras. Some
related properties are investigated. In particular, we show that
(𝑀,𝑁)-SI implicative filters and (𝑀,𝑁)-𝑆𝐼 Boolean filters
are equivalent.

2. Preliminaries

Recall that an algebra 𝐿 = (𝐿, ≤, ∧, ∨, ⊙, → , 0, 1) is a 𝐵𝐿-
algebra [14] if it is a bounded lattice such that the following
conditions are satisfied:

(i) (𝐿, ⊙, 1) is a commutative monoid,

(ii) ⊙ and → form an adjoin pair, that is, 𝑧 ≤ 𝑥 → 𝑦 if
and only if 𝑥 ⊙ 𝑧 ≤ 𝑦 for all 𝑥, 𝑦, 𝑧 ∈ 𝐿,
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(iii) 𝑥 ∧ 𝑦 = 𝑥 ⊙ (𝑥 → 𝑦),
(iv) (𝑥 → 𝑦) ∨ (𝑦 → 𝑥) = 1.

In what follows, 𝐿 is a 𝐵𝐿-algebra unless otherwise is
specified.

In any𝐵𝐿-algebra𝐿, the following statements are true (see
[14, 15]):

(𝑎
1
) 𝑥 ≤ 𝑦 ⇔ 𝑥 → 𝑦 = 1,

(𝑎
2
) 𝑥 → (𝑦 → 𝑧) = (𝑥 ⊙ 𝑦) → 𝑧 = 𝑦 → (𝑥 → 𝑧),

(𝑎
3
) 𝑥 ⊙ 𝑦 ≤ 𝑥 ∧ 𝑦,

(𝑎
4
) 𝑥 → 𝑦 ≤ (𝑧 → 𝑥) → (𝑧 → 𝑦), 𝑥 → 𝑦 ≤ (𝑦 →

𝑧) → (𝑥 → 𝑧),
(𝑎
5
) 𝑥 → 𝑥 = 𝑥 → 𝑥,

(𝑎
6
) 𝑥 ∨ 𝑥 = 1 ⇒ 𝑥 ∧ 𝑥 = 0,

(𝑎
7
) (𝑥 → 𝑦) ⊙ (𝑦 → 𝑧) ≤ 𝑥 → 𝑧,

(𝑎
8
) 𝑥 ≤ 𝑦 ⇒ 𝑥 → 𝑧 ≥ 𝑦 → 𝑧,

(𝑎
9
) 𝑥 ≤ 𝑦 ⇒ 𝑧 → 𝑥 ≤ 𝑧 → 𝑦,

(𝑎
10
) 𝑥 ∨ 𝑦 = ((𝑥 → 𝑦) → 𝑦) ∧ ((𝑦 → 𝑥) → 𝑥),

where 𝑥 = 𝑥 → 0.
A nonempty subset𝐴 of 𝐿 is called a filter of 𝐿 if it satisfies

the following conditions: (I1) 1 ∈ 𝐴, (I2) for all 𝑥 ∈ 𝐴, for all
𝑦 ∈ 𝐿, 𝑥 → 𝑦 ∈ 𝐴 ⇒ 𝑦 ∈ 𝐴.

It is easy to check that a nonempty subset𝐴 of 𝐿 is a filter
of 𝐿 if and only if it satisfies (I3) for all 𝑥, 𝑦 ∈ 𝐿, 𝑥 ⊙ 𝑦 ∈ 𝐴,
(I4) for all 𝑥 ∈ 𝐴, for all 𝑦 ∈ 𝐿, 𝑥 ≤ 𝑦 ⇒ 𝑦 ∈ 𝐴 (see [15]).

Now,we call a nonempty subset𝐴 of𝐿 an implicative filter
if it satisfies (I1) and (I5) 𝑥 → (𝑧

 → 𝑦) ∈ 𝐴, 𝑦 → 𝑧 ∈ 𝐴 ⇒

𝑥 → 𝑧 ∈ 𝐴.
A nonempty subset 𝐴 of 𝐿 is said to be a Boolean filter of

𝐿 if it satisfies 𝑥 ∨ 𝑥 ∈ 𝐴, for all 𝑥 ∈ 𝐴. (see [15–18]).
From now on, we let 𝐿 be an 𝐵𝐿-algebra, 𝑈 an initial

universe, 𝐸 a set of parameters, 𝑃(𝑈) the power set of 𝑈, and
𝐴, 𝐵, 𝐶 ⊆ 𝐸. We let 0 ⊆ 𝑀 ⊂ 𝑁 ⊆ 𝑈.

Definition 1 (see [1]). A soft set 𝑓
𝐴
over 𝑈 is a set defined by

𝑓
𝐴
: 𝐸 → 𝑃(𝑈) such that 𝑓

𝐴
(𝑥) = 0 if 𝑥 ∉ 𝐴. Here 𝑓

𝐴

is also called an approximate function. A soft set over 𝑈 can
be represented by the set of ordered pairs 𝑓

𝐴
= {(𝑥, 𝑓

𝐴
(𝑥)) |

𝑥 ∈ 𝐸, 𝑓
𝐴
(𝑥) ∈ 𝑃(𝑈)}. It is clear to see that a soft set is a

parameterized family of subsets of 𝑈. Note that the set of all
soft sets over 𝑈 will be denoted by 𝑆(𝑈).

Definition 2 (see [9]). Let 𝑓
𝐴
, 𝑓
𝐵
∈ 𝑆(𝑈).

(1) 𝑓
𝐴
is said to be a soft subset of 𝑓

𝐵
and denoted by

𝑓
𝐴
⊆̃𝑓
𝐵
if 𝑓
𝐴
(𝑥) ⊆ 𝑓

𝐵
(𝑥), for all 𝑥 ∈ 𝐸. 𝑓

𝐴
and 𝑓

𝐵
are

said to be soft equally, denoted by 𝑓
𝐴
= 𝑓
𝐵
, if 𝑓
𝐴
⊆̃𝑓
𝐵

and 𝑓
𝐴
⊇̃𝑓
𝐵
.

(2) The union of 𝑓
𝐴
and 𝑓
𝐵
, denoted by 𝑓

𝐴
∪̃𝑓
𝐵
, is defined

as 𝑓
𝐴
∪̃𝑓
𝐵
= 𝑓
𝐴∪𝐵

, where 𝑓
𝐴∪𝐵

(𝑥) = 𝑓
𝐴
(𝑥)∪𝑓

𝐵
(𝑥), for

all 𝑥 ∈ 𝐸.
(3) The intersection of 𝑓

𝐴
and 𝑓

𝐵
, denoted by 𝑓

𝐴
∩̃𝑓
𝐵
, is

defined as 𝑓
𝐴
∩̃𝑓
𝐵
= 𝑓
𝐴∩𝐵

, where 𝑓
𝐴∩𝐵

(𝑥) = 𝑓
𝐴
(𝑥) ∩

𝑓
𝐵
(𝑥), for all 𝑥 ∈ 𝐸.

Definition 3 (see [26]). (1)A soft set𝑓
𝐿
over𝑈 is called an 𝑆𝐼-

filter of 𝐿 over 𝑈 if it satisfies

(𝑆
1
) 𝑓
𝐿
(𝑥) ⊆ 𝑓

𝐿
(1) for any 𝑥 ∈ 𝐿,

(𝑆
2
) 𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑥) ⊆ 𝑓

𝐿
(𝑦) for all 𝑥, 𝑦 ∈ 𝐿.

(2) A soft set 𝑓
𝐿
over 𝑈 is called an 𝑆𝐼-implicative filter of

𝐿 over 𝑈 if it satisfies (𝑆
1
) and

(𝑆
3
) 𝑓
𝐿
(𝑥 → (𝑧 → 𝑦)) ∩ 𝑓

𝑙
(𝑦 → 𝑧) ⊆ 𝑓

𝐿
(𝑥 → 𝑧), for

all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

In [27],Ma andKim introduced the concept of (𝑀,𝑁)-𝑆𝐼
filters in 𝐵𝐿-algebras.

Definition 4 (see [27]). A soft set 𝑓
𝑆
over 𝑈 is called an

(𝑀,𝑁)-soft intersection filter (briefly, (𝑀,𝑁)-𝑆𝐼 filter) of 𝐿
over 𝑈 if it satisfies

(𝑆𝐼
1
) 𝑓
𝐿
(𝑥) ∩ 𝑁 ⊆ 𝑓

𝐿
(1) ∪ 𝑀 for all 𝑥 ∈ 𝐿,

(𝑆𝐼
2
) 𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑥) ∩𝑁 ⊆ 𝑓

𝐿
(𝑦) ∪𝑀 for all 𝑥, 𝑦 ∈ 𝐿.

Define an ordered relation “⊆̃
(𝑀,𝑁)

” on 𝑆(𝑈) as follows.
For any 𝑓

𝐿
, 𝑔
𝐿
∈ 𝑆(𝑈), 0 ⊆ 𝑀 ⊂ 𝑁 ⊆ 𝑈, we define

𝑓
𝐿
⊆̃
(𝑀,𝑁)

𝑔
𝐿
⇔ 𝑓
𝐿
∩ 𝑁⊆̃
(𝑀,𝑁)

𝑔
𝐿
∪𝑀.

And we define a relation “=
(𝑀,𝑁)

” as follows:
𝑓
𝐿
=
(𝑀,𝑁)

𝑔
𝐿
⇔ 𝑓
𝐿
⊆̃
(𝑀,𝑁)

𝑔
𝐿
and 𝑔

𝐿
⊆̃
(𝑀,𝑁)

𝑓
𝐿
.

Definition 5 (see [27]). A soft set 𝑓
𝑆
over 𝑈 is called an

(𝑀,𝑁)-soft intersection filter (briefly, (𝑀,𝑁)-𝑆𝐼 filter) of 𝐿
over 𝑈 if it satisfies

(𝑆𝐼


1
) 𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(1) for all 𝑥 ∈ 𝐿,

(𝑆𝐼
2
) 𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦) for all 𝑥, 𝑦 ∈ 𝐿.

3. (𝑀,𝑁)-𝑆𝐼 Implicative (Boolean) Filters

In this section, we investigate some characterizations of
(𝑀,𝑁)-𝑆𝐼 implicative filters of 𝐵𝐿-algebras. Finally, we prove
that a soft set in 𝐵𝐿-algebras is an (𝑀,𝑁)-𝑆𝐼 implicative filter
if and only if it is an (𝑀,𝑁)-𝑆𝐼 Boolean filter.

Definition 6. A soft set 𝑓
𝐿
over 𝑈 is called an (𝑀,𝑁)-soft

intersection implicative filter (briefly, (𝑀,𝑁)-𝑆𝐼 implicative
filter) of 𝐿 over𝑈 if it satisfies (𝑆𝐼

1
) and (𝑆𝐼

3
) 𝑓
𝐿
(𝑥 → (𝑧 →

𝑦))∩𝑓
𝐿
(𝑦 → 𝑧)∩𝑁⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑦 → 𝑧)∪𝑀 for all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

Remark 7. If 𝑓
𝐿
is an (𝑀,𝑁)-SI implicative filter of 𝐿 over

𝑈, then 𝑓
𝐿
is an (0, 𝑈)-SI implicative filter of 𝐿. Hence every

𝑆𝐼-implicative filter of𝐿 is an (𝑀,𝑁)-SI implicative filter of 𝐿,
but the converse need not be true in general. See the following
example.

Example 8. Assume that 𝑈 = 𝐷
2
= {⟨𝑥, 𝑦⟩ | 𝑥2 = 𝑦2 =

𝑒, 𝑥𝑦 = 𝑦𝑥} = {𝑒, 𝑥, 𝑦, 𝑦𝑥}, dihedral group, is the universe set.
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Let 𝐿 = {0, 𝑎, 𝑏, 1}, where 0 < 𝑎 < 𝑏 < 1. Then we define
𝑥∧𝑦 = min{𝑥, 𝑦}, 𝑥∨𝑦 = max{𝑥, 𝑦} and ⊙ and → as follows:

⊙ 0 𝑎 𝑏 1

0 0 0 0 0

𝑎 0 𝑎 𝑎 𝑎

𝑏 0 𝑎 𝑎 𝑏

1 0 𝑎 𝑏 1

→ 0 𝑎 𝑏 1

0 1 1 1 1

𝑎 0 1 1 1

𝑏 0 𝑏 1 1

1 0 𝑎 𝑏 1

(1)

Then (𝐿, ∧, ∨, ⊙, → , 1) is a 𝐵𝐿-algebra.
Let𝑀 = {𝑒, 𝑦} and𝑁 = {𝑒, 𝑥, 𝑦}.
Define a soft set 𝑓

𝐿
over 𝑈 by 𝑓

𝐿
(1) = {𝑒, 𝑥}, 𝑓

𝐿
(𝑎) =

𝑓
𝐿
(𝑏) = {𝑒, 𝑥, 𝑦}, and𝑓

𝐿
(0) = {𝑒, 𝑦}.Thenone can easily check

that 𝑓
𝐿
is an (𝑀,𝑁)-𝑆𝐼 implicative filter of 𝐿 over 𝑈, but it is

not an 𝑆𝐼 implicative filter of 𝐿 over 𝑈 since 𝑓
𝐿
(1) = {𝑒, 𝑥} ̸⊇

𝑓
𝐿
(𝑎).

By means of “⊆̃
(𝑀,𝑁)

,” we can obtain the following
equivalent concept.

Definition 9. A soft set 𝑓
𝐿
over 𝑈 is called an (𝑀,𝑁)-SI

implicative filter of 𝐿 over 𝑈 if it satisfies (𝑆𝐼
1
) and (𝑆𝐼

3
)

𝑓
𝐿
(𝑥 → (𝑧 → 𝑦)) ∩ 𝑓

𝐿
(𝑦 → 𝑧)⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑦 → 𝑧) for

all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

From the above definitions, we have the following.

Proposition 10. Every (𝑀,𝑁)-SI implicative filter of 𝐿 over
𝑈 is an (𝑀,𝑁)-SI filter, but the converse may not be true as
shown in the following example.

Example 11. Define 𝑥 ⊙ 𝑦 = min{𝑥, 𝑦} and

𝑥 → 𝑦 = {
1, if𝑥 ≤ 𝑦,
𝑦, if𝑥 > 𝑦.

(2)

Then 𝐿 = ([0, 1], ∧, ∨, ⊙, → , 0, 1) is a 𝐵𝐿-algebra.
Let 𝑈 = 𝐿,𝑀 = {0.5, 0.75}, and𝑁 = {0.5, 0.75, 1}.
Define a soft set 𝑓

𝐿
over 𝑈 by

𝑓
𝐿
(𝑥) =

{{

{{

{

{0, 0.5} , if𝑥 ∈ [0, 1
2
] ,

{0.5, 1} , if𝑥 ∈ [1
2
, 1] .

(3)

Then one can easily check that 𝑓
𝐿
is an (𝑀,𝑁)-SI filter of

𝐿 over𝑈, but it is not an (𝑀,𝑁)-SI implicative filter of 𝐿 over
𝑈. Since𝑓

𝐿
(2/3 → ((1/3)


→ 1/4))∩𝑓

𝐿
(1/4 → 1/3)∩𝑁 =

𝑓
𝐿
(1) ∩ 𝑓

𝐿
(1) ∩ 𝑁 = {0.5, 1} ∩ {0.5, 0.75, 1} = {0.5, 1} and

𝑓
𝐿
(2/3 → 1/4) ∪𝑀 = 𝑓

𝐿
(1/4) ∪𝑀 = {0, 0.5} ∪ {0.5, 0.75} =

{0, 0.5, 0.75}, this implies that 𝑓
𝐿
(2/3 → ((1/3)


→ 1/4)) ∩

𝑓
𝐿
(1/4 → 1/3) ∩ 𝑁 ̸⊆ 𝑓

𝐿
(𝑥 → 𝑧) ∪𝑀.

Lemma 12 (see [27]). If a soft set 𝑓
𝐿
over 𝑈 is an (𝑀,𝑁)-SI

filter of 𝐿, then for any 𝑥, 𝑦, 𝑧 ∈ 𝐿 we have

(1) 𝑥 ≤ 𝑦 ⇒ 𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦),

(2) 𝑓
𝐿
(𝑥 → 𝑦) = 𝑓

𝐿
(1) ⇒ 𝑓

𝐿
(𝑥)̸̃⊆
(𝑀,𝑁)

𝑓
𝐿
(𝑦),

(3) 𝑓
𝐿
(𝑥 ⊙ 𝑦)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦)=
(𝑀,𝑁)

𝑓
𝐿
(𝑥 ∧ 𝑦),

(4) 𝑓
𝐿
(0)=
(𝑀,𝑁)

𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑥),

(5) 𝑓
𝐿
(𝑥 → 𝑦) ∩ 𝑓

𝐿
(𝑦 → 𝑧)⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → 𝑧),

(6) 𝑓
𝐿
(𝑥) ∩ 𝑓

𝐿
(𝑦)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑦 ⊙ 𝑧 → 𝑦 ⊙ 𝑧),

(7) 𝑓
𝐿
(𝑥 → 𝑦)⊆̃

(𝑀,𝑁)
𝑓
𝐿
((𝑦 → 𝑧) → (𝑥 → 𝑧)),

(8) 𝑓
𝐿
(𝑥 → 𝑦)⊆̃

(𝑀,𝑁)
𝑓
𝐿
((𝑧 → 𝑥) → (𝑧 → 𝑦)).

Theorem 13. Let 𝑓
𝐿
be an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈, then

the following are equivalent:

(1) 𝑓
𝐿
is an (𝑀,𝑁)-SI implicative filter of 𝐿,

(2) 𝑓
𝐿
(𝑥 → 𝑧)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → (𝑧 → 𝑧)), for all 𝑥, 𝑦, 𝑧 ∈

𝐿,
(3) 𝑓
𝐿
(𝑥 → 𝑧)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → (𝑧 → 𝑧)), for all 𝑥, 𝑦, 𝑧 ∈

𝐿,
(4) 𝑓
𝐿
(𝑥 → 𝑧)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑦 → (𝑥 → (𝑧 → 𝑧))) ∩

𝑓
𝐿
(𝑦), for all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

Proof. (1) ⇒ (2) Assume that 𝑓
𝐿
is an (𝑀,𝑁)-SI filter of 𝐿

over 𝑈. Putting 𝑦 = 𝑧 in (𝑆𝐼
3
), then

𝑓
𝐿
(𝑥 → 𝑧) ∪𝑀

= (𝑓
𝐿
(𝑥 → 𝑧) ∪𝑀) ∩𝑀

⊇ (𝑓
𝐿
(𝑥 → (𝑧


→ 𝑧)) ∩ 𝑓

𝐿
(𝑧 → 𝑧) ∩ 𝑁) ∪𝑀

= (𝑓
𝐿
(𝑥 → (𝑧


→ 𝑧)) ∩ 𝑓

𝐿
(1) ∩ 𝑁) ∪𝑀

⊇ 𝑓
𝐿
(𝑥 → (𝑧


→ 𝑧)) ∩ (𝑓

𝐿
(1) ∪ 𝑀) ∩ 𝑁

⊇ 𝑓
𝐿
(𝑥 → (𝑧


→ 𝑧)) ∩ 𝑁;

(4)

that is, 𝑓
𝐿
(𝑥 → 𝑧)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → (𝑧 → 𝑧)). Thus, (2)

holds.
(2) ⇒ (3) By (𝑎

1
) and (𝑎

2
), 𝑥 → 𝑧 ≤ 𝑧 → (𝑥 →

𝑧) = 𝑥 → (𝑧 → 𝑧); then it follows from Lemma 12 (1)
that 𝑓

𝐿
(𝑥 → 𝑧)⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → (𝑧 → 𝑧)). Thus, (3) holds.

(3) ⇒ (4) Assume that (4) holds. By Lemma 12 (5), we
have 𝑓

𝐿
(𝑥 ⊙ 𝑧 → 𝑦) ∩ 𝑓

𝐿
(𝑦 → 𝑧)⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 ⊙ 𝑧 → 𝑧).

By (𝑎
2
), 𝑓
𝐿
(𝑥 → (𝑧 → 𝑦)) ∩ 𝑓

𝐿
(𝑦 → 𝑧)⊆̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 →

(𝑧 → 𝑧)).
(4)⇒(1) Putting 𝑦 = 1 in (4), we have

𝑓
𝐿
(𝑥 → 𝑧) ⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → (𝑧


→ 𝑧)) . (5)

Hence

𝑓
𝐿
(𝑧 → 𝑧) ⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → (𝑧


→ 𝑦)) ∩ 𝑓

𝐿
(𝑦 → 𝑧) .

(6)

Thus, (𝑆𝐼
3
) holds. This shows that 𝑓

𝐿
is an (𝑀,𝑁)-𝑆𝐼

implicative filter of 𝐿 over 𝑈.

Now, we introduce the concept of (𝑀,𝑁)-SI Boolean
filters of 𝐵𝐿-algebras.

Definition 14. Let 𝑓
𝐿
be an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈, then

𝑓
𝐿
is called an (𝑀,𝑁)-SI Boolean filter of 𝐿 over 𝑈 if it

satisfies

(𝑆𝐼
4
) 𝑓
𝐿
(𝑥 ∨ 𝑥)=

(𝑀,𝑁)
𝑓
𝐿
(1) for all 𝑥 ∈ 𝐿.
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Theorem 15. A soft set 𝑓
𝐿
over 𝑈 is an (𝑀,𝑁)-SI implicative

filter of 𝐿 if and only if it is an (𝑀,𝑁)-SI Boolean filter.

Proof. Assume that 𝑓
𝐿
over 𝑈 is an (𝑀,𝑁)-SI Boolean filter

of 𝐿 over 𝑈. Then

𝑓
𝐿
(𝑥 → 𝑧)

⊇̃
(𝑀,𝑁)

𝑓
𝐿
((𝑧 ∨ 𝑧


) → (𝑥 → 𝑧)) ∩ 𝑓

𝐿
(𝑧 ∨ 𝑧


)

=
(𝑀,𝑁)

𝑓
𝐿
((𝑧 ∨ 𝑧


) → (𝑥 → 𝑧)) ∩ 𝑓

𝐿
(1)

⊇̃
(𝑀,𝑁)

𝑓
𝐿
((𝑧 ∨ 𝑧


) → (𝑥 → 𝑧)) .

(7)

By (𝑎
10
) and (𝑎

1
), we have

(𝑧 ∨ 𝑧

) → (𝑥 → 𝑧)

= (𝑧 → (𝑥 → 𝑧)) ∧ (𝑧

→ (𝑥 → 𝑧))

= 𝑧

→ (𝑥 → 𝑧) = 𝑥 → (𝑧


→ 𝑧) .

(8)

Hence 𝑓
𝐿
(𝑥 → 𝑧)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → (𝑧 → 𝑧)). It follows from

Theorem 13 that𝑓
𝐿
is an (𝑀,𝑁)-SI implicative filter of 𝐿 over

𝑈.
Conversely, assume that 𝑓

𝐿
is an (𝑀,𝑁)-SI implicative

filter of 𝐿 over 𝑈. By Theorem 13, we have

𝑓
𝐿
((𝑥

→ 𝑥) → 𝑥)

=
(𝑀,𝑁)

𝑓
𝐿
((𝑥

→ 𝑥) → (𝑥


→ 𝑥)) = 𝑓

𝐿
(1) ,

𝑓
𝐿
((𝑥 → 𝑥


) → 𝑥


)

=
(𝑀,𝑁)

𝑓
𝐿
((𝑥 → 𝑥


) → (𝑥


→ 𝑥

))

= 𝑓
𝐿
((𝑥 → 𝑥


) → (𝑥 → 𝑥)) = 𝑓

𝐿
(1) .

(9)

By Lemma 12, we have

𝑓
𝐿
(𝑥 ∨ 𝑥


)

=
(𝑀,𝑁)

𝑓
𝐿
((𝑥 → 𝑥


) → 𝑥


) ∩ 𝑓
𝐿
((𝑥

→ 𝑥) → 𝑥)

=
(𝑀,𝑁)

𝑓
𝐿
(1) .

(10)

Hence 𝑓
𝐿
is an (𝑀,𝑁)-SI Boolean filter of 𝐿 over 𝑈.

Remark 16. Every (𝑀,𝑁)-SI implicative filter and (𝑀,𝑁)-SI
Boolean filter in 𝐵𝐿-algebras are equivalent.

Next, we give some characterizations of (𝑀,𝑁)-SI
implicative (Boolean) filters in 𝐵𝐿-algebras.

Theorem 17. Let 𝑓
𝐿
be an (𝑀,𝑁)-SI filter of 𝐿 over 𝑈, then

the following are equivalent:

(1) 𝑓
𝐿
is an (𝑀,𝑁)-𝑆𝐼 implicative (Boolean) filter,

(2) 𝑓
𝐿
(𝑥)=
(𝑀,𝑁)

𝑓
𝐿
(𝑥 → 𝑥), for all 𝑥 ∈ 𝐿,

(3) 𝑓
𝐿
((𝑥 → 𝑦) → 𝑥)⊆

(𝑀,𝑁)
𝑓
𝐿
(𝑥), for all 𝑥, 𝑦 ∈ 𝐿,

(4) 𝑓
𝐿
((𝑥 → 𝑦) → 𝑥)=

(𝑀,𝑁)
𝑓
𝐿
(𝑥), for all 𝑥, 𝑦 ∈ 𝐿,

(5) 𝑓
𝐿
(𝑥)⊇̃
(𝑀,𝑁)

𝑓
𝐿
(𝑧 → ((𝑥 → 𝑦) → 𝑥)) ∩ 𝑓

𝐿
(𝑧), for

all 𝑥, 𝑦, 𝑧 ∈ 𝐿.

Proof. (1)⇒ (2). Assume that 𝑓
𝐿
is an (𝑀,𝑁)-SI implicative

(Boolean) filter of 𝐿 over 𝑈. By Theorem 13, we have

𝑓
𝐿
(𝑥) = 𝑓

𝐿
(1 → 𝑥) =

(𝑀,𝑁)
𝑓
𝐿
(1 → (𝑥


→ 𝑥))

= 𝑓
𝐿
(𝑥

→ 𝑥) .

(11)

Thus, (2) holds.
(2) ⇒ (3). By (𝑎

1
), (𝑎
2
), and (𝑎

8
), we have 𝑥 ≤ 𝑥 → 𝑦

and so (𝑥 → 𝑦) → 𝑥 ≤ 𝑥 → 𝑥. By Lemma 12, 𝑓
𝐿
((𝑥

→ 𝑦) → 𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
(𝑥 → 𝑥). Combining (2),𝑓

𝐿
(𝑥)=
(𝑀,𝑁)

𝑓
𝐿
(𝑥 → 𝑥)⊇̃

(𝑀,𝑁)
𝑓
𝐿
((𝑥 → 𝑦) → 𝑥). Thus, (3) holds.

(3)⇒ (4). Since 𝑥 ≤ (𝑥 → 𝑦) → 𝑥, then by Lemma 12
𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑓
𝐿
((𝑥 → 𝑦) → 𝑥). Combining (3), 𝑓

𝐿
(𝑥)

=
(𝑀,𝑁)

𝑓
𝐿
((𝑥 → 𝑦) → 𝑥).

(4) ⇒ (5). By (𝑆𝐼
2
), 𝑓
𝐿
((𝑥 → 𝑦) → 𝑥)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑧 →

((𝑥 → 𝑦) → 𝑥)) ∩ 𝑓
𝐿
(𝑧). Combining (4), we have

𝑓
𝐿
(𝑥)⊇̃
(𝑀,𝑁)

𝑓
𝐿
(𝑧 → ((𝑥 → 𝑦) → 𝑥)) ∩ 𝑓

𝐿
(𝑧). Thus, (5)

holds.
(5) ⇒ (1). By (𝑎

1
), 𝑧 ≤ 𝑥 → 𝑧. By (𝑎

8
), (𝑥 → 𝑧)


≤ 𝑧

and so 𝑧 → (𝑥 → 𝑧) ≤ (𝑥 → 𝑧)

→ (𝑥 → 𝑧). Then

by Lemma 12, 𝑓
𝐿
(𝑧 → (𝑥 → 𝑧))⊆̃

(𝑀,𝑁)
𝑓
𝐿
((𝑥 → 𝑧)


→

(𝑥 → 𝑧))=
(𝑀,𝑁)

𝑓
𝐿
(1 → ((𝑥 → 𝑧)


→ (𝑥 → 𝑧))) ∩ 𝑓

𝐿
(1).

By (5), 𝑓
𝐿
(𝑥 → 𝑧)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑧 → (𝑥 → 𝑧)) and so

𝑓
𝐿
(𝑥 → 𝑧)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 → (𝑧 → 𝑧)). Therefore, it follows

fromTheorem 13 that 𝑓
𝐿
is an (𝑀,𝑁)-SI implicative filter of

𝐿.

Finally, we investigate extension properties of (𝑀,𝑁)-SI
implicative filters of 𝐵𝐿-algebras.

Theorem 18 (extension property). Let 𝑓
𝐿
and 𝑔

𝐿
be two

(𝑀,𝑁)-SI filters of 𝐿 over 𝑈 such that 𝑓
𝐿
(1)=
(𝑀,𝑁)

𝑔
𝐿
(1) and

𝑓
𝐿
(𝑥)⊆̃
(𝑀,𝑁)

𝑔
𝐿
(𝑥) for all 𝑥 ∈ 𝐿. If 𝑓

𝐿
is an (𝑀,𝑁)-SI

implicative (Boolean) filter of 𝐿, then so is 𝑔
𝐿
.

Proof. Assuming that 𝑓
𝐿

is an (𝑀,𝑁)-SI implicative
(Boolean) filter of 𝐿 over 𝑈, then 𝑓

𝐿
(𝑥 ∨ 𝑥)=

(𝑀,𝑁)
𝑓
𝐿
(1)

for all 𝑥 ∈ 𝐿. By hypothesis, 𝑔
𝐿
(𝑥 ∨ 𝑥)⊇̃

(𝑀,𝑁)
𝑓
𝐿
(𝑥 ∨

𝑥)=
(𝑀,𝑁)

𝑓
𝐿
(1)=
(𝑀,𝑁)

𝑔
𝐿
(1). By (𝑆𝐼

1
), we have 𝑔

𝐿
(1)⊇̃
(𝑀,𝑁)

𝑔
𝐿
(𝑥 ∨ 𝑥). Thus, 𝑔

𝐿
(𝑥 ∨ 𝑥)=

(𝑀,𝑁)
𝑔
𝐿
(1). Hence 𝑔

𝐿
is an

(𝑀,𝑁)-𝑆𝐼 implicative (Boolean) filter of 𝐿.

4. Conclusions

In this paper, we introduce the concepts of (𝑀,𝑁)-SI
implicative filters and (𝑀,𝑁)-SI Boolean filters of 𝐵𝐿-
algebras. Then we show that every (𝑀,𝑁)-SI Boolean filter
is equivalent to (𝑀,𝑁)-SI implicative filters. In particular,
some equivalent conditions for (𝑀,𝑁)-SI Boolean filters are
obtained.We hope it can lay a foundation for providing a new
soft algebraic tool in many uncertainties problems.
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To extend this work, one can apply this theory to other
fields, such as algebras, topology, and other mathematical
branches. To promote this work, we can further investigate
(𝑀,𝑁)-SI prime (semiprime) Boolean filters of 𝐵𝐿-algebras.
Maybe one can apply this idea to decision-making, data
analysis, and knowledge based systems.
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[12] F. Feng, Y. Li, and N. Çağman, “Generalized uni-int decision
making schemes based on choice value soft sets,” European
Journal of Operational Research, vol. 220, no. 1, pp. 162–170, 2012.

[13] P. K. Maji, A. R. Roy, and R. Biswas, “An application of soft sets
in a decision making problem,” Computers &Mathematics with
Applications, vol. 44, no. 8-9, pp. 1077–1083, 2002.
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