
Hindawi Publishing Corporation
Applied Computational Intelligence and Soft Computing
Volume 2012, Article ID 946398, 14 pages
doi:10.1155/2012/946398

Research Article

Solving “Antenna Array Thinning Problem”
Using Genetic Algorithm

Rajashree Jain1 and G. S. Mani2

1 Symbiosis Institute of Computer Studies and Research, (A constituent of Symbiosis International University) Model Colony,
Pune Maharashtra State 411016, India

2 Departmetn of Information Technology, JS College of Engineering, Handewadi Road, Hadapsar, Pune 411028, India

Correspondence should be addressed to Rajashree Jain, rajashree.jain@sicsr.ac.in

Received 13 April 2012; Accepted 11 August 2012

Academic Editor: Yongqing Yang

Copyright © 2012 R. Jain and G. S. Mani. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Thinning involves reducing total number of active elements in an antenna array without causing major degradation in system
performance. Dynamic thinning is the process of achieving this under real-time conditions. It is required to find a strategic subset
of antenna elements for thinning so as to have its optimum performance. From a mathematical perspective this is a nonlinear,
multidimensional problem with multiple objectives and many constraints. Solution for such problem cannot be obtained by
classical analytical techniques. It will be required to employ some type of search algorithm which can lead to a practical solution
in an optimal. The present paper discusses an approach of using genetic algorithm for array thinning. After discussing the basic
concept involving antenna array, array thinning, dynamic thinning, and application methodology, simulation results of applying
the technique to linear and planar arrays are presented.

1. Introduction

An antenna array refers to two or more antenna elements
that are spatially arranged and electrically interconnected to
produce a directional radiation pattern. The electrical char-
acteristics, orientations, and polarizations of the elements
forming part of the array as well as the geometrical arrange-
ment of the array and their interconnections determine the
overall performance of the array.

Antenna arrays containing large number of elements
are frequently used in radar, communication, astronomy,
and other systems. In order to reduce the element count,
cost, weight, power consumption, and heat dissipation in
these systems, thinning is sometimes performed by removing
a percentage of array elements according to a suitable
strategy. For a fixed antenna size, the thinning produces
antenna arrays much cheaper than completely filled arrays,
in terms of both hardware and control complexity. Moreover,
although by thinning the main lobe width may remain
approximately unaltered, there will generally be a reduction

in antenna gain and also loss of control over the radiation
pattern outside the main beam.

Thinning can be considered as a tool for reducing total
number of active antenna elements in an antenna array when
the main beam is narrow and the demand on the control of
radiations outside the main beam is modest.

The main concern in the design of such thinned arrays
is to find an optimal set of element spacing’s to meet
array specifications based on current distribution among the
antenna elements. Since the array factor of the thinned array
is a nonlinear function of element spacing and there are an
infinite number of combinations of element locations, the
problem of optimizing the array pattern with respect to the
element locations becomes nonlinear and complex. Thus,
it is not easy to design a thinned array optimally. Further,
optimal thinning becomes more difficult for “off-normal”
scanning or for arrays requiring special radiation needs.

In the past, many approaches have been proposed for
thinning. A variety of methods have been suggested for
pattern synthesis of the nonuniformly spaced arrays, which
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include Poisson’s sum formula [1], iterative least square
[2], perturbation [3], dynamic programming [4], minimax
[5] technique, and so forth. In recent years, thinning has
been considered as a combinatorial problem. However,
for larger arrays, the number of all possible combinations
becomes large and increases exponentially with increase of
number of array elements. Hence checking every possible
combination to find the optimum one is nearly impossible.
One needs a faster and more reliable method to find the
optimum solution. Since no deterministic method can be
found for array thinning in such large arrays, probabilistic
methods have been attempted. These focus on density of
“on” elements in different parts of array and its effects
on far-field pattern [6]. In recent years, nongradient-based
optimization methods such as genetic algorithms, ant colony
technique and particle swarm optimization [7–10] have
been found useful in solving such problems. The purpose
of this paper is to study use of genetic algorithm for
optimal thinning in large arrays including those requiring
scanning or meeting specific radiation pattern requirements.
The study also includes ways of implementing the thinning
process dynamically in a large array.

The details of thinning considered as an optimization
problem are discussed in Sections 2 and 3 deals with certain
basic features of genetic algorithm. The problem of array
thinning to be optimized by using SGA is formulated in
Section 4. Simulation results after applying SGA for different
thinned linear and planar arrays are presented in Section 5.
Challenges involved while using GA for larger array and
under changing conditions are discussed in Section 6. This
section also proposes zoning technique, bulk array computa-
tion methods, concept of acceptable solution, and dynamic
thinning programmer along with some simulation results.
Section 7 has some conclusions.

2. Thinning as an Optimization Problem

An array will basically be thinned to meet an objective. The
objective may be to lower the side lobe level outside the main
beam or to meet a specific radiation requirement. In either
case it becomes an optimization problem of minimizing
the side lobe level or a cost function defined based on the
difference between desired radiation and actual radiation.
Any optimization method used, especially when the array
size increases may have to face the following challenges.

2.1. Increased Solution Space. As the total number of antenna
elements increase the solution space increases at a much
larger scale. Table 1 depicts the relationship between solution
space and Ntotal for a linear antenna array symmetric from
center for a thinning factor of TF = 0.25 (25% inactive
elements). Therefore exhaustive search of all combinations
is practical for only small arrays.

2.2. Landscape of Solution Space. When the solution space
becomes large, the likelihood of landscape of the solution
space becoming complex also increases. Though the type
of exact landscape would depend to a large extent on the

Table 1: Solution space for a symmetric array.

No. of array elements Ntotal TF Ninactive Solution space

8 0.5 4 6

8 0.25 2 4

32 0.5 16 12 × 103

32 0.25 8 18 × 102

100 0.5 50 1.3 × 1014

100 0.25 25 4.6 × 1012

200 0.5 100 1 × 1029

200 0.25 50 2.4 × 1023

Local maximum

Local maximumLocal minimum

Global minimum

Global maximum

f

X1

X2

X

Figure 1: Typical landscape for optimization.

parameters of the array and the objective function to be
maximized/minimized, its broad nature typically would be
as shown in Figure 1.

2.3. NP Completeness. Although numerical techniques may
provide a better thinned array design, the computer run
time to solve the problem will increase exponentially as the
array size increases. Thus array thinning can be categorized as
discrete, combinatorial N-P complete optimization problem.
Neither the analytical nor the gradient-based methods will
provide a solution. Randomized search methods such as
simulated annealing, genetic algorithm, particle swarm opti-
mizer, ant colony optimizers have proven as more suitable.
These algorithms are stochastic and are characterized by the
following features:

(i) gradient free (do not use derivative information);

(ii) effective for multiobjective functions;

(iii) robust leading to practical acceptable solution rather
than the best solution;

(iv) largely independent of initial design/solution
domain;

(v) global techniques are useful when dealing with new
problems in which area of the solution space is
unknown.
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3. GA for Thinning Antenna Arrays

The concept of genetic algorithm was first formalised by
Holland [11] and extended to functional optimisation by
Goldberg [12], Davis [13], and De Jong [14]. It involves
the use of optimisation search strategies patterned after the
Darwinian notion of natural selection and evolution.

The major features of GA like direct use of coding,
search from a population, blindness to auxiliary information
and randomized operators contribute to its robustness
and resulting advantage over other more commonly used
techniques.

In particular, for solving electromagnetic problems and
array thinning problems [15] GA has many advantages
over the traditional numerical optimization approaches,
including the facts that it

(i) can optimize with continuous or discrete parameters;

(ii) does not require derivative information;

(iii) simultaneously searches from a wide sampling of the
cost surface;

(iv) can work with large number of variables;

(v) provides a list of optimum parameters, not just a
single solution;

(vi) may encode the parameters and the optimization is
done with the encoded parameters;

(vii) works with numerically generated data, experimental
data, or analytical functions.

3.1. Anatomy of GA. There are many versions of genetic
algorithms, one differing from another in some detail. In a
nutshell, all genetic algorithms have two basic steps: during
the selection step, a decision is made as to who in the
population is allowed to produce offspring, and during the
replacement step another decision is made as to which of the
members from one generation are forced to perish in order
to make room for an offspring to compete.

3.1.1. Simple GA (SGA). Simple GA (SGA) starts by ran-
domly generating a population of N individuals, that is,
individual solutions. These individuals are evaluated for their
fitness. Individuals with higher fitness scores are selected,
with replacement, to create a mating pool of size N .
This method of selection is called fitness proportionate
reproduction (FPR). The genetic operators of crossover
and mutation are applied at this stage in a probabilistic
manner which results in some individuals from the mating
pool to reproduce. The assumption here is that each pair
of parents produces only one pair of offspring through
the crossover operation. Now the population pool contains
some individuals who never got a chance to reproduce and
offspring of those who got a chance to reproduce. The
procedure continues until a suitable termination condition
is satisfied. All other versions of GAs are based on this simple
form of GA or SGA.

3.1.2. Pseudo-Code and Flow Graph. Basic steps involved
in implementing SGA are simple and straight forward.
These are listed as follows and are discussed in subsequent
paragraphs:

(a) genes, chromosomes, and coding a parameter set;

(b) create an initial population;

(c) evaluate fitness of each population member;

(d) invoke natural selection;

(e) select population members for mating;

(f) generate off-springs; Mutate selected members of the
population;

(g) terminate or go to step b.

Simple flow graph for SGA is shown in Figure 2.

Genes, Chromosomes, and Coding a Parameter Set. The first
step in using SGA is to code or map the parameters of
the problem in hand into genes. Generally a parameter is
equivalent to a gene. The coding is a mapping from the
parameter space to the chromosome space that transforms
the set of parameters to a finite length string of coded genes.
Chromosomes can be entirely encoded in binary, floating
point, or mixed binary and floating point.

Creating Initial Population. The initial population is the
starting matrix of chromosomes. Generally each row of the
matrix represents a set of variables forming part of a solution.
An initial value of this set is normally taken as a random set
within the limits as applicable for the variable. Depending on
the coding of the parameter set, the elements of the starting
matrix as stated before may be in binary, floating point, or
mixed binary and floating point.

Fitness Evaluation. Each row of the starting matrix, repre-
senting a possible solution, is now evaluated for its suitability.
For this, a cost function is to be chosen based on the problem
in hand. Formulating the cost function is an important task,
since this holds the key for the usefulness of the algorithm
and its rate of convergence. This is chosen based on the
goal(s) which need to be optimized. For multiobjective
optimization, each cost can be normalized and weighed
separately before combining them together to provide a
single scalar quantity.

Natural Selection. The essence of the algorithm lies in
promoting healthy members of the population to grow and
yield off-springs, which are expected to be healthier. For
this to happen, “survival of the fittest” theory is used. There
are two common ways to invoke natural selection. The first
method is to keep healthy chromosomes and discard the rest.
For this, the population is sorted according to their fitness
or cost and required elitist population is retained. A second
approach based on thresholding can also be adopted, where
all chromosomes having fitness above a predetermined value
are retained. Thresholding method avoids sorting, which
may be an involved process sometimes. The chromosomes
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that survive form the mating pool are then used for creating
next generation of population.

Mate Selection. Mating is done among the most fitting
members of the population based on probability. “Better
the fitness, more chances of mating” is the basic principle
followed. For this, two approaches are popular: Roulette
wheel and Tournament selection.

For Roulette wheel selection, population is sorted and
assigned a probability of selection on the basis of its rank
in the sorted population. Chromosomes with low costs
have a higher percent chance of being selected than do the
chromosomes with higher costs. This needs to be worked out
every time new population is being created.

In the Tournament selection approach, two small groups
of chromosomes are selected randomly from the mating
pool. The chromosome with the lowest cost in each group
becomes a parent. Two such parents are then mated for
producing off-springs. The number of tournaments held
depends on the total number of parents required to make up
the pool.

Generating Off-Springs. Off springs are generated based on
two basic genetic operators: crossover and mutation.

Cross over refers to creating offspring’s from portions
of each parent. A typical method of creating a crossover
between a set of parents is by using a mask. The point
of crossover is generated in each case randomly. It is also
possible to use multiple point crossovers, where different
parts of off-springs are taken from the two parents.

Mutation is to induce random variations in the popu-
lation. This is just done by flipping the binary digit at the
position of mutating.

It has been observed that by having these two basic
genetic operators, it is possible to make the healthy couple
produce healthy off-springs, which can ultimately lead to
minimization of the objective function.

Termination Criteria. The generation process is continued
till a termination criterion is satisfied. This can be either
based on number of total iterations or the achievable cost.

Though GA is a simple and robust algorithm, there are
many things that can be implemented differently in various
problems. First question is how to create chromosomes and
what type of encoding to choose. Selecting GA parameters,
population size, type and rate of crossover and mutation,
selection criteria, and so forth, pays a critical role in achieving
the results. All these depend on the final goal, the chosen cost
function, and implementation of the algorithm.

GA optimisers, in general, are found to be robust,
stochastic search methods. The powerful heuristic of GA
is effective at solving complex, combinatorial, and related
problems. They are particularly effective when the goal is
to find approximate global maxima in a large-dimension,
multimodal functional domain in a near-optimal manner.
The next section of the paper discusses use of SGA for
obtaining an optimally thinned array.

Initial population

Cost function

Mutated 
population

Done?

Parents

offsprings

Parents

Keep

discardCost

Yes

No

Natural
selection

Mating Pool

Generate Offspring 

using genetic operators

Define coding and chromosome representation

Parameter Gene Chromosome

Figure 2: A block diagram of a simple genetic algorithm optimizer.

4. Problem Formulation

The array factor of a thinned array can be obtained by
considering some of the elements as switched OFF from
the uniformly excited array. Typical expression for far field-
intensity pattern from an antenna array ofM elements where
the elements are simple and isotropic may be written as,

FM
(
θ,ϕ

) =
M∑

k=1

Fk e
jψk , (1)

where, FM(θ,ϕ) refers to the radiation field in (θ,ϕ)
direction, Fk refers to the complex weightage of the antenna
element k, ψk refers to the complex weightage related to the
array grid.

Where Fk is either zero or unity according as the element
is on (when the element is fed) or off (when the element is
passively terminated in an impedance equal to the source
impedance of the fed elements). Since the quantity Fk can
have only the values of 0 and 1, we can say

Fk = 1 if {on} � {k}
= 0 else,

(2)

where {on} represent the subset of element numbers which
are ON.

By thinning, lesser number of antenna elements partici-
pate in the formation of the radiating beam in comparison to
an unthinned array. Thinning factor (TF) is defined as

TF = Ntotal −Nactive

Ntotal
,

Ninactive = Ntotal −Nactive.

(3)

HereNtotal , Nactive andNinactive are total number of elements
in the array and total number of active and inactive elements
in the thinned array, respectively. Assuming a symmetrical
linear antenna array, the problem thus transforms to finding
the elements of the set {off} orNinactive in half array as shown
if Figure 3 for a linear array and in the top right quadrant of
a planar array as shown in Figure 4.
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Figure 3: Symmetric linear array of K antenna elements.
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Figure 4: A planar array.

All studies related to the study of electromagnetic array
antennas would be related to (1) expression in some form
or other. It can easily be noticed that the above expression
and all further relationships based on this expression tend to
be complex and computationally intensive, especially when
the number of elements are large and geometrically arranged
in a different way. Also, since the function is not easily
differentiable, optimisation using conventional analytical
techniques becomes extremely difficult for large arrays.

5. Application of SGA to Thinned Array

As posed above, synthesis of a thinned array becomes a
combinatorial problem of choosing a certain set (Ninactive)
out of an available set Ntotal that the desired objective is
satisfied. Approach using SGA for linear and planar arrays
is discussed in the following paragraphs.

5.1. Coding and Initial Population. The first step of SGA
optimization process involves coding of its parameters. For
the thinned array problem, the best way of coding would
require a “1” to represent an element which is “On” and
a “0” to represent an element which is “Off”. Any binary
string of length Ntotal will then represent a possible solution.
A random set of such binary strings is taken as initial
population. For example, for a 100 element linear symmetric
array, a random initial population would mean 10 by 100
matrix of binary values, number of ones and zeros being
decided on by the thinning factor (TF).

5.2. Fitness Evaluation. Fitness evaluation is based on
the objective function (OF) requirement for thinning the
antenna array. It can be of two types.

(a) It can be a cost function based on the variation
between the envelopes of the desired radiation pattern and
actual radiation pattern of the thinned array. In such a case,
the purpose of design shall be to bring the variation below
the set limit of ε:

ε(θ) =
M∑

1

[max{(|Fm(θ)| − |F max d(θ)|), 0}]

+ Σ[max{(|F mind(θ)| − |Fm(θ)|), 0}],

(4)

for an M element array and where, F mind(θ) and
F max d(θ) are the desired minimum and maximum radia-
tion, respectively, and Fm(θ) is the actual radiation in the
direction of angle θ.

(b) It can be any one of the following factors or a
combination of them. It can also be a variation based on
these factors:

gain reduction factor, GRF = 20 log10

(
Ntotal

Nactive

)
;

side lobe variation factor, SLVF = (SL)M − (SL)N ;

beamwidth variation factor, BWVF = (BW)M − (BW)N .
(5)

Here (SL)M , (SL)N refer to the side lobe levels (in dB) and
(BM)M , (BM)N refer to the beam widths of the full and
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Figure 5: (a) Radiation pattern of a typical thinned array and (b) expanded view: Case 1 (blue: without thinning; red: after thinning).

thinned arrays, respectively. Depending on the type of OF,
the procedure for thinning would aim to either maximize or
minimize it.

Cost function is to be chosen based on the problem in
hand. Since the major problem in a thinned array is its side
lobe level, the natural choice for fitness evaluation shall be
the side lobe level. However, this can be different based on
the requirement.

The present paper makes use of cost function for some
cases and the variation of peak side lobe level factor for the
remaining cases.

5.3. Selection, Mating, and Termination. “Survival of the
fittest” and “Better the fitness, more chances of mating” are
the basic principles governing selection and mating process.
For this, the side lobe level corresponding to each binary
string in the population is computed, based on which the
population is sorted.

Following the elitist rule, top half of the population is
retained, discarding the rest. Mating is then carried out by
following simple single point crossover technique. Mutation
is the next step based on desired probability (0.02) of
mutation. Thus the next generation of population is created
where each member represents a possible thinned array. Two
termination criteria are possible: (a) limiting the number of
iterations or calls to the computationally intensive procedure
of calculating sidelobe level and looking for the best possible
solution; (b) looking for the desired side lobe level and
terminate iterations accordingly.

5.4. Design Studies. The following four cases were consid-
ered.

Case 1. Peak side lobe level study.

Case 2. Limited angular region study.

Case 3. Limited angular region study.

Case 4. Optimizing the peak side lobe level in the two
principal planes of 10 × 20 element planar array.

An array of 100 elements with a nominal interelement
spacing of 0.5 λ was considered for Cases 1–3. Since genetic
algorithms are stochastic in nature, a number of runs were
done in each case. Each run started with a new random set
of population and followed the steps discussed above. For
brevity, the discussion and results reported here are confined
to only a limited number of runs.

5.4.1. Case 1: Peak Side Lobe Level Study. The objective of this
case study was to examine suitability of SGA for reducing
the Peak Side Lobe Level (PSLL) of a long linear array. The
design exercise was carried out a number of times. In all
cases, terminating criteria were restricted to the total number
of side lobe calculations as 200. In about 95% of the cases
the peak side lobe had gone down from −13.2 dB to better
than −20 dB within this restriction. About 20% reduction in
number of elements could be achieved in most cases. The
uniform array has a half power beam width of 1.01 degrees;
thus the change in beam width due to thinning varies
from 15% to 23%. The uniform array has a beam width
between nulls of 2.30 degrees; thus the change in null beam
width due to thinning varies from 23% to 40%. Figure 5(a)
shows one of the typical array radiation patterns of the final
thinned array. Radiation pattern without thinning (uniform
illumination) is also plotted for comparison. Figure 5(b) is
an expanded version of Figure 5(a) near the main beam.

5.4.2. Case 2: Limited Angular Region Study. The objective
of this case study is to examine if SGA can be applied for
reducing the PSLL over a limited angular region. The angular
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Figure 6: (a) Radiation pattern of a typical thinned array limited angular case, (b) radiation pattern obtained for 30 degrees scan angle.
(blue: without thinning; red: after thinning).

region chosen was ±30 degrees on either side of beam
maximum. It is evident from the results that the algorithm
works effectively even for a narrower angular region. In every
case, the side lobe level improves from −13.2 db to better
than −21 dB within the specified ±30 degrees. It is also
interesting to note that the algorithm concentrates in the
region of specific interest irrespective of the side lobe levels
outside the region. In some cases the PSLL remains quite bad
outside the region of interest. A typical radiation pattern are
shown in Figure 6(a).

5.4.3. Case 3: Scanned Array Study. In this case, applicability
of SGA for a linear scanned array is examined. The same
array as considered in earlier cases was now scanned by
providing a linear phase shift across its aperture, all other
conditions being the same. Two scan angles of 30 and 45
degrees were considered. Typical results obtained for 30
degree scan angle are shown in Figure 6(b).

5.4.4. Case 4: 20× 10 Element Planar Array. For this a planar
array of 200 elements was chosen.

Configuration: rectangular: element grid: rectangular.
No. of elements along x-axis: 2Nx is 20.
No. of elements along y-axis: 2Ny is 10.
Total number of elements is 200.
Normalized spacing along x-axis: Dx is 0.5.
Normalized spacing along y-axis: Dy is 0.5.
A solution of thinned locations of a quarter and another

with full array is shown in Figure 7(a) and 7(b).
Figure 8 is a typical radiation pattern of 200 element

planar array in its two principal planes. The objective here
was also to reduce the peak side lobe level below−20 dB value
in both of its principal planes.

The four design studies discussed above gave us a confi-
dence of planning to apply SGA to thin a large planar array
of around 4096 elements under different scan conditions and
also explore possible challenges for dynamic thinning. The
challenges faced and the methodology the team has used to
resolve these challenges are discussed in Section 6.

6. Dynamic Thinning

“Dynamic thinning” refers to response of the thinning
process to a dynamic situation. This can be treated as on-line
or real-time optimization process. Examples of two typical
dynamic situations in respect of an antenna array case are as
follow:

(1) to introduce a notch in a defined angular sector of the
radiation pattern;

(2) the need to scan the main beam of the antenna array
to a different angle

The optimization process should be able to respond
quickly to the new demand. Sometimes the new demand may
also arise after the optimization process has been initiated.
This means that the requirements or constraints when the
process of optimization started were different from the time
solution for optimization was finally obtained. In such cases,
sensitivity of the solution to the changed environment would
decide the usefulness of the whole process.

6.1. Factors Affecting Dynamic Thinning. Dynamic array
thinning refers to varying the thinning pattern on real
time basis to suit to varying conditions. Even though SGA
is a well-suited tool for solving array thinning problems,
two factors figure prominently in applying the algorithm
effectively for dynamic thinning.

(i) Computational complexity involved in thinned array
design for many large size antenna arrays is too time
consuming and hence may not be directly suitable for
on-line implementation involving dynamic thinning.

(ii) In general, thinning procedure would aim to maxi-
mize/minimize the objective function (OF). But for a
dynamic situation, it may often be sufficient if the OF
can meet a specified level as governed by the opera-
tional requirements. This would mean that the design
must aim at obtaining “an acceptable solution” rather
than finding “the optimum solution”.
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Figure 8: Planar array of 10 × 20 elements: radiation pattern: green Curve: thinned array and blue curve: uniform array.

6.2. Objective Function (OF) Requirement. This is as dis-
cussed in Section 5.2. Depending on the type of OF, the
procedure for thinning would aim to minimize the cost
function or obtain a predefined value of an objective function
parameter.

6.3. Resolving Dynamic Thinning Issues. Since the major
problem relates to computational complexity, efforts to
reduce computational time and complexity were taken up as
main issue. The following approaches were studied

(1) array symmetry;

(2) bulk array computation;

(3) zoning technique;

(4) thinning Simple Genetic Algorithm (TSGA);

(5) dynamic thinning programmer.

6.3.1. Array Symmetry. Fortunately several types of symme-
try are common in practice in practical antenna arrays [16].
some of these symmetries can therefore be used to obtain
a reduction in the computational complexity and solution
space. In the present investigative study a linear array is
considered as symmetric from center of the array, meaning
the element excitations in the second half of the array would
be mirror image of the excitations of the elements in the
first half. Similarly for planar array quadrature symmetry was
used.

6.3.2. Bulk Array Computation. Implementation of GA
requires evaluation of OF for every member of the popu-
lation in each iteration. Each of the evaluation is based on
the array factor calculation FM(θ) as mentioned in (1) for
the linear array of M identical elements. Similar equation
in two dimensions needs to be evaluated for a planar array.
These equations are highly nonlinear and involve lengthy
procedures. Thus, for large arrays, requirements of computer
resources for objective function evaluation would far exceed
the functional requirements for SGA.

For dynamic thinning, special attention needs to be paid
for the OF evaluation. The suggested method here is called as
“Bulk Array computation” (BAC). This involves first storing
the data of the radiated fields of all elements in all directions.
The effect of “inactive elements” is then coalesced on the
stored data of the radiated field of the array. Based on this,
radiation pattern of the thinned array corresponding to each
member of the population is then computed [17].

Major steps involved in the computation are

(1) generating data for creating “Element Table” which
has all details about element location and its complex
excitation coefficient;

(2) generating data for creating “Angle Table” which
contains details of each angular direction in (θ, ϕ)
coordinates;
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(3) computing and storing the radiated field due to each
element of the array in each direction of interest;

(4) initial population of “inactive elements” is generated;

(5) effect of “inactive elements” is then coalesced on the
stored data of the radiated field of the array; radiation
pattern of the thinned array corresponding to each
member of the population over the required angular
sector is then computed;

(6) feedback parameter is extracted from the set of
radiated patterns of the thinned arrays and is used in
iterative manner to generate successive populations,
using GA procedures;

(7) this is continued iteratively till the terminating
criterion is obtained.

The flow graph for BAC is shown in Figure 9.

6.3.3. Zoning Technique. Zoning refers to partitioning the
antenna array into convenient zones, so that the solution
space can be usefully explored. Though there is no restriction
in the total number of zones NZ, each zone is expected to
consist of at least 2 elements.NZ = 1 refers to no partitioning
of the array. Figure 10 shows typical zoning of linear and
planar arrays, where NZ = 3.

Generally, it is expected that number of inactive elements
in the central portion (shown as zone 1 in Figure 10) of
a thinned array would be much less than in other zones.
Such a prior knowledge can help in partitioning of the array
into zones and better exploitation of the solution space. In
general, zoning is based on dividend or return likely to yield
while exploiting the zone [18, 19]. Though it is possible to
partition into any number of zones, it may not be advisable
to consider more than 2 or 3 zones, as shown later.

Zoning can help in enhancing convergence rate, since
the proportion of the exploring space to total solution space
reduces drastically in case of large arrays.

Adapting this technique for the present study involves
generating initial population according to these criteria.
Later SGA is carried out as in the previous study.

Zoning technique provides ample scope for using any
a priori or intuitive information about the antenna array.
By this approach considerable reduction in solution space
occurs, resulting fast convergence as demonstrated in the
next subsection.

6.3.4. Thinning Simple Genetic Algorithm (TSGA). For
resolving the issues of computational complexity, increased
solution space, zoning, symmetry consideration, cost func-
tion concept, and bulk array calculation methodology were
integrated with SGA. The integrated method here is called
as “Thinned Simple Genetic Algorithm” (TSGA). This
involves first accepting the array details, domain details, and
GA-related details. The standard SGA procedure involves
objective function evaluation, sorting, natural selection, and
reproduction using crossover and mutation, the population

can be refined iteratively till it meets the required objective.
A typical flow graph of TSGA is shown in Figure 11.

6.3.5. Dynamic Thinning Programmer. BAC and zoning
techniques were found useful in reducing the overall
computation time and help in achieving fast convergence
required for dynamic thinning. SGA can be used for real-
time thinning design by combining these techniques with
a criterion based on an acceptable solution relevant to the
dynamic requirement, as suggested earlier.

However, in case of larger arrays, the time response
based on the above approach may not be adequate, due to
operational constraints. In such cases, it is proposed that a
dynamic thinning programmer (DTP) as shown in Figure 12
be used for system integration. DTP consists of a prestored
data set, a dynamic thinning logic unit (DTLU), and a
dynamic control circuit (DCC).

The prestored data set contains information about the
elements of the set {Nactive} relevant for various condi-
tions in the form of look-up tables. Based on operational
requirements, appropriate trigger signals would be sent to the
DTLU, which would retrieve information about the relevant
{Nactive} set. For instance, in case of a scanning-phased array
the trigger signal would be the scan direction information,
which will enable DTLU to retrieve information about the
on/off requirements of the array elements relevant for the
required scanning conditions. These requirements would
then be translated to appropriate control signals by the DCC
and sent to the RF manifold for optimum thinning. By
this process dynamic thinning can be achieved based on
prestored data.

6.4. Simulation Results on Dynamic Thinning Issues. This
section deals with some of the simulation results obtained
using the methods suggested for dynamic thinning. In all
cases, symmetrical arrays with isotropic radiators placed at
a uniform spacing of half wavelength are considered. No
mutual coupling effects are considered. The following case
studies are discussed in the following sections:

(i) simulation results on zoning;

(ii) simulation results on BAC technique;

(iii) simulation results on scanning array.

6.4.1. Study on Effect of Number of Zones. To test the efficacy
of zoning the following three studies were carried out

(i) to study effect of number of zones on speed of conver-
gence;

(ii) to study effect of zoning for different objective func-
tions;

(iii) to study different types of zoning.

Effects of Number of Zones. Effects of number of zones on a
200 element linear thinned array are presented here. Number
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of zones considered are 1, 2, 3, and 4 numbered from center
to the edge. The thinning factor, TF = 0.24 was considered,
so that Ninactive = 48. This is distributed in increasing
proportion from Zone 1 to Zone N , so that Zone1 has least
number of Ninactive elements. It is ensured that symmetry
is maintained in the thinned array. Objective function, OF,
was chosen as achieving −22 dB side lobe level outside the

sector of ±0.01 radians. Maximum number of iterations is
Nit = 500. Terminating condition was to achieve OF or
number of iterations = Nit, whichever is earlier. In order
to remove any possible biases due to stochastic nature of
the algorithms and to obtain conclusive results, 100 runs
were made in each case. Convergence behavior is shown is
Figure 13.

It clearly shows zoning has helped converge the algorithm
to an optimal solution especially the performance was better
with 2 zones.

Study Effect of Zoning for Different Objective Functions. The
OF was redefined to achieve radiation pattern envelope with
a main beam sector and a notch sector. The results discussed
are for linear arrays with Ntotal = 100 and Ntotal = 200.
Main beam sector was taken as ± 0.02/ ± 0.01 radians for
the two arrays. The notch sector was from ±0.48 to ± 0.52
radians, with notch depth of −36 db/−40 dB for the two
arrays. Symmetrical notch is due to array symmetry. Total
number of iterations (Nit) and total number of runs (Nrun)
were taken as 500 and 100, as before. Only NZ = 1 and NZ =
2 were considered. Cost function (CF) was defined based
on the difference between the desired and actual radiation
pattern based as per (4).

It was interesting to note that no significant improvement
in performance could be noticed with zoning for both cases
of Ntotal = 100 and 200. Success rate was only 0 and 10%
for the two cases. However, a cost reduction rate of 3.6 (from
20 to 5.5) was seen in case of average CF for Ntotal = 100,
which increases to 10.4 (from 60 to 5.74) for Ntotal = 200.
Thus, zoning can help in enhancing convergence rate, when
the size of the array is larger. Moreover, it can also help in
achieving an acceptable solution, rather than achieving an
absolute optimized solution.

A typical radiation pattern when convergence had
occurred for 200 element array is shown in Figure 14.

Study on Different Types of Zoning. For this study, a planar
array with 20 × 10 elements was taken. The objective was
to obtain −20 dB side lobe levels in both planes. Three
types of zoning were considered as shown in Figure 15(a).
Convergence graphs with zoning are given in Figure 15(b).
For this particular case, it can be observed that strategy 3
provides better convergence.
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Figure 15: (a) Three types of zones on a planar array (blue: zone 1; white: zone 2), (b) respective convergence curves.

Convergence occurs, in all the three cases, thus showing
that different types of zoning can be employed depending on
the need. As discussed earlier, a priori knowledge can help in
choosing the type of zoning most suitable based on the need.

6.4.2. Simulation Results on BAC Technique. As discussed
earlier, bulk array computation’ (BAC) is based on creating
a table to store the data of the radiated fields of all elements
in all directions and then subtracting the contributions
from the “inactive” elements to obtain FM(θ). There is an
advantage by a factor of (1 − TF/TF) per each calculation of
the array factor by following the suggested method.

For example for a symmetric planar array ofNtotal = 4096
elements with a thinning factor of 0.38, the present method
would need 2 × 1012 operations to evaluate the objective
function as compared to regular array calculation method
which would need 4×1012. The angular directions considered
for the example were 1025× 1025 for a population size of 20
and the algorithm was run for 300 iterations. Clearly use of
BAC technique is more suitable for large array thinning also
under dynamic conditions.

6.4.3. Simulation Results on Scan Angle Study. Techniques
discussed above were used to simulate thinning of a 64 ×
64 element planar array, scanned to different angles in the

two planes. Techniques discussed above were able to select
the right combination of 2784 elements within about 300
iterations in most of the cases. Typical results are shown
in Figures 16(a)–16(f). Radiation pattern of the full array
(without thinning) has been superposed for comparison.
It was observed that the scanning behavior of the thinned
array is on the expected lines. The beam maximums for
the thinned and unthinned arrays coincide and occur at
the expected angle in each case. The radiation patterns
are smooth and do not have any grating lobes in spite
of the thinning by about 32%. Total no. of elements in
one quadrant is 1024; no. of elements switched off in one
quadrant is 328.

7. Conclusions

The present paper discusses use of genetic algorithm for
optimizing thinned linear and planar antenna arrays. It also
discussed the challenges faced while applying simple GA
to a larger array under dynamic conditions. Zoning and
bulk array calculation methods helped GA to converge faster
to an optimal solution. SGA was successfully applied to
optimize scan performance of a large planar array of 4096
elements. Several design case studies are presented to prove
the concepts.
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Figure 16: Radiation patterns for different scanning conditions (inner full array; outer thinned array).
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