
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2013, Article ID 635361, 6 pages
http://dx.doi.org/10.1155/2013/635361

Research Article
Characterizations of Ideals in Intermediate 𝐶-Rings 𝐴(𝑋) via
the 𝐴-Compactifications of 𝑋

Joshua Sack1 and Saleem Watson2

1 Institute of Logic, Language, and Computation, Universiteit van Amsterdam, P.O. Box 94242, 1090 GE Amsterdam,The Netherlands
2Department of Mathematics, California State University, Long Beach, CA 90840, USA

Correspondence should be addressed to Joshua Sack; joshua.sack@gmail.com

Received 8 February 2013; Accepted 14 June 2013

Academic Editor: David Dobbs

Copyright © 2013 J. Sack and S. Watson.This is an open access article distributed under theCreativeCommonsAttributionLicense,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let 𝑋 be a completely regular topological space. An intermediate ring is a ring 𝐴(𝑋) of continuous functions satisfying 𝐶∗(𝑋) ⊆

𝐴(𝑋) ⊆ 𝐶(𝑋). In Redlin andWatson (1987) and in Panman et al. (2012), correspondencesZ
𝐴
andZ

𝐴
are defined between ideals in

𝐴(𝑋) and 𝑧-filters on𝑋, and it is shown that these extend the well-known correspondences studied separately for 𝐶∗(𝑋) and𝐶(𝑋),
respectively, to any intermediate ring. Moreover, the inverse map Z←

𝐴
sets up a one-one correspondence between the maximal

ideals of 𝐴(𝑋) and the 𝑧-ultrafilters on 𝑋. In this paper, we define a functionK
𝐴
that, in the case that 𝐴(𝑋) is a 𝐶-ring, describes

Z
𝐴
in terms of extensions of functions to realcompactifications of𝑋. For such rings, we show that Z←

𝐴
maps 𝑧-filters to ideals. We

also give a characterization of the maximal ideals in 𝐴(𝑋) that generalize the Gelfand-Kolmogorov theorem from 𝐶(𝑋) to 𝐴(𝑋).

1. Introduction

Let𝑋 be a completely regular space and𝐴(𝑋) an intermediate
ring of continuous real-valued functions; that is, 𝐶∗(𝑋) ⊆

𝐴(𝑋) ⊆ 𝐶(𝑋). It is well known that there is a natural
correspondence Z between ideals of 𝐶(𝑋) and 𝑧-filters on X
as described in [1, pages 26-27]. Such a correspondence E also
exists for 𝐶∗(𝑋) [1, Problem 2L]. In [2], a correspondence
Z
𝐴
between the ideals of any 𝐴(𝑋) and the 𝑧-filters on 𝑋

was introduced, and its properties were further investigated
in [3–5]. In [6], another correspondence Z

𝐴
between ideals

of any 𝐴(𝑋) and 𝑧-filters on 𝑋 is introduced. It is shown
in [6] that the correspondences Z

𝐴
and Z

𝐴
extend the

correspondencesE andZ from𝐶
∗

(𝑋) and𝐶(𝑋), respectively,
to all intermediate rings, and an explicit formula is stated
that relates the two correspondences. In this paper, we give
a characterization (Definition 3 andTheorem 6) of the corre-
spondenceZ

𝐴
for intermediate 𝐶-rings 𝐴(𝑋) in terms of the

𝐴-compactifications of𝑋 introduced in [7]. In this setting, we
show (Theorem 14) that the inverse map Z←

𝐴
of the set map

Z
𝐴
maps ideals in𝐴(𝑋) to 𝑧-filters on𝑋. We also give a char-

acterization of themaximal ideals in𝐴(𝑋).This characteriza-
tion generalizes from𝐶(𝑋) to𝐴(𝑋) theGelfand-Kolmogorov
theorem (Theorem 8). We follow the notation in [1, 6].

2. Preliminaries

For convenience we state some of the definitions and results
needed in this paper.

Following the notation in [1], we set

Z (𝑋) = Z [𝐶 (𝑋)]

= {Z (𝑓) | 𝑓 ∈ 𝐶 (𝑋)}

(1)

to be the collection of the zero sets Z(𝑓) = 𝑓
−1

({0}) of all
functions 𝑓 ∈ 𝐶(𝑋). In this paper, we generally work with
functions 𝑓 on a fixed set 𝑋, as well as some extensions 𝑔 of
𝑓 to larger domains. As expected, Z(𝑔) then denotes the zero
set of 𝑔 on the larger domain.

A 𝑧-filter (𝑧-ultrafilter, resp.) on 𝑋 is the intersection of
Z(𝑋)with a filter (ultrafilter, resp.) on𝑋. The kernel 𝑘 of a set
S of 𝑧-ultrafilters is defined by

𝑘 (S) = ⋂ {U | U ∈ S} . (2)

One can verify that the kernel of a set of 𝑧-ultrafilters is a
𝑧-filter. The hull ℎ of a 𝑧-filterF is defined by

ℎ (F) = {U | U is a 𝑧-ultrafilter on 𝑋, U ⊇ F} . (3)
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Given a set𝐸 ⊆ 𝑋, let ⟨𝐸⟩ denote the set of all zero sets𝐹 ⊆ 𝑋,
such that 𝐸 ⊆ 𝐹.

Given any two functions 𝑓 and 𝑔 on a set 𝑋 and𝐻 ⊆ 𝑋,
we write 𝑓 ≡ 𝑔 on 𝐻 if 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 ∈ 𝐻. For each
intermediate ring𝐴(𝑋) of continuous functions, each nonin-
vertible𝑓 ∈ 𝐴(𝑋), and each𝐻 ⊆ 𝑋, we say that𝑓 is𝐻-regular
in 𝐴(𝑋) if there exists 𝑔 ∈ 𝐴(𝑋) such that 𝑓𝑔 ≡ 1 on 𝐻. We
just say 𝑓 is𝐻-regular if 𝐴(𝑋) is understood by context. For
any set 𝐸 ⊆ 𝑋, let 𝐸𝑐 be the complement of 𝐸 in𝑋.

For each 𝑓 ∈ 𝐴(𝑋), set

Z
𝐴
(𝑓) = {𝐸 ∈ Z (𝑋) | 𝑓 is𝐸𝑐-regular} ,

Z
𝐴
(𝑓) = {𝐸 ∈ Z (𝑋) | 𝑓 is𝐻-regular for each

zero-set𝐻 ⊆ 𝐸
𝑐

} .

(4)

For an ideal 𝐼 ⊂ 𝐴(𝑋), we set Z
𝐴
[𝐼] = ⋃{Z

𝐴
(𝑓) | 𝑓 ∈ 𝐼}

andZ
𝐴
[𝐼] = ⋃{Z

𝐴
(𝑓) | 𝑓 ∈ 𝐼}. Several properties ofZ

𝐴
and

Z
𝐴
are proved in [3, 5, 6]. In particular, we have the following

lemma, which we state here for convenience.

Lemma 1. Let 𝐴(𝑋) be an intermediate ring. Then the follow-
ing hold.

(a) For any noninvertible 𝑓 ∈ 𝐴(𝑋), both Z
𝐴
(𝑓) and

Z
𝐴
(𝑓) are 𝑧-filters on 𝑋. If 𝑓 is invertible, then

Z
𝐴
(𝑓) = Z

𝐴
(𝑓) = Z[𝑋], the set of all zero sets in

𝑋.
(b) For an ideal 𝐼 ⊂ 𝐴(𝑋), both Z

𝐴
[𝐼] and Z

𝐴
[𝐼] are 𝑧-

filters on𝑋.
(c) For any 𝑓 ∈ 𝐴(𝑋), we have Z

𝐴
(𝑓) = 𝑘ℎZ

𝐴
(𝑓).

(d) IfF is a 𝑧-filter on 𝑋, thenZ
𝐴
(𝑓) ⊆ F if and only if

limF𝑓ℎ = 0 for all ℎ ∈ 𝐴(𝑋).

Item (a) is from [2, 6], Item (b) is from [3, 6], Item (c) is
from [6], and Item (d) is from [2].

The Stone-Čech compactification of𝑋, denoted 𝛽𝑋, is any
topological space homeomorphic to the space of 𝑧-ultrafilters
on 𝑋 topologized with the hull-kernel closure operator as
follows: the closure of any set 𝑈 of 𝑧-ultrafilters is ℎ𝑘(𝑈).
Throughout this paper, we will in particular take 𝛽𝑋 to con-
sist of a superset of𝑋, whose points, whichwe denote𝑝, 𝑞, . . .,
can be viewed as indices of 𝑧-ultrafilters on 𝑋. Let U be the
map which associates every 𝑝 ∈ 𝛽𝑋 with a 𝑧-ultrafilterU

𝑝
:

𝑝
U
→ U

𝑝
, (5)

such that for each 𝑝 ∈ 𝑋,U
𝑝
= ⟨{𝑝}⟩ is the fixed 𝑧-ultrafilter

containing 𝑝, and for each 𝑝 ∈ 𝛽𝑋 \ 𝑋, U
𝑝
is a unique

free 𝑧-ultrafilter, such thatU is a one-to-one correspondence
between 𝛽𝑋 and the set of 𝑧-ultrafilters on 𝑋. The topology
on 𝛽𝑋 is defined in such a way that the map U is a home-
omorphism. Making use of the fact that the zero sets form
a base for the collection of closed sets [1, page 38], one can
check that U maps 𝑋 homeomorphically onto the subspace
of fixed 𝑧-ultrafilters, and hence𝑋 is a subspace of 𝛽𝑋.

A 𝑧-filterF on𝑋 is called 𝐴-stable if for every 𝑓 ∈ 𝐴(𝑋)

there exists a set in F on which 𝑓 is bounded (see [7, 8]).

Following [7], for each𝐴(𝑋)wedefine the𝐴-compactification
𝜐
𝐴
𝑋 of𝑋 as the subspace of 𝛽𝑋 where

𝜐
𝐴
𝑋 = {𝑝 ∈ 𝛽𝑋 | U

𝑝
is𝐴-stable} . (6)

From [5, Theorem 4.6], it holds that 𝜐
𝐴
𝑋 is a realcompacti-

fication of 𝑋. Note that if 𝐴(𝑋) = 𝐶
∗

(𝑋), then 𝜐
𝐴
𝑋 = 𝛽𝑋.

If 𝐴(𝑋) = 𝐶(𝑋), then 𝜐
𝐴
𝑋 = 𝜐𝑋 is the Hewitt realcompacti-

fication.
To refine our understanding of the topology on 𝜐

𝐴
𝑋, we

define the 𝐴-stable hull ℎ𝐴 of a 𝑧-filterF by

ℎ
𝐴

(F) = {U | U is an𝐴-stable 𝑧-ultrafilter

on 𝑋, U ⊇ F} .

(7)

It is immediate from the definition of the subspace topology
that 𝜐

𝐴
𝑋 is homeomorphic (via U|

𝜐𝐴𝑋
) to the hull-kernel

topology restricted to 𝐴-stable 𝑧-ultrafilters, that is, the
topology with the following closure operator: the closure of
any set 𝑈 is ℎ𝐴𝑘(𝑈). It follows that

𝑝 ∈ cl
𝜐𝐴𝑋

𝐸 iff 𝐸 ∈ U
𝑝
. (8)

From [7], we have that the space 𝜐
𝐴
𝑋 consists of the

points of 𝛽𝑋 to which every function 𝑓 ∈ 𝐴(𝑋) can be
continuously extended. We denote the extension of 𝑓 to 𝜐

𝐴
𝑋

by 𝑓
𝜐𝐴 . From [7, Theorem 9], we have the value of 𝑓𝜐𝐴 at a

point 𝑝 ∈ 𝜐
𝐴
𝑋 is given by

𝑓
𝜐𝐴 (𝑝) = lim

U𝑝

𝑓. (9)

In [7], a ring 𝐴(𝑋) of continuous functions is called a 𝐶-
ring if there is a completely regular space 𝑌 such that 𝐴(𝑋)

is isomorphic to 𝐶(𝑌). Clearly 𝐶(𝑋) and 𝐶
∗

(𝑋) are 𝐶-rings
(with 𝐶

∗

(𝑋) isomorphic to 𝐶(𝛽𝑋)). We use the following
result from [7, Theorem 7].

Lemma 2. Let𝐴(𝑋) be an intermediate ring. Then the follow-
ing hold.

(a) 𝐴(𝑋) is a 𝐶-ring if and only if 𝐴(𝑋) is isomorphic to
𝐶(𝜐
𝐴
𝑋).

(b) If𝐴(𝑋) is a𝐶-ring, then𝑓 ∈ 𝐴(𝑋) is invertible in𝐴(𝑋)

if and only if Z(𝑓𝜐𝐴) = 0.

In addition, it is shown in [5, Theorem 4.7] that there is a
bijective correspondence between the realcompactifications
of𝑋 and the 𝐶-rings on𝑋.

3. Characterizations Using
Realcompactifications

In this section, we utilize the realcompactifications of 𝑋 to
provide a new description of the functionZ

𝐴
and of maximal

ideals of 𝐴(𝑋), when 𝐴(𝑋) is an intermediate 𝐶-ring. The
new description of the maximal ideals of 𝐴(𝑋) generalizes
the Gelfand-Kolmogorov theorem [1, page 102] for 𝐶(𝑋) to
all intermediate 𝐶-rings.
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3.1. A New Description of Z
𝐴
for 𝐶-Rings. While the defini-

tion ofZ
𝐴
is essentially algebraic (using the property of local

invertibility), we now define a function K
𝐴
that provides a

“topological description” (using realcompactifications of 𝑋)
of amapping from ideals of an intermediate𝐶-ring𝐴(𝑋) to 𝑧-
filters on𝑋, and we will show (Theorem 6) thatK

𝐴
coincides

with Z
𝐴
when 𝐴(𝑋) is an intermediate 𝐶-ring.

Definition 3. Let𝐴(𝑋) be an intermediate ring and𝑓 ∈ 𝐴(𝑋).
We set

K
𝐴
(𝑓) = {𝐸 ∈ Z (𝑋) | Z (𝑓

𝜐𝐴) ⊆ cl
𝜐𝐴𝑋

𝐸} . (10)

For an ideal 𝐼 ⊂ 𝐴(𝑋), we setK
𝐴
[𝐼] = ⋃{K

𝐴
(𝑓) | 𝑓 ∈ 𝐼}.

That K
𝐴
is indeed a mapping from ideals of an interme-

diate 𝐶-ring𝐴(𝑋) to 𝑧-filters on𝑋will follow from our main
result of the section that establishes thatK

𝐴
= Z
𝐴
when𝐴(𝑋)

is an intermediate 𝐶-ring. We also show that K
𝐴
does not

necessarily map ideals in 𝐴(𝑋) to 𝑧-filters on 𝑋 when 𝐴(𝑋)

is not an intermediate 𝐶-ring (Example 7).
First, to illustrate some connections that motivated the

development ofK
𝐴
, let us now observe a similarity between

K
𝐴
and a simple function Ẑ that we define in terms of Z. We

define Ẑ
𝑋
on 𝐶(𝑋) by

Ẑ
𝑋
: 𝑓 → ⟨Z (𝑓)⟩ = {𝐸 ∈ Z (𝑋) | Z (𝑓) ⊆ 𝐸} . (11)

We drop the subscript𝑋 when it is understood by context. It
is easy to see that given an ideal 𝐼, Ẑ[𝐼] = Z[𝐼].

We now turn our attention to 𝐶
∗

(𝑋) and we note that
𝐶
∗

(𝑋) is an intermediate 𝐶-ring, as 𝐶∗(𝑋) is isomorphic to
𝐶(𝛽𝑋). In light of this, we have for 𝑓 ∈ 𝐶(𝑋) that

Ẑ
𝛽𝑋

: 𝑓
𝛽

→ ⟨Z (𝑓
𝛽

)⟩ = {𝐸
𝛽
∈ Z (𝛽𝑋) | Z (𝑓

𝛽

) ⊆ 𝐸
𝛽
} .

(12)

Ultimately, we would like to find a map defined on 𝐶
∗

(𝑋)

itself rather than𝐶(𝛽𝑋) and thatmaps to 𝑧-filters on𝑋 rather
than 𝛽𝑋 (it is possible that a 𝑧-filter on 𝛽𝑋may contain a set
that does not meet 𝑋; for example, 𝛽N \ N is the zero set of
the function 𝑓

𝛽N, where 𝑓(𝑛) = 1/𝑛). Observe that

⋂{𝐸
𝛽
∈ Z (𝛽𝑋) | Z (𝑓

𝛽

) ⊆ 𝐸
𝛽
} = Z (𝑓

𝛽

)

= ⋂{cl
𝛽𝑋
𝐸 | 𝐸 ∈ Z (𝑋) , Z (𝑓

𝛽

) ⊆ cl
𝛽𝑋
𝐸} ,

(13)

where the first equality is immediate from the fact that
Z(𝑓𝛽) ∈ Z(𝛽𝑋), and the second equality holds because the
sets of the form cl

𝛽𝑋
𝐸 are a base for the closed sets in 𝛽𝑋

(see [1, page 94]).This motivates the following definition that
relates Z(𝑓𝛽) to𝑋:

K
𝐶
∗ : 𝑓 → {𝐸 ∈ Z (𝑋) | Z (𝑓

𝛽

) ⊆ cl
𝛽𝑋
𝐸} . (14)

We then generalize K
𝐶
∗ to all intermediate rings 𝐴(𝑋) to

arrive at Definition 3.
In order to prove our main theorem that K

𝐴
= Z
𝐴

whenever𝐴 is an intermediate𝐶-ring, we need some lemmas.
We first show that the zero set of 𝑓𝜐𝐴 , viewed as a set of 𝑧-
ultrafilters, is the 𝐴-stable hull ofZ

𝐴
(𝑓).

Lemma 4. If𝐴(𝑋) is an intermediate ring of continuous func-
tions,

Z (𝑓
𝜐𝐴) ≡ ℎ

𝐴

(Z
𝐴
(𝑓)) , (15)

where the symbol ≡ indicates that one set is the homeomorphic
image of the other. In particular, if 𝑓 ∈ 𝐴(𝑋), then 𝑝 ∈ Z(𝑓𝜐𝐴)
if and only ifU

𝑝
∈ ℎ
𝐴

(Z
𝐴
(𝑓)).

Proof. We observe that the following are equivalent:

(i) 𝑝 ∈ Z(𝑓𝜐𝐴),
(ii) U

𝑝
is 𝐴-stable and limU𝑝

𝑓 = 0,

(iii) U
𝑝
is 𝐴-stable and limU𝑝

𝑓ℎ = 0 for all ℎ ∈ 𝐴(𝑋),

(iv) U
𝑝
is 𝐴-stable and U

𝑝
⊇ Z

𝐴
(𝑓), that is, U

𝑝
∈

ℎ
𝐴

(Z
𝐴
(𝑓)).

The equivalence (i)⇔(ii) follows from (6) and (9). The equi-
valence (ii)⇔(iii) follows from the fact that U

𝑝
is 𝐴-stable,

and hence ℎ is bounded on some set inU
𝑝
. The equivalence

(iii)⇔(iv) follows from Lemma 1(d).

We use the notation 𝑘ℎF to denote the kernel of the
hull of the 𝑧-filter F, that is, the intersection of the set of 𝑧-
ultrafilters containingF.

Lemma5. Let𝐴(𝑋) be an intermediate𝐶-ring and𝑓 ∈ 𝐴(𝑋).
Then

𝑘ℎZ
𝐴
(𝑓) = 𝑘ℎ

𝐴

Z
𝐴
(𝑓) . (16)

Proof. Without loss of generality, we may assume that 𝑓 ≥

0 (because Z
𝐴
(𝑓) = Z

𝐴
(𝑓
2

)). Of course 𝑘ℎZ
𝐴
(𝑓) ⊆

𝑘ℎ
𝐴Z
𝐴
(𝑓). For the other containment, suppose 𝐸 ∈

𝑘ℎ
𝐴Z
𝐴
(𝑓), so 𝐸 belongs to every 𝐴-stable 𝑧-ultrafilter

containing Z
𝐴
(𝑓). We first note that by Lemma 4, U

𝑝
∈

ℎ
𝐴Z
𝐴
(𝑓) if and only if 𝑝 ∈ Z(𝑓𝜐𝐴). In other words, for any

𝐸 ∈ Z[𝑋], we have 𝐸 ∈ 𝑘ℎ
𝐴Z
𝐴
(𝑓) if and only if 𝐸 ∈ U

𝑝

for every 𝑝 in Z(𝑓𝜐𝐴) if and only if cl
𝜐𝐴𝑋

𝐸 ⊇ Z(𝑓𝜐𝐴). Now
suppose U

𝑞
is any 𝑧-ultrafilter (𝐴-stable or not) containing

Z
𝐴
(𝑓).We show that𝐸 belongs toU

𝑞
. If not, then there exists

𝐹 ∈ U
𝑞
such that

𝐸 ∩ 𝐹 = 0. (17)

Since 𝐸 and 𝐹 are disjoint zero sets in𝑋, they are completely
separated (see [1, page 17]). So there is a continuous function
ℎ that takes the value 1 on 𝐸 and 0 on 𝐹 and 0 ≤ ℎ ≤ 1, so
ℎ ∈ 𝐴(𝑋). Consider the function 𝑘 = 𝑓 + ℎ ∈ 𝐴(𝑋). Note
that 𝑘(𝑥) = 𝑓(𝑥) for 𝑥 ∈ 𝐹. Also, since 𝑘 ≥ 1 on 𝐸 and since
cl
𝜐𝐴𝑋

𝐸 ⊇ Z(𝑓𝜐𝐴), it follows that Z(𝑘𝜐𝐴) = 0. By Lemma 2(b),
𝑘 is invertible, and as 𝑘 ≡ 𝑓 on 𝐹, it follows that 𝑘−1𝑓 ≡ 1 on
𝐹. Since 𝐹 ∈ U

𝑞
, it also follows that limU𝑞

𝑘
−1

𝑓 ̸= 0, but this
contradicts the fact thatU

𝑞
⊇ Z
𝐴
(𝑓) because of Lemma 1(d).

This contradiction stems from the assumption that𝐸does not
belong to U

𝑞
. So 𝐸 ∈ U

𝑞
for every U

𝑞
⊇ Z
𝐴
(𝑓), that is,

𝐸 ∈ 𝑘ℎZ
𝐴
(𝑓).
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Recall that for any intermediate ring 𝐴(𝑋), Lemma 1(c)
gives the relationship Z

𝐴
(𝑓) = 𝑘ℎZ

𝐴
(𝑓). For intermediate

𝐶-rings, we can characterize Z
𝐴
topologically asK

𝐴
.

Theorem 6. Let 𝐴(𝑋) be an intermediate 𝐶-ring and 𝑓 ∈

𝐴(𝑋). Then Z
𝐴
(𝑓) = K

𝐴
(𝑓).

Proof. Suppose 𝐸 ∈ Z
𝐴
(𝑓). By Lemma 1(c), 𝐸 ∈ 𝑘ℎZ

𝐴
(𝑓).

We show that in this case 𝑝 ∈ Z(𝑓𝜐𝐴) implies 𝑝 ∈ cl
𝜐𝐴𝑋

𝐸.
Now if 𝑝 ∈ Z(𝑓𝜐𝐴), then by Lemma 4, U

𝑝
∈ ℎ
𝐴

(Z
𝐴
(𝑓)).

Since 𝐸 ∈ 𝑘ℎZ
𝐴
(𝑓), it follows that 𝐸 ∈ U

𝑝
, and hence by (8),

we have that 𝑝 ∈ 𝑐𝑙
𝜐𝐴𝑋

𝐸.
For the other containment, suppose 𝐸 ∈ K

𝐴
(𝑓), that is,

Z(𝑓𝜐𝐴) ⊆ cl
𝜐𝐴𝑋

𝐸. We show that 𝐸 belongs to every 𝐴-stable
𝑧-ultrafilter containingZ

𝐴
(𝑓). First, letU

𝑝
be an𝐴-stable 𝑧-

ultrafilter containingZ
𝐴
(𝑓). Then by Lemma 4, 𝑝 ∈ Z(𝑓𝜐𝐴),

so by hypothesis, 𝑝 ∈ cl
𝜐𝐴𝑋

𝐸, and hence 𝐸 ∈ U
𝑝
. Thus 𝐸

belongs to every 𝐴-stable 𝑧-ultrafilter containing Z
𝐴
(𝑓); in

other words, 𝐸 ∈ 𝑘ℎ
𝐴Z
𝐴
(𝑓). Since 𝐴(𝑋) is an intermediate

𝐶-ring, we can apply Lemma 5 so that 𝐸 ∈ 𝑘ℎZ
𝐴
(𝑓), and

hence by Lemma 1(c), 𝐸 ∈ Z
𝐴
(𝑓).

The theorem does not hold if the assumption that 𝐴(𝑋)

being an intermediate 𝐶-ring is removed. In fact, K
𝐴
need

not map ideals in 𝐴(𝑋) to 𝑧-filters on 𝑋 when 𝐴(𝑋) is not a
𝐶-ring, as the following example shows.

Example 7. Let 𝑋 = [1,∞). Let 𝐴(𝑋) be the smallest ring
of continuous functions containing both 𝐶

∗

(𝑋) and 𝑓(𝑥) =

𝑥. Then each function ℎ ∈ 𝐴(𝑋) has the form ℎ(𝑥) =

∑
𝑛

𝑘=0
𝑓
𝑘
(𝑥)𝑥
𝑘 for 𝑓

𝑘
∈ 𝐶
∗

(𝑋). Note that any function ℎ ∈

𝐴(𝑋) is therefore bounded by some function of the form𝑀𝑥
𝑛

for 𝑀 ∈ R and 𝑛 ∈ N, where 𝑀 is 𝑛 + 1 times a common
bound for all of 𝑓

𝑘
. We now observe that 𝑒𝑥 ∉ 𝐴(𝑋), since

𝑒
𝑥 cannot be bounded by any function of the form 𝑀𝑥

𝑛 for
𝑀 ∈ R and 𝑛 ∈ N. Let 𝑔 = 𝑒

−𝑥. Then 𝑔 is in 𝐴(𝑋) but is not
invertible in 𝐴(𝑋). Thus 𝐴(𝑋) and 𝐶(𝑋) are not isomorphic.

Since every set of a free 𝑧-ultrafilter on 𝑋 = [1,∞)must
be unbounded, the identity function𝑓 is not bounded on any
such set either. Hence any free 𝑧-ultrafilter on 𝑋 is not 𝐴-
stable, and 𝜐

𝐴
(𝑋) = 𝑋. Then by Lemma 2(a), 𝐴(𝑋) is not a

𝐶-ring, since 𝐶(𝜐
𝐴
(𝑋)) = 𝐶(𝑋) and 𝐶(𝑋) ̸=𝐴(𝑋).

Finally, since 𝑔𝜐𝐴 = 𝑔 and Z(𝑔) = 0, the setK
𝐴
(𝑔) = {𝐸 ∈

Z(𝑋) | Z(𝑔𝜐𝐴) ⊆ cl
𝜐𝐴𝑋

𝐸} consists of all zero sets of 𝑋 (hence
is not a 𝑧-filter), while Z

𝐴
(𝑔) is the 𝑧-filter consisting of all

zero sets in 𝑋 whose complement in 𝑋 has an upper bound.
Thus K

𝐴
(𝑔) ̸=Z

𝐴
(𝑔), which is in contrast to the conclusion

of Theorem 6.

We leave open the question as to precisely what rings
𝐴(𝑋) are such thatK

𝐴
= Z
𝐴
.We also leave open the question

as to whether there exists a ring𝐴(𝑋) such thatK
𝐴
does map

ideals in 𝐴(𝑋) to 𝑧-filters on𝑋, butK
𝐴

̸=Z
𝐴
.

3.2. CharacterizingMaximal Ideals in𝐶-Rings. The following
characterization for maximal ideals in 𝐴(𝑋) is proved in [6].
Every maximal ideal in 𝐴(𝑋) is of the form

𝑀
𝑝

𝐴
= {𝑓 ∈ 𝐴 (𝑋) | Z

𝐴
(𝑓) ⊆ U

𝑝
} , (18)

for 𝑝 ∈ 𝛽𝑋. By Lemma 1(c),Z
𝐴
(𝑓) ⊆ U

𝑝
wheneverZ

𝐴
(𝑓) ⊆

U
𝑝
, and hence by (9) and Lemma 1(d), we have

𝑀
𝑝

𝐶
∗ = {𝑓 ∈ 𝐶

∗

(𝑋) | 𝑓
𝛽

(𝑝) = 0} . (19)

Since Z
𝐶
(𝑓) = ⟨Z(𝑓)⟩, we have by (8) that

𝑀
𝑝

𝐶
= {𝑓 ∈ 𝐶 (𝑋) | ⟨Z (𝑓)⟩ ⊆ U

𝑝
}

= {𝑓 ∈ 𝐶 (𝑋) | 𝑝 ∈ cl
𝛽𝑋
Z (𝑓)} .

(20)

The characterizations in (19) and (20) that we obtained
from (18) agreewith those given in [1, pages 101-102]; the latter
characterization of 𝑀𝑝

𝐶
is called the Gelfand-Kolmogorov

theorem [1, page 102]. The following theorem provides a
characterization of𝑀𝑝

𝐴
that we see extends both (20) and (19)

to all intermediate 𝐶-rings 𝐴(𝑋).

Theorem 8. Let 𝐴(𝑋) be an intermediate 𝐶-ring. Then each
maximal ideal in 𝐴(𝑋) is of the form

𝑀
𝑝

𝐴
= {𝑓 ∈ 𝐴 (𝑋) : 𝑝 ∈ cl

𝛽𝑋
Z (𝑓
𝜐𝐴)} , (21)

where 𝑝 ∈ 𝛽𝑋.

Proof. 𝑓 ∈ 𝑀
𝑝

𝐴
if and only ifZ

𝐴
(𝑓) ⊆ U

𝑝
if and only ifU

𝑝
∈

ℎ(Z
𝐴
(𝑓)). By identifying a set in 𝛽𝑋with its image underU,

it follows from the definition of closure in 𝛽𝑋, Lemmas 4 and
5, that

cl
𝛽𝑋
Z (𝑓
𝜐𝐴) = ℎ𝑘Z (𝑓

𝜐𝐴) = ℎ𝑘ℎ
𝐴

Z
𝐴
(𝑓)

= ℎ𝑘ℎZ
𝐴
(𝑓) = ℎZ

𝐴
(𝑓) .

(22)

The result now follows from the fact that ℎ(Z
𝐴
(𝑓)) =

cl
𝛽𝑋
Z(𝑓𝜐𝐴).

We now verify that this theorem generalizes the Gelfand-
Kolmogorov Theorem [1, page 102] to intermediate 𝐶-rings.
If 𝐴(𝑋) = 𝐶(𝑋), then 𝜐

𝐴
𝑋 = 𝜐𝑋, the Hewitt realcompact-

ification of 𝑋. Now using the fact that cl
𝜐𝑋
Z(𝑓) = Z(𝑓𝜐) [1,

page 118] andTheorem 8, we have

𝑀
𝑝

𝐶
= {𝑓 ∈ 𝐶 (𝑋) | 𝑝 ∈ cl

𝛽𝑋
Z (𝑓
𝜐

)}

= {𝑓 ∈ 𝐶 (𝑋) | 𝑝 ∈ cl
𝛽𝑋
𝑐𝑙
𝜐𝑋
Z (𝑓)}

= {𝑓 ∈ 𝐶 (𝑋) | 𝑝 ∈ cl
𝛽𝑋
Z (𝑓)} .

(23)

For the case where 𝐴(𝑋) = 𝐶
∗

(𝑋), we have

𝑀
𝑝

𝐶
∗ = {𝑓 ∈ 𝐶

∗

(𝑋) | 𝑝 ∈ cl
𝛽𝑋
Z (𝑓
𝛽

)}

= {𝑓 ∈ 𝐶
∗

(𝑋) | 𝑓
𝛽

(𝑝) = 0} .

(24)

So Theorem 8 simultaneously generalizes the results of (20)
for 𝐶(𝑋) and (19) for 𝐶∗(𝑋) to all intermediate 𝐶-rings.
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4. The Map Z←
𝐴

and Ideals in 𝐴(𝑋)

Recall thatZ
𝐴
maps ideals to 𝑧-filters (Lemma 1(a)). Here we

show that for an intermediate 𝐶-ring 𝐴(𝑋), the inverse map
Z←
𝐴
, defined by

Z
←

𝐴
[F] = {𝑓 ∈ 𝐴 (𝑋) : Z

𝐴
(𝑓) ⊆ F} (25)

maps 𝑧-filters on 𝑋 to ideals in 𝐴(𝑋) (Theorem 14). The
corresponding result for the maps Z (for 𝐶(𝑋)) andZ

𝐴
(for

any intermediate ring𝐴(𝑋)) is proved, respectively, in [1] and
[3]. Our proof for Z

𝐴
makes use of Theorem 6.

We need some lemmas concerningmeets and joins on the
lattice of 𝑧-filters. Recall that F ∨ G is the smallest 𝑧-filter
containing both the 𝑧-filtersF andG. Similarly,F∧G is the
largest 𝑧-filter contained in both the 𝑧-filtersF andG.

The following lemma is from [6].

Lemma 9. Let𝐴(𝑋) be an intermediate ring and𝑓, 𝑔 ∈ 𝐴(𝑋).
(a) Z

𝐴
(𝑓𝑔) = Z

𝐴
(𝑓) ∧Z

𝐴
(𝑔).

(b) Z
𝐴
(𝑓 + 𝑔) ⊆ Z

𝐴
(𝑓) ∨Z

𝐴
(𝑔).

(c) If 𝑓, 𝑔 ≥ 0, thenZ
𝐴
(𝑓 + 𝑔) = Z

𝐴
(𝑓) ∨Z

𝐴
(𝑔).

The following is a special case of [6, Lemma 4.2(a)].

Lemma 10. For all 𝑓, 𝑔 ∈ 𝐴(𝑋), 𝑘ℎ(Z
𝐴
(𝑓) ∧ Z

𝐴
(𝑔)) =

𝑘ℎ(Z
𝐴
(𝑓)) ∧ 𝑘ℎ(Z

𝐴
(𝑔)).

To obtain the analog of Lemma 10 for joins, we need the
following lemma.

Lemma 11. If 𝐸 is a zero set in 𝑋 and if Z(𝑓𝜐𝐴) ∩ Z(𝑔𝜐𝐴) ⊆

cl
𝜐𝐴𝑋

𝐸 then there exist zero sets 𝑍
1
and 𝑍

2
in 𝑋 such that

Z(𝑓𝜐𝐴) ⊆ cl
𝜐𝐴𝑋

𝑍
1
, Z(𝑔𝜐𝐴) ⊆ cl

𝜐𝐴𝑋
𝑍
2
, and 𝑍

1
∩ 𝑍
2
= 𝐸.

Proof. Let 𝐻 = cl
𝜐𝐴𝑋

𝐸 and let 𝑌 = 𝜐
𝐴
𝑋 \ 𝐻. Now, the sets

Z(𝑓𝜐𝐴) ∩ 𝑌 and Z(𝑔𝜐𝐴) ∩ 𝑌 are disjoint zero sets in 𝑌, so are
contained in disjoint zero set neighborhoods𝑊

1
and𝑊

2
in𝑌.

Moreover, since𝑊
1
is a neighborhood ofZ(𝑓𝜐𝐴)∩𝑌, it follows

that

Z (𝑓
𝜐𝐴) ∩ 𝑌 ⊆ cl

𝜐𝐴𝑋
(𝑊
1
) = cl
𝜐𝐴𝑋

(𝑊
1
∩ 𝑋) . (26)

Similarly Z(𝑔𝜐𝐴) ∩ 𝑌 ⊆ cl
𝜐𝐴𝑋

(𝑊
2
∩ 𝑋). Let

𝑍
1
= (𝑊
1
∩ 𝑋) ∪ 𝐸, 𝑍

2
= (𝑊
2
∩ 𝑋) ∪ 𝐸. (27)

Since𝑊
1
∩𝑋 is a zero set in𝑋\𝐸, it follows that𝑍

1
is a zero set

in 𝑋 by the fact that the cozero set of a cozero set is a cozero
set [9, Proposition 1.1]. Similarly, 𝑍

2
is a zero set in 𝑋. Also,

Z(𝑓𝜐𝐴) ⊆ cl
𝜐𝐴𝑋

𝑍
1
, because

Z (𝑓
𝜐𝐴) = (Z (𝑓

𝜐𝐴) ∩ 𝑌) ∪ (Z (𝑓
𝜐𝐴) ∩ 𝐻)

⊆ cl
𝜐𝐴𝑋

(𝑊
1
∩ 𝑋) ∪ cl

𝜐𝐴𝑋
𝐸

= cl
𝜐𝐴𝑋

((𝑊
1
∩ 𝑋) ∪ 𝐸)

= cl
𝜐𝐴𝑋

𝑍
1
.

(28)

Similarly, Z(𝑔𝜐𝐴) ⊆ cl
𝜐𝐴𝑋

𝑍
2
. Finally, 𝑍

1
∩ 𝑍
2
= 𝐸 because

𝑊
1
∩ 𝑋 and𝑊

2
∩ 𝑋 are disjoint.

The next lemma shows that the kernel-hull operation
distributes over the join operation on the lattice of 𝑧-filters.

Theorem 12. If 𝐴(𝑋) is an intermediate 𝐶-ring, then

𝑘ℎ (Z
𝐴
(𝑓) ∨Z

𝐴
(𝑔)) = 𝑘ℎ (Z

𝐴
(𝑓)) ∨ 𝑘ℎ (Z

𝐴
(𝑔)) .

(29)

Proof. The containment 𝑘ℎ(Z
𝐴
(𝑓)∨Z

𝐴
(𝑔)) ⊇ 𝑘ℎ(Z

𝐴
(𝑓))∨

𝑘ℎ(Z
𝐴
(𝑔)) is a special case of [6, Lemma 4.2(b)].

We show that the other containment is equivalent to
Lemma 11 and hence must hold. First, we show the equiv-
alence of the premises by showing that the following are
equivalent. Recall that Z

𝐴
(𝑓) = Z

𝐴
(𝑓
2

), and hence we can
assume without loss of generality that 𝑓, 𝑔 ≥ 0.

(i) 𝐸 ∈ 𝑘ℎ(Z
𝐴
(𝑓) ∨Z

𝐴
(𝑔)).

(ii) 𝐸 ∈ 𝑘ℎ(Z
𝐴
(𝑓 + 𝑔)).

(iii) Z((𝑓 + 𝑔)
𝜐𝐴) ⊆ cl

𝜐𝐴𝑋
𝐸.

(iv) Z(𝑓𝜐𝐴) ∩ Z(𝑔𝜐𝐴) ⊆ cl
𝜐𝐴𝑋

𝐸.
The equivalence (i)⇔(ii) follows from Lemma 9(c). The

equivalence (ii)⇔(iii) follows from Theorem 6. The equiva-
lence (iii)⇔(iv) follows from the assumption that 𝑓, 𝑔 ≥ 0.
This establishes the equivalence between the premises of left-
to-right containment of this lemma and Lemma 11.

For the equivalence of the conclusions, note that 𝐸 ∈

𝑘ℎ(Z
𝐴
(𝑓)) ∨ 𝑘ℎ(Z

𝐴
(𝑔)) if and only if 𝐸 is an intersection of

a set in 𝑘ℎ(Z
𝐴
(𝑓)) with a set in 𝑘ℎ(Z

𝐴
(𝑔)). In other words,

there must exist 𝑍
1
∈ 𝑘ℎ(Z

𝐴
(𝑓)) and 𝑍

2
∈ 𝑘ℎ(Z

𝐴
(𝑔)) such

that 𝑍
1
∩ 𝑍
2
= 𝐸. By Lemmas 4 and 5, this is equivalent

to the statement that there exist zero sets 𝑍
1
, 𝑍
2
such that

Z(𝑓𝜐𝐴) ⊆ cl
𝜐𝐴𝑋

𝑍
1
, Z(𝑔𝜐𝐴) ⊆ cl

𝜐𝐴𝑋
𝑍
2
, and𝑍

1
∩𝑍
2
= 𝐸, which

is the conclusion of Lemma 11.

Corollary 13. Let𝐴(𝑋) be an intermediate ring of continuous
functions and 𝑓, 𝑔 ∈ 𝐴(𝑋). Then

(a) Z
𝐴
(𝑓𝑔) = Z

𝐴
(𝑓) ∧ Z

𝐴
(𝑔),

(b) Z
𝐴
(𝑓 + 𝑔) ⊆ Z

𝐴
(𝑓) ∨ Z

𝐴
(𝑔).

Proof. Item (a) immediately follows from Lemmas 10 and
9(a).

Item (b) immediately follows from Theorem 12 and
Lemma 9(b).

We are now ready to prove the main result of this section.

Theorem 14. Let 𝐴(𝑋) be an intermediate 𝐶-ring. If F is a
𝑧-filter on𝑋, then Z←

𝐴
[F] is an ideal in 𝐴(𝑋).

Proof. Let F be a 𝑧-filter and 𝐼 = Z←
𝐴
[F]. If 𝑓 ∈ 𝐼 and

𝑔 ∈ 𝐴(𝑋), then Z
𝐴
(𝑓) ⊆ F. By Corollary 13(a), Z

𝐴
(𝑓𝑔) =

Z
𝐴
(𝑓) ∧ Z

𝐴
(𝑔) ⊆ F, so 𝑓𝑔 ∈ 𝐼. If 𝑓, 𝑔 ∈ 𝐼, then both

Z
𝐴
(𝑓) ⊆ F andZ

𝐴
(𝑔) ⊆ F. By Corollary 13(b),Z

𝐴
(𝑓+𝑔) ⊆

Z
𝐴
(𝑓) ∨ Z

𝐴
(𝑔) ⊆ F, so 𝑓 + 𝑔 ∈ 𝐼. Thus 𝐼 is an ideal.
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