
Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 631074, 5 pages
http://dx.doi.org/10.1155/2013/631074

Research Article
Damage and Failure Process of Concrete Structure under
Uniaxial Compression Based on Peridynamics Modeling

Feng Shen, Qing Zhang, and Dan Huang

Department of Engineering Mechanics, Hohai University, Nanjing 210098, China

Correspondence should be addressed to Qing Zhang; lxzhangqing@hhu.edu.cn

Received 19 July 2013; Accepted 18 September 2013

Academic Editor: Zhiqiang Hu

Copyright © 2013 Feng Shen et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peridynamics is a nonlocal formulation of continuum mechanics, which uses integral formulation rather than the spatial partial
differential equations. The peridynamic approach avoids using any spatial derivatives, which arise naturally in the classical local
theory. It has shown effectiveness and advantage in solving discontinuous problems at both macro- and microscales. In this paper,
the peridynamic theory is used to analyze damage and progressive failure of concrete structures. A nonlocal peridynamic model
for concrete columns under uniaxial compression is developed. Numerical example illustrates that cracks in a peridynamic body
of concrete form spontaneously. The result of the example clarifies the unique advantage of modeling damage accumulation
and progressive failure of concrete based on peridynamic theory. This study provides a new promising alternative for analyzing
complicated discontinuity problems. Finally, some open problems and future research trends in peridynamics are discussed.

1. Introduction

Concrete is a complex material which is used widely in civil
engineering structures such as dams, buildings, and bridges.
Concrete is difficult to model because it is a quasibrittle
material, and precise analysis of concrete structures is elusive.
In fact, concrete exhibitsmany discontinuities even before the
application of load. Expansion, shrinkage, and temperature
changes often cause cracking.The formation of cracks signif-
icantly affects the stress and displacement fields. Even though
concrete has been studied for many years, its progressive
failure process, especially the mechanism of spontaneous
formation of a crack, and its subsequent growth have not
been fully understood yet. The damage of concrete is the
process of crack initiation, propagation, and coalescence,
which may cause a sudden collapse suddenly. Over the past
several decades, continuum mechanics and finite element
method (FEM) solved many problems in solid mechanics.
The finite element method has become the most commonly
accepted technique for the numerical solution of structural
problems. Continuum mechanics and finite element method
start with an assumption of a spatially continuous and
differentiable displacement field. Strains are obtained from

spatial derivatives of displacement field. When applied to
concrete, they have limited application to model damage.
As mentioned earlier, problems appear when damage is
involved. The basic assumption of displacement continuity
is not valid. Nearly all traditional methods based on the
classical theory of continuum mechanics attempt to solve
the partial differential equations that include derivatives
of the displacement components, but these derivatives are
undefined when the displacements are discontinuous, such
as across cracks or interfaces.

To overcome the shortcoming of the classical theory
of continuum mechanics, Silling, at Sandia Nation Labora-
tories, introduces the peridynamic theory [1], which does
not assume spatial differentiability of displacement field and
permits discontinuities to arise as part of solution. The
term “peridynamic” comes from the Greek words “peri”
and “dynamic,” which mean “near” and “force,” respectively.
This theory is nonlocal, which can be thought of as a
generalization of classical theory of elasticity.

After mathematical demonstration of the theory, peridy-
namics has been applied to 1D bar [2], membranes, fibers
[3], and so on. However, peridynamic theory has not been
applied to model concrete very often. Gerstle et al. [4, 5]
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Figure 1: Pairwise interaction of a material point with its neighbor-
ing points.

model the damage of concrete structures using a simple
conceptual peridynamic model, and Kilic and Madenci [6]
have done some research on the structural stability of a
concrete column. Shen et al. [7, 8] and Huang et al. [9, 10]
employed peridynamic models to simulate the damage and
progressive failure of the concrete and clarified the unique
advantage of peridynamics.

This paper aims to investigate the capability of peridy-
namic to model concrete structure under uniaxial compres-
sion. The remaining of the paper is organized as follows. In
Section 2, a brief introduction to peridynamic theory and the
solutionmethod used in the present work is given. A descrip-
tion of the peridynamic model for uniaxial compression of
concrete and the simulation results are presented in Section 3.
Then some concluding remarks and the shortcomings of
peridynamic theory are finally provided at the end of this
paper.

2. Peridynamic Theory and Solution Method

The peridynamic theory was first introduced by Silling [1] in
2000, which makes no assumption of continuity of displace-
ments. In peridynamics, the material domain is discretized
into an infinite number of infinitesimal interacting particles.
Particles separated by a finite distance can interact with each
other. The maximum interaction distance between particles
in peridynamics is called the “material horizon.” When the
distance between two particles is less than the material
horizon, they interact with each other; otherwise they do
not interact. The interacting forces between particles are
calculated through empirical particle interaction relations.
Particles move in accordance with Newton’s second law.

Referring to Figure 1, the peridynamic formulation pro-
posed by Silling [1] is defined by the following equation:

𝐿u (x, 𝑡) = ∫
𝑅

𝑓 (u (x, 𝑡) − u (x, 𝑡) , x − x) 𝑑𝑉x ,

∀x ∈ 𝑅, 𝑡 ≥ 0.
(1)

In this formulation, at any point 𝑥 in the reference configura-
tion,𝑅, at any time 𝑡, each pair of particles interacts through a
force function 𝑓. 𝐿 is the pair wise force acting upon x due to
all particles x within its horizon, 𝑢 is the displacement field,
and𝑑𝑉x is the integration variable that indicates infinitesimal
domain located at point x. According toNewton’s second law,
the peridynamic equation of motion is given by

𝜌
𝜕
2u
𝜕𝑡2

= ∫
𝐻

𝑓 (u (x, 𝑡) − u (x, 𝑡) , x − x) 𝑑𝑉x + b (x, 𝑡) ,
(2)

where b is a prescribed body-force density field which
represents the external force per unit reference volume, 𝜌
is mass density in the reference configuration, and 𝐻 is the
neighborhood of material points x within the horizon size of
𝛿 as follows:

𝐻 = 𝐻(x, 𝛿) := {x ∈ 𝑅 : x

− x ≤ 𝛿} . (3)

𝛿 is a positive value, called the material horizon. When
the distance between two particles is less than or equal
to 𝛿, they will interact with each other through the force
function 𝑓; otherwise, if the distance exceeds horizon, the
interaction may vanish. In calculation, the value of horizon
size 𝛿 can be confirmed according to the requirement of
simulation efficiency and precision. It can be found that
a much larger horizon size will lead to a higher accuracy
but lower efficiency. Referring to the literatures [11, 12] and
practices for macroscale modeling, we choose the horizon
which is three times the lattice constant. And𝑓 is the pairwise
force between particles x and x, which depends on the
relative position and the relative displacement between the
two particles. Silling uses 𝜉, 𝜂 for the relative position and the
relative displacement vectors, respectively as follows:

𝜉 = x − x, 𝜂 = u − u. (4)

Therefore, the vector 𝜂 + 𝜉 = (x + u) − (x + u) denotes
the current relative position between points x and x in the
deformed configuration. This means that the force vector
between two particles is parallel to their relative current
position vector. The pairwise function 𝑓 contains all of the
constitutive information of the material. Because the interac-
tion of particles is at a finite distance, peridynamic is in the
category of nonlocal models. Peridynamics is not defined in
the form of stress and strain, and it eliminates the assumption
on the continuity or differentiability of the displacement field
or small-deformation behavior thoroughly. Many studies
[13–15] proposed various peridynamic constitutive models
combined with the constitutive information of the material
in the force function𝑓. Any function satisfying the linear and
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the angular admissibility condition is a valid force function.
For a bond-based peridynamic linear elastic material, the
pairwise force function 𝑓, is given by [11]

𝑓 (𝜂, 𝜉) = 𝑐s, (5)

where𝑓 has units of force per unit volume squared, 𝑐 is called
the peridynamic microelastic constant, and s is the bond
stretch as follows:

s =
𝜉 + 𝜂

 − |𝜉|

|𝜉|
. (6)

Regardless of the distance among interacting points, the force
function 𝑓 assumes that the interaction force remains the
same for a constant stretch. Considering the effect of thermal
loading, (5) can be modified as

𝑓 (𝜂, 𝜉) = 𝑐 (s − 𝛼𝜃) ; (7)

𝛼 and 𝜃 stand for the coefficient of thermal expansion and
the temperature difference between current and reference
temperatures between material points x and x. According to
the prototype microelastic brittle (PMB) model introduced
by Silling and Askari [12], we have

𝑐 =
18𝐾

𝜋𝛿4
, (8)

where 𝐾 is the bulk modulus of the material expressed in
terms of elastic modulus, 𝐸 and Poisson’s ratio, ] as

𝑘 =
𝐸

3 (1 − 2])
. (9)

So the peridynamic equation of motion (2) can be rewritten
as

𝜌
𝜕
2u
𝜕𝑡2

= ∫
𝐻x

f (𝜂, 𝜉) 𝑑𝑉
𝜉
+ b (x, 𝑡) , (10)

with

f (𝜂, 𝜉) = 𝑓 (𝜂, 𝜉) 𝜉 + 𝜂𝜉 + 𝜂


, (11)

where𝐻x is the neighborhood of the particle 𝑥; it is assumed
to be a spherical region centered at x with the radius of the
material horizon, and the horizon is analogous to the cutoff
radius used in molecular dynamics.

The break of the bond is described by the factor 𝜇 as
follows:

𝜇 (𝑡, 𝜉) = {
1, 𝑠 (𝑡


, 𝜉) − 𝛼𝜃 < 𝑠

0
, 0 ≤ 𝑡


≤ 𝑡,

0, otherwise,
(12)

where 𝑠
0
is a critical stretch of the material for failure.

Although 𝑠
0
is expressed as a property of a particle, bond

breaking must be a symmetric operation for all particle pairs
sharing a bond [12]. Therefore, we can define the damage at a
point x as

𝜙 (x, 𝑡) = 1 −
∫
𝐻x
𝜇 (𝜂, 𝜉) 𝑑𝑉x

∫
𝐻x
𝑑𝑉x

. (13)

To solve the peridynamic equation of motion, the region
defining a peridynamic material is discretized into particles
(material points), forming a simple cubic lattice with the
lattice constant Δx, and a numerical approximation is usually
implemented by reducing the spatial integration into finite
sum. So the integral in (2) is replaced by

𝜌ü𝑛i = ∑

𝑝∈𝑄

f (u𝑛
𝑝
− u𝑛
𝑖
, x
𝑝
− x
𝑖
)𝑉
𝑝
+ b𝑛
𝑖
, (14)

where 𝑛 is the number of time steps, subscripts denote the
particle number, and 𝑄 represents the family of particles for
which particle x shares a bond in the reference configuration
within the horizon. That is,

𝑄 = {𝑝 |

x − x ≤ 𝛿} . (15)

Through calculation test considering both efficiency and sta-
bility, the appropriate time step size for different simulation
task can be confirmed [12].

3. Numerical Implementation and Results

In the following, a concrete column with the diameter of
0.15m is presented. The height of the column is 0.3m. The
concrete material considered is assumed to be homogeneous,
isotropic, and brittle elastic, and the elastic constants are
identical to those in classical continuummodel.The concrete
has density 𝜌 = 2200 kg/m3. The bulk modulus 𝐾 = 20GPa,
and a critical bond stretch for failure of a bond is set as
s
0
= 0.005m. In the peridynamic simulation, the column is

discretized into particles forming a simple cubic lattice with
lattice constant Δx = 0.005m and horizon 0.015m. (The
horizon is three times the lattice constant.) The temperature
of the whole system is kept at 300K.

The position and velocity of each particle are calculated
as a solution to the equation of motion using the velocity-
velert time integration algorithm, and the time step is set to
1 × 10

−7 s, based on the combined optimization test of both
integration stability and computation efficiency [12].

The numerical experiment was performed to simulate
the damage and progressive failure of the concrete column
under uniaxial compression. In the simulation, the velocity
of all particles was initially set to zero along the three
orthogonal directions in Cartesian coordinates. When the
uniaxial deformation simulation is implemented, the ten
layers of particles at the bottom of column are constrained to
be fixed with a zero velocity, as the top ten layers of particles
were set to have a downward velocity of 20m/s. Figure 2
shows the damage and failure process of the concrete column
under uniaxial compression. It can be found that the break of
bonds appears symmetrically. The top ten layers of particles
have moved down during the simulation, and the specimen
has formed the diagonal shear bands, as well as the dynamic
ejection of crushed material from the middle of the column.
Evenmore the fracture tracks along the direction of 45∘ above
horizon which is consistent with the experimental results
of concrete structures under uniaxial compression. Figure 3
displays the failure mode of concrete column section under
uniaxial compression using peridynamic model.
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Figure 2: Peridynamic simulation of concrete column subjected by uniaxial compression, where 𝑡 = 1000, 2000, 3000, 4000, 5000, 6000 time
steps for (a) to (f), respectively.

Figure 3: Peridynamic simulation of the failure mode of concrete
column under uniaxial compression.

From the simulation results, it is observed that the
damage and failure of the column is just spontaneous, and
no special failure criteria are required in order to predict the
path along which the crack develops.

4. Concluding Remarks

This paper takes initial attempt to solve the concrete col-
umn under uniaxial compression based on the peridynamic
theory. The result of the study clarifies the unique advan-
tage of peridynamics in modeling concrete structures. As a
reformation of the classical continuum mechanics theories,
peridynamics is a powerful tool to solve discontinuities
problems. The peridynamic theory can avoid singularity in
solving discontinuity problems by integral equations rather
than differential equations. The basic equations can be
applied anywhere in the model including at the cracks,
so no additional technique is necessary for the study of
damage and cracking. The problem of concrete column
under uniaxial compression shows that a relatively simple
peridynamicmodel can simulate the entire damage evolution
and fracture process in concrete structures effectively with
great potential over both mesh free method and molecular
dynamics. In other words, the peridynamic model can be
regarded as a coarse-grain molecular dynamics model. The



Mathematical Problems in Engineering 5

pairwise function contains all of the constitutive information
of the material, and the limitations such as remeshing and
mapping can be removed thoroughly.

As a new powerful tool, the peridynamic theory has
some shortcomings itself. Dealing with an infinite number of
material particles, amuch greater calculation time is required.
As each particle will interact with its neighbors within the
horizon besides the nearest ones, the peridynamic simulation
at a nondamaged region is computationally expensive com-
pared with Finite Element Method. In addition to this, the
original peridynamic constitutive models oversimplify the
interaction between the particles in the sense that the mutual
force between two particles is assumed to be independent
of the positions of other particles within the horizon. The
rotation of the particles is not considered, which influence
the exactitude of the constitutive relations of thematerial.The
plasticity and viscosity in the classical theory of continuum
mechanics based on peridynamics are still under research,
which limits the application. And more efficient solution
algorithms and appropriate peridynamic constitutive models
need to be developed. Furthermore, a multiscale research
approach combining peridynamics with molecular dynamics
and finite element method will be a promising way to solve
discontinuous problems more accurately and effectively. And
the boundary and the size effects arising in the peridynamic
model need to be investigated in the future.

Conflict of Interests

The authors of the paper declare that there is no conflict of
interests regarding the publication of this paper. The authors
do not have a direct financial relation with the commercial
identity that might lead to a conflict of interests for any of the
authors.

Acknowledgment

This work was supported by the National Nature Sci-
ence Foundation of China (Grant nos. 11372099, 51179064,
11132003, and 51209079) and the Graduate Students Research
and Innovation Plan of Jiangsu Province (no. CXZZ11 0425).

References

[1] S. A. Silling, “Reformulation of elasticity theory for discontinu-
ities and long-range forces,” Journal of theMechanics and Physics
of Solids, vol. 48, no. 1, pp. 175–209, 2000.

[2] S. A. Silling, M. Zimmermann, and R. Abeyaratne, “Deforma-
tion of a peridynamic bar,” Journal of Elasticity, vol. 73, no. 1–3,
pp. 173–190, 2003.

[3] S. A. Silling and F. Bobaru, “Peridynamic modeling of mem-
branes and fibers,” International Journal of Non-Linear Mechan-
ics, vol. 40, no. 2-3, pp. 395–409, 2005.

[4] W. Gerstle, N. Sau, and E. Aguilera, “Peridynamic modeling of
plain and reinforced concrete structures,” in Proceedings of the
18th International Conference on StructuralMechanics in Reactor
Technology (SMiRT ’05), Beijing, China, 2005.

[5] W. Gerstle, N. Sau, and S. Silling, “Peridynamic modeling of
concrete structures,” Nuclear Engineering and Design, vol. 237,
no. 12-13, pp. 1250–1258, 2007.

[6] B. Kilic and E.Madenci, “Structural stability and failure analysis
using peridynamic theory,” International Journal of Non-Linear
Mechanics, vol. 44, no. 8, pp. 845–854, 2009.

[7] F. Shen, Q. Zhang, D. Huang, and J. Zhao, “Peridynamics
modeling of failure process of concrete structure subjected to
impact loading,” Engineering Mechanics, vol. 29, no. s1, pp. 12–
15, 2012.

[8] F. Shen, Q. Zhang, D. Huang, and J. Zhao, “Damage and failure
process of concrete structure under uni-axial tension based
on peridynamics modeling,” Chinese Journal of Computational
Mechanics, vol. 30, pp. 79–83, 2013.

[9] D. Huang, Q. Zhang, and P. Z. Qiao, “Damage and progressive
failure of concrete structures using non-local peridynamic
modeling,” Science China Technological Sciences, vol. 54, no. 3,
pp. 591–596, 2011.

[10] D. Huang, Q. Zhang, P. Qiao, and F. Shen, “A review on peri-
dynamics method and its applications,” Advances in Mechanics,
vol. 40, no. 4, pp. 448–459, 2010.

[11] M. L. Parks, R. B. Lehoucq, S. J. Plimpton, and S. A. Silling,
“Implementing peridynamics within a molecular dynamics
code,” Computer Physics Communications, vol. 179, no. 11, pp.
777–783, 2008.

[12] S. A. Silling and E. Askari, “A meshfree method based on
the peridynamic model of solid mechanics,” Computers and
Structures, vol. 83, no. 17-18, pp. 1526–1535, 2005.

[13] Q. Du andK. Zhou, “Mathematical analysis for the peridynamic
nonlocal continuum theory,” ESAIM: Mathematical Modelling
and Numerical Analysis, vol. 45, no. 2, pp. 217–234, 2011.

[14] B. K. Tuniki, Peridynamic constitutive model of concrete [M.S.
thesis], University of New Mexico, 2012.

[15] P. Seleson andM. L. Parks, “On the role of the influence function
in the peridynamic theory,” International Journal for Multiscale
Computational Engineering, vol. 9, no. 6, pp. 689–706, 2011.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


