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Abstract The existence of both a minimum mass and a
minimum density in nature, in the presence of a positive cos-
mological constant, is one of the most intriguing results in
classical general relativity. These results follow rigorously
from the Buchdahl inequalities in four-dimensional de Sit-
ter space. In this work, we obtain the generalized Buch-
dahl inequalities in arbitrary space–time dimensions with
� �= 0 and consider both the de Sitter and the anti-de Sit-
ter cases. The dependence on D, the number of space–time
dimensions, of the minimum and maximum masses for sta-
ble spherical objects is explicitly obtained. The analysis is
then extended to the case of dark energy satisfying an arbi-
trary linear barotropic equation of state. The Jeans instability
of barotropic dark energy is also investigated, for arbitrary
D, in the framework of a simple Newtonian model with and
without viscous dissipation, and we determine the dispersion
relation describing the dark energy–matter condensation pro-
cess, along with estimates of the corresponding Jeans mass
(and radius). Finally, the quantum mechanical implications
of the mass limits are investigated, and we show that the exis-
tence of a minimum mass scale naturally leads to a model
in which dark energy is composed of a ‘sea’ of quantum
particles, each with an effective mass proportional to �1/4.

1 Introduction

The problem of the maximum mass–radius ratio of a sta-
ble compact object is one of the most fundamental problems
in both general relativity and theoretical astrophysics. In a
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classic paper, Buchdahl [1] obtained the famous result that
the ratio of the total mass M and radius R of a high density

stable star cannot exceed the value 4/9, G M/c2 R < 4/9.
The two basic physical assumptions used in the derivation
of the upper bound for the mass–radius ratio are that the
energy density in the star does not increase outwards and
that the pressure is isotropic. On the other hand, by applying
the principle of causality and Le Châtelier’s principle, in [2]
it was shown through numerical integration of the general
relativistic hydrostatic equilibrium equation [the Tolman–
Oppenheimer–Volkoff (TOV) equation] that the maximum
mass of the equilibrium configuration of a dense star cannot
exceed 3.2M�, where M� ≈ 1.981×1033 g is the solar mass.
This numerical value is presently adopted in the astrophys-
ical literature as indicating the mass limit separating black
holes from stable stellar type configurations.

Due to its major astrophysical and theoretical importance,
the Buchdahl limit has been extensively investigated. The
effects of the presence of a cosmological constant on the
stellar mass–radius ratio were considered in [3], while lim-
its on M/R for charged spheres were derived in [4]. In
[5], it was argued that some of the assumptions used to
derive the Buchdahl inequality were very restrictive. For
example, neither of them hold for a simple soap bubble.
By relaxing these assumptions and considering any static
solution of the spherically symmetric Einstein equations for
which the energy density ρ ≥ 0 and the radial and tan-
gential pressures, p ≥ 0 and pT , satisfy the condition

p + 2pT ≤ �ρc2, � > 0, one can obtain the relation
supr>0[2G M(r)/c2r ] ≤ [(1 + 2�)2 − 1]/(1 + 2�)2 [5].

These bounds were generalized to the case of charged com-
pact general relativistic objects in [6]. Bounds on M/R for
static objects with a positive cosmological constant � > 0
were obtained in [7], where it was shown that the relation
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G M/c2 R ≤ 2/9 − �R2/3 + (2/9)
√

1 + 3�R2 holds if the
energy conditions listed above are satisfied. Buchdahl type
inequalities, expressed in terms of the mean fluid density
of the sphere, in space–times with arbitrary D and � �= 0
were also derived in [8–10], while the case of stable stars in
five-dimensional Gauss–Bonnet gravity was considered in
[11]. In [8] it was shown that in D dimensions the Buchdahl
inequality for the maximum mass–radius ratio can be formu-
lated as G M/RD−3 ≤ 2(D − 2)/(D − 1)2. The standard
assumptions used in deriving the Buchdahl inequality were
relaxed in [10], where various matter property depending
bounds were obtained.

In [12] it was shown that, in the framework of classi-
cal general relativity, the presence of a positive cosmologi-
cal constant implies the existence of a minimum mass and
a minimum density in nature. These results follow rigor-
ously from the generalized Buchdahl inequalities for D = 4,
with � > 0. In this scenario, the mass and mean den-
sity of a stable compact object must satisfy the conditions
2G M/c2 R ≥ �R2/6 and ρ̄ ≥ �c2/16πG, respectively.
These bounds were extended to the case of anisotropic com-
pact objects in [13], while bounds for the minimum masses of
charged particles were derived in [14]. The physical impli-
cations of the existence of a minimum mass (in D = 4)
were investigated in [15]. An especially important result is
that the ratio l4

Pl/�, where lPl is the reduced Planck length
and � is the four-dimensional cosmological constant, is
numerically of the same order of magnitude as r6

e , where
re ≈ 2.818 × 10−13 cm denotes the classical electron radius.
This suggests the identification of � in terms of fundamental
physical constants as

� = l4
Pl

r6
e

= h̄2G2m6
ec6

e12 ≈ 1.4 × 10−56 cm−2, (1)

where me and e are the electron mass and charge, respectively
[15]. Remarkably, the same formula was obtained using a set
of axioms for � based on a close analogy with the Khinchin
axioms in information theory [16]. In this method, the depen-
dency of the information measure on probabilities of events
was formally replaced by the dependency of the cosmologi-
cal constant on the fundamental constants of nature [17].

In Sect. 5, we also consider a new interpretation of the
bound on l4

Pl/�, in terms of the Chandrasekhar mass for a
condensate of quantum dark energy particles. An intriguing
possibility is that dark energy, obeying an equation of state
of the form ρDEc2 + pDE = 0, may condense to form stable
self-gravitating objects. This scenario was originally con-
sidered in [18–24]. Dark energy stars or, in a wider sense,
objects with negative pressure in their interiors, are interest-
ing alternatives to the standard black hole paradigm. In one
implementation of this idea, hypothetical compact general
relativistic objects called gravastars (gravitational vacuum

stars) have been proposed as an alternative explanation for the
astrophysical characteristics usually associated with black
holes [25–32]. The basic physical idea of this scenario is
that the quantum vacuum undergoes a phase transition at the
moment the event horizon is formed. Therefore, the struc-
ture of a gravastar consists of an interior de Sitter condensate
obeying the dark energy equation of state, ρc2 = −p. This
interior is matched to an exterior consisting of a shell of finite
thickness described by the equation of state ρc2 = p, and the
shell is then matched at its vacuum boundary to an exterior
Schwarzschild solution.

In this paper, we consider the Buchdahl limit, and the
resulting minimum mass and density, for static spherically
symmetric compact objects in an arbitrary D-dimensional
geometry. From the Einstein field equations in arbitrary
dimensions with � �= 0 and the hydrostatic equilibrium
equation, the generalizations of the Buchdahl limit for arbi-
trary D, and of the minimum mass allowed for any classical
elementary particle, are obtained. In the particular case of
D = 4, these limits reduce to the corresponding expressions
given in [1,12], respectively. On the other hand, cosmolog-
ical observations such as those of high redshift supernovae
or the cosmic microwave background (CMB) data from the
Planck mission [33–37] suggest that the dark anergy equation
of state is linear, with the state parameter lying in the range
−1 < w = pDE/ρDE < −1/3, where pDE and ρDE are the
thermodynamic pressure and the dark energy density, respec-
tively [38]. Therefore, the possibility that dark energy is not
exactly a cosmological constant cannot be rejected a priori.
Taking into account this possibility, we obtain the Buchdahl
and minimum mass limits in arbitrary space–time dimen-
sions for dark energy obeying a linear barotropic equation
of state. The conditions for the collapse of a star embedded
in the dark energy fluid are also derived in both the de Sitter
and anti-de Sitter cases.

In addition, an interesting physical possibility is that dark
energy may undergo a phase transition leading to a con-
densation process, which could be either gravitational or
of Bose–Einstein type. In this scenario, the condensation of
dark energy ‘particles’ could produce compact super-massive
objects. We study the condensation process using the classi-
cal method of Jeans instability [39], generalized to arbitrary
space–time dimensions, and by taking into account the pos-
sibility of the presence of viscous dissipative effects in the
dark energy fluid. The role of the dissipative processes in
the occurrence of the Jeans instability was studied in [40–
45]. As a first step we derive the mass of the dark energy
condensate in the framework of the Newtonian dissipation-
less approximation by assuming that the dark energy fluid
condenses, or transforms via a phase transition, into an ideal
non-relativistic fluid. In four dimensions, the corresponding
Jeans mass is proportional to �−1/2 and its numerical value is
close to the observationally estimated total mass of the Uni-
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verse. We also show that the Jeans mass can be represented in
a form similar to the Chandrasekhar mass that depends only
on the fundamental constants. The effect of the bulk viscosity
of the dark energy fluid on the condensation process is also
investigated.

Although a self-consistent and credible theory of quan-
tum gravity has not been found, we use general arguments
to investigate the possible quantum mechanical implications
of the existence of a minimum mass and minimum density.
Firstly, we show that, in four dimensions, the Jeans mass
of the dark energy MJ ∝ (c2/G)�−1/2, having a numerical
value of the order of the mass of the Universe, can be obtained
from thermodynamic considerations related to the physics of
Schwarzschild–de Sitter black holes. We then associate the
minimum mass with a temperature which, intriguingly, is
very close to the present day temperature of the CMB radi-
ation. Moreover, we show that the existence of a minimum
mass bound leads naturally to a hierarchical model in which
quantum ‘particles’ above a certain size effectively deco-
here via interaction with the cosmological constant (or dark
energy fluid) and in which dark energy itself is composed
of quantum particles with an effective mass proportional to
�1/4.

This paper is organized as follows. In Sect. 2, the D-
dimensional Einstein field equations with a nonzero cosmo-
logical constant are introduced and the expressions for the
Buchdahl limit and the classical minimum mass are obtained.
The more general case of a D-dimensional sphere of mat-
ter embedded in a dark energy fluid obeying an arbitrary
barotropic equation of state is considered in Sect. 3, and the
corresponding limiting masses are derived. The Jeans insta-
bility of the dark energy fluid is discussed in Sect. 4, within
the framework of a simple Newtonian model. Finally, the
quantum mechanical implications of the existence of a clas-
sical minimal mass and density are investigated in Sect. 5 and
a brief discussion of our main results is presented in Sect. 6.

2 Mass limits for spherically symmetric stars in D
dimensions in the presence of a cosmological constant

In this section, we first introduce the Einstein field equa-
tions in arbitrary space–time dimensions with � �= 0 and
derive the hydrostatic equilibrium equation [the Tolman–
Oppenheimer–Volkoff (TOV) equation] for spherically sym-
metric objects. We then derive the D-dimensional general-
izations of the Buchdahl limit and of the minimum mass
in general relativity. In estimating critical length and mass
scales throughout this paper we use the approximate values
c ≈ 2.998 × 1010 cm s−1, G ≈ 6.674 × 10−8 cm3 g−1 s−2,
h ≈ 2π × 1.055 × 10−27 erg s, and � ≈ 3 × 10−56 cm−2

for the fundamental constants.

2.1 Tolman–Oppenheimer–Volkoff equation in
D-dimensional space–time

In arbitrary D space–time dimensions, the interior metric
inside a spherically symmetric fluid sphere takes the form
[46]

ds2 = eν(r)d(ct)2 − eλ(r)dr2 − r2d�2
D−2, (2)

where d�2
D−2 is the line element on the unit SD−2 sphere,

d�2
D−2 = dθ2

1 +sin2 θ1dθ2
2 +· · ·+sin2 θ1 · · · sin2 θD−3dφ2,

(3)

with the coordinate domains 0 ≤ r < ∞, 0 ≤ θi ≤ π (i =
1, . . . , D − 3), and 0 ≤ φ < 2π .

The Einstein field equations in D space–time dimensions,
in the presence of a D-dimensional cosmological constant
�D , are

Rμ
ν − 1

2
δ
μ
ν R − �Dδ

μ
ν = 8πG D

c4 T μ
ν, (4)

where the D-dimensional Newton’s constant G D is implicitly
defined so that the field equations takes the same form in any
number of dimensions. The energy–momentum tensor inside
the fluid sphere is given by

T μ
ν = (ρc2 + P)uμuν − Pδ

μ
ν, (5)

where uμ is the D-velocity, uμ = δ
μ
0 e−ν(r)/2, ρ is the energy

density and P is the pressure.
For the metric given by Eq. (2), the gravitational field

equations become [46,47]

(D − 2)λ′e−λ

2r
− (D − 2)(D − 3)(e−λ − 1)

2r2

= 8πG D

c2 ρ + �D, (6)

(D − 2)ν′e−λ

2r
+ (D − 2)(D − 3)(e−λ − 1)

2r2

= 8πG D

c4 P − �D, (7)

e−λ

[
ν′′

2
+ ν′2

4
− ν′λ′

4
+ (D − 2)(ν′ − λ′)

4r

]

+ (D − 3)(D − 4)(e−λ − 1)

2r2 = 8πG D

c4 P − �D, (8)

where a prime denotes the derivative with respect to the radial
coordinate r . From the continuity equation, ∇μT μ

ν = 0, it
follows that
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ν′ = − 2P ′

ρc2 + P
. (9)

Equation (6) can be immediately integrated, giving

e−λ(r) = 1 − 8πG D

c2

2

D − 2

1

r D−3

∫ r

0
ρ(r ′)r ′D−2dr ′

− 2�Dr2

(D − 1)(D − 2)
. (10)

The ‘accumulated mass at radius r ′ (i.e. the mass inside the
radius r ) is defined in the D −1-dimensional spatial volume,
in a way consistent with the four-dimensional, case as

M(r) = �D−2

∫ r

0
ρ(r ′)r ′D−2dr ′, (11)

where �D−2 is the surface area of the unit SD−2 sphere,

�D−2 = 2π
D−1

2

�
( D−1

2

) , (12)

and �(x) is the Gamma function. For D = 4, �(3/2) =√
π/2, and we obtain �2 = 4π .
Therefore

e−λ(r) = 1 − 16πG D M(r)

(D − 2)c2�D−2r D−3 − 2�Dr2

(D − 1)(D − 2)
.

(13)

By using Eqs. (9) and (13) in Eq. (7), we obtain the TOV
equation in arbitrary space–time dimensions, in the presence
of a cosmological constant, as

dP

dr

= −
(ρc2+P)

[(
8πG D

c4 P − 2�D
D−1

)
r D−1+(D − 3) 8πG D

c2�D−2
M(r)

]

(D − 2) r D−2
[
1− 16πG D

(D−2)c2�D−2r D−3 M(r) − 2�Dr2

(D−1)(D−2)

] .

(14)

2.2 Upper and lower bounds for the mass–radius ratio in D
space–time dimensions

The bounds on the mass–radius ratio in D dimensions can be
derived solely by imposing some realistic restrictions on the
behavior of the energy density ρ. The mass–radius ratio is
independent of the equation of state that relatesρ(r) and P(r)

and, using Eqs. (9) and (14), the thermodynamic pressure
P(r) can always be eliminated from the field equations. It
is convenient to first rewrite the equations in terms of the
generalized Buchdahl variables (x, w, ζ, y), defined as

x = r2, w(r) = 8πG D M(r)

(D − 2)c2�D−2r D−1 , ζ = eν/2,

y2 = e−λ(r) = 1 − 2w(r)r2 − 2�Dr2

(D − 1)(D − 2)
.

In terms of the new variables, Eqs. (9) and (14) can be written
as

1

ζ

dζ

dx
= − 1

ρc2 + P

dP

dx
→ d

dx
(ζ P) = −ρc2 dζ

dx
(15)

and

dP

dx
= − (ρc2 + P)

y2

[
1

(D − 2)

(
4πG D

c4 P − �D

(D − 1)

)

+ (D − 3)

2
w

]
, (16)

respectively. After eliminating P(r), we obtain

d

dx

(
y

dζ

dx

)
− D − 3

2

ζ

y

dw

dx
= 0. (17)

Note that, in the case of constant density (or for D = 3), the
second term in Eq. (17) vanishes. Throughout the rest of this
analysis, we impose the following physical conditions on the
stellar structure. We require that both the local density ρ and
the mean density

ρ̄ = (D − 1)M(r)

�D−2r D−1 , (18)

do not increase as r increases. That is, we require ρ and
ρ̄ to be monotonically decreasing functions of r inside the
fluid matter distribution. We also assume that this condition
is independent of the equation of state of the matter inside
the star. The density monotonicity condition implies that

d

dr

(
M(r)

r D−1

)
< 0 ⇒ dw

dx
< 0. (19)

Using Eq. (17) and introducing a new independent variable
, defined as

(r) =
∫ r

0
r ′

[
1 − 16πG D M(r)

(D − 2)c2�D−2r D−3

− 2�Dr2

(D − 1)(D − 2)

]− 1
2

dr ′, (20)

with (0) = 0, we obtain the condition for the stability of a
general relativistic fluid sphere in D space–time dimensions
in the following form:

d2ζ

d2 < 0. (21)
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This condition must hold for all r ∈ [0, R], where R marks
the spatial boundary of the fluid distribution. By using the
mean value theorem, we obtain the following inequality for
dζ/dl:

dζ

d
≤ ζ() − ζ(0)


. (22)

Since ζ(0) > 0, it follows that

1

ζ

dζ

d
≤ 1


. (23)

Next, we introduce the parameter α(r), defined as

α(r) = 1 + 2�D

(D − 1)(D − 2)

(D − 2)c2�D−2r D−1

8πG D M(r)
, (24)

so that

y2 = 1 − 16πG D M(r)α(r)

(D − 2)c2�D−2r D−3 . (25)

From the condition that d
dr

(
M(r)

r D−1

)
< 0, we can conclude

that, for r ′ < r ,

M(r ′)
r ′D−1 ≥ M(r)

r D−1 . (26)

We can also assume that

α(r ′) M(r ′)
r ′D−3 ≥ α(r)

M(r)

r D−3

(
r ′

r

)2

, (27)

or, equivalently,

[
1 − 16πG D M(r ′)α(r ′)

(D − 2)c2�D−2r ′D−3

]− 1
2

≥
[

1 − 16πG D M(r)α(r)

(D − 2)c2�D−2r D−1 r ′2
]− 1

2

. (28)

Hence, the right-hand side of the inequality (23) is bounded
from above, such that

{∫ r

0
r ′

[
1 − 16πG D M(r ′)α(r ′)

(D − 2)c2�D−2r ′D−3

]− 1
2

dr ′
}−1

≤ 16πG D M(r)α(r)

(D − 2)c2�D−2r D−1

×
[

1 −
√

1 − 16πG D M(r)α(r)

(D − 2)c2�D−2r D−3

]−1

. (29)

Substituting from Eqs. (15) and (16) in Eq. (23), we finally
obtain

1

D − 2

(
8πG D

c4 P − 2�D

D − 1

)
r2

+(D − 3)
8πG D M(r)

(D − 2)c2�D−2r D−3 ≤ y(1 + y). (30)

The Buchdahl inequality (30) is valid for all r ∈ [0, R] inside
the star. This allows us to determine the upper bound on the
mass–radius ratio, which is a natural consequence of the the-
ory of general relativity (there is no similar bound in Newto-
nian gravity), and to determine the more subtle lower bound
on the mass–radius ratio when a nonzero cosmological con-
stant is included in the analysis.

To obtain these bounds, we evaluate the inequality (30)
at the surface of the star r = R, where P(R) = 0 and
M(R) = M , with M denoting the total mass. This gives

(D − 3)
8πG D M

(D − 2)c2�D−2 RD−3

≤
√

1 − 16πG D M

(D − 2)c2�D−2 RD−3 − 2�D R2

(D − 1)(D − 2)

+1 − 16πG D M

(D − 2)c2�D−2 RD−3 . (31)

For convenience, we redefine the variables in the above
inequality as

u := 8πG D M

(D − 2)c2�D−2 RD−3 , b := 2�D R2

(D − 1)(D − 2)
. (32)

Hence the inequality (31) becomes

(D − 3)u ≤ √
1 − 2u − b + 1 − 2u. (33)

By squaring both sides of Eq. (33) and simplifying, we obtain

u2 − 2
(D − 2)

(D − 1)2 u + b

(D − 1)2 ≤ 0, (34)

or, equivalently,

(u − u1)(u − u2) ≤ 0, (35)

where we have denoted

u1 = D − 2

(D − 1)2

[
1 +

√
1 − 2(D − 1)

(D − 2)3 �D R2

]
, (36)
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u2 = D − 2

(D − 1)2

[
1 −

√
1 − 2(D − 1)

(D − 2)3 �D R2

]
. (37)

To check the sign of each factor in the inequality (35), we set
�D = 0, giving

(u − u1)u ≤ 0 (38)

Since u is always positive, the condition u ≤ u1 implies that

8πG D M

(D − 2)c2�D−2 RD−3 ≤ 2(D − 2)

(D − 1)2 , (39)

4πG D M

c2�D−2 RD−3 ≤
(

D − 2

D − 1

)2

. (40)

When D = 4, we reproduce the known result represented by
the standard Buchdahl inequality [1].

G4 M

c2 R
≤ 4

9
. (41)

Generically, for nonzero �D , the reality of u1 and u2 requires

R2 ≤ 1

2

(D − 2)3

(D − 1)
�−1

D , (42)

and we can conclude that u satisfies the following inequality:

u − u1 ≤ 0, u − u2 ≥ 0. (43)

Therefore, when a nonzero cosmological constant is taken
into account, there exist both lower and upper bounds on
the mass–radius ratio for stellar type objects in arbitrary D-
dimensional space–times

(
D − 2

D − 1

)2
[

1 −
√

1 − 2(D − 1)

(D − 2)3 �D R2

]

≤ 8πG D M

c2�D−2 RD−3 ≤
(

D − 2

D − 1

)2

×
[

1 +
√

1 − 2(D − 1)

(D − 2)3 �D R2

]
. (44)

Equation (44) gives a nontrivial (positive) lower bound only
when 0 < �D < (1/2)(D − 2)3(D − 1)−1 R−2. On the
contrary, the upper bound always exists, regardless of the
sign of �D .

3 Mass limits for spherically symmetric systems in the
presence of dark energy

In this section, we generalize the analysis in Sect. 2 to the
situation where the ‘star’ (i.e. spherically symmetric object)
is embedded in a space–time filled with dark energy, charac-
terized by a thermodynamic energy density ρDE and a ther-
modynamic pressure pDE, respectively, obeying a generic
equation of state PDE = wρDEc2, where w = constant. The
Einstein equations then become

(D − 2)λ′e−λ

2r
− (D − 2)(D − 3)(e−λ − 1)

2r2

= 8πG D

c2 (ρ + ρDE), (45)

(D − 2)ν′e−λ

2r
+ (D − 2)(D − 3)(e−λ − 1)

2r2

= 8πG D

c4 (P + wρDEc2), (46)

e−λ

[
ν′′

2
+ ν′2

4
− ν′λ′

4
+ (D − 2)(ν′ − λ′)

4r

]

+ (D − 3)(D − 4)(e−λ − 1)

2r2 = 8πG D

c4 (P + wρDEc2).

(47)

Equation (45) can be integrated again to obtain

e−λ(r) = 1 − 16πG D [M(r) + MDE(r)]

(D − 2)c2�D−2r D−3 , (48)

where the ordinary ‘matter mass’ M(r) is given by Eq. ( 11)
and the dark energy mass is given by the same relation, with
ρDE replacing ρ. Note that the total physical accumulated
mass of the star is thus Mtot(r) = M(r)+ MDE(r). By using
the Einstein equations and the conservation of the energy–
momentum tensor, the generalized TOV equation can be
obtained as

d(P + wρDEc2)

dr
= −

[
ρc2 + P + (1 + w)ρDEc2

] [
8πG D

c4 (P + wρDEc2)r D−1 + 8πG D(D−3)

c2�D−2
Mtot(r)

]

(D − 2)r D−2
[
1 − 16πG D

(D−2)c2�D−2r D−3 Mtot(r)
] . (49)

We now assume that the dark energy profile is constant
throughout the star, which is equivalent to assuming the ultra-
stiff condition for the dark energy fluid. For a constant dark
energy density profile, the dark energy mass content of the
star becomes
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MDE(r) = �D−2ρDE
r D−1

D − 1
. (50)

Hence the TOV equation can be rewritten as

dPeff

dr

= −
(ρc2 + Peff )

[(
8πG D

c4 Peff − 2�D
D−1

)
r D−1 + (D − 3)

8πG D M(r)

c2�D−2

]

(D − 2) r D−2
[
1 − 16πG D M(r)

(D−2)c2�D−2r D−3 − 2�Dr2

(D−1)(D−2)

] ,

(51)

where we have denoted �D ≡ 8πG DρDE/c2, and the effec-
tive pressure is Peff ≡ P + (1+w)ρDEc2. Note that Eq. (51)
is simply Eq. (14) for Peff .

As a result, the same analysis as performed in Sect. 2.2
can be repeated to obtain

�D R2

D − 2
(1 + w) + (D − 1)8πG D M

(D − 2)c2�D−2 RD−3

≤
√

1 − 16πG D M

(D − 2)c2�D−2 RD−3 − 2�D R2

(D − 1)(D − 2)
+ 1.

(52)

Hence, the inequality (52) yields the upper and lower bounds

(D − 2)u− ≤ 8πG D M

c2�D−2 RD−3 ≤ (D − 2)u+, (53)

where

u± = D − 2

(D − 1)2

[
1 − (1 + w)

D − 1

(D − 2)2 �D R2
]

± D − 2

(D − 1)2

√
1 + 2w

D − 1

(D − 2)3 �D R2.

For w = −1, where dark energy is represented by a cosmo-
logical constant, these reduce to the bounds given in Eq. (44),
as required. However, for w < 0, the upper and lower limits
are more interesting, yielding different physical possibilities.
First of all, both nontrivial upper and lower bounds only exist
when

�D < − 1

2wR2

(D − 2)3

D − 1
, (54)

which is the analog of Eq. (42). As long as the above con-
dition is satisfied, a positive real upper bound always exists.
Thus, any star with a mass larger than the upper bound will
inevitably collapse into a D-dimensional black hole.

On the other hand, for the lower bound, two possibilities
exist, namely

(1) the de Sitter case, with �D > 0, w < −(D−2)/(D−1);
(2) the anti-de Sitter case, with �D < 0, w > −(D −

2)/(D − 1).

For positive �D , the accelerated expansion of the D-
dimensional universe requires

w < −(D − 3)/(D − 1) (= −1/3 for D = 4).

The existence of a minimum mass demands the more strin-
gent constraint, w < −(D − 2)/(D − 1), which gives
w < −2/3 for D = 4. When the negative pressure from
the dark energy is sufficiently strong, i.e., when the condi-
tions in scenario (1) above are satisfied, a static star cannot
be formed if

(D − 2)2

(D − 1)2

[
1 − (1 + w)

D − 1

(D − 2)2 �D R2

−
√

1 + 2w
D − 1

(D − 2)3 �D R2

]

>
8πG D M

c2�D−2 RD−3 .

For negative �D , the constraint which must be satisfied
for the nontrivial minimum mass to exist is 0 > w >

−(D − 2)/(D − 1). The minimum mass is given by the
same condition, Eq. (53). It is interesting to note that the
space–time is asymptotically AdS in this case. The pressure
from the dark energy is, however, positive and thus helps to
support the star against gravitational collapse.

For |�D|R2 � 1, the generic minimum mass–radius ratio
or, strictly speaking, radius power, for both positive and neg-
ative �D becomes

(
M

RD−3

)
min

= c2�D−2(−�D R2)

8πG D(D − 1)

(
1 + w

D − 1

D − 2

)
.

(55)

Interestingly, the minimum mass–radius power ratio in
this limit can be cast in terms of the minimum density in any
number of dimensions as

ρmin = (D − 1)M

�D−2 RD−1

∣∣∣
min

= − c2�D

8πG D

(
1 + w

D − 1

D − 2

)
.

(56)

On the other hand, the maximum mass–radius power ratio
for |�D|R2 � 1 is given by

(
M

RD−3

)
max

= c2�D−2

8πG D

(D − 2)2

(D − 1)2

×
[

2 − D − 1

D − 2
�D R2

(
1 + w

D − 3

D − 2

)]
.

This is greater than the Buchdahl limit for �D < 0 and
w > −(D − 2)/(D − 3), and vice versa.
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4 Jeans instability of the dark energy fluid in arbitrary
space–time dimensions

An interesting physical possibility is that the dark energy
fluid, satisfying an equation of state pDE = wρDE with
w = w0 = −1, could condense gravitationally to form stel-
lar type stable compact objects, satisfying the same equation
of state as the initial medium, but with a different parame-
ter w �= −1. The condensation process can also be described
phenomenologically as the result of a viscous type dissipation
process, which triggers the transition between the two fluids.
Therefore, to study the dark energy condensation process in
the linear Newtonian regime we need to include dissipative
effects into the fluid dynamical description of the transition.
Hence, we assume that the dark energy fluid has an initial
density ρ

(0)
DE = �Dc2/8πG D and pressure p(0)

DE, which sat-

isfy the equation of state ρ
(0)
DEc2+ p(0)

DE = 0. The fluid also has
dissipative properties, characterized by the bulk viscosity ξ0,
and the shear or first viscosity η0 [48], describing the inter-
nal ‘friction’ of the decaying dark energy. The possibility that
dark energy may have some anisotropic stresses, which can
be modeled with the help of a viscosity parameter, in addition
to the standard sound speed equation of state parameters was
considered in [49–53].

We assume that the dark energy condenses, or experiences
a phase transition into a non-relativistic fluid, which can be
characterized by a density ρDE, a pressure pDE = wρDE,
a velocity �v, a gravitational acceleration �g, a bulk viscosity
coefficient ξ , and a shear viscosity coefficient η.

4.1 Hydrodynamical and first order perturbation equations

In the following analysis, we adopt the Newtonian approxi-
mation, in which the dynamical evolution of the dark energy
fluid is described by the continuity equation, the hydrody-
namical Navier–Stokes equation, and the Poisson equation.
For spherically symmetric systems in D space–time dimen-
sions, with (t, r) ∈ � × �D−1, the equations of motion for
the dissipative dark energy fluid can therefore be written as

∂ρ

∂t
+ 1

r D−2

∂

∂r
(r D−2ρv) = ∂ρ

∂t
+ ∇ · (ρ�v) = 0, (57)

∂v

∂t
+ v

∂v

∂r
= ∂ �v

∂t
+ (�v · ∇) �v = − 1

ρDE
∇ pDE + �g

+η

ρ
��v + 1

ρ

(
ξ + η

3

)
∇ (∇ · �v) , (58)

and

1

r D−2

∂

∂r
(r D−2g) = ∇ · �g = −8π

(
D − 3

D − 2

)
G DρDE. (59)

The coefficient on the right-hand side of Eq. (59), derived
from Gauss’ law, is chosen so that this is consistent with
the Einstein field equations in D dimensions, Eq. (4). The
gravitational acceleration satisfies the condition ∇ × �g = 0.
As the initial (unperturbed) phase of the dark energy fluid,
we consider the phase characterized by the absence of the
gravitational forces, �g = �g0 = 0, and the absence of hydro-
dynamical flow, which implies �v = �v0 = 0. Moreover, we
assume constant values for the density and pressure, so that
ρDE = ρ

(0)
DE and pDE = p(0)

DE. The dark energy phase tran-
sition, or condensation process, leads to the generation of a
gravitational interaction in the dark energy fluid, and to small
perturbations of the hydrodynamical and thermodynamical
quantities, so that

ρDE = ρ
(0)
DE + ρ

(1)
DE, pDE = p(0)

DE + p(1)
DE, �v = �v0 + �v1,

�g = �g0 + �g1, ξ = ξ0 + ξ1, η = η0 + η1,

with the perturbed quantities satisfying the conditions −1 �
ρ

(1)
DE/ρ

(0)
DE � 1, −1 � p(1)

DE/p(0)
DE � 1, ξ1 � ξ0, and η1 �

η0, respectively. In the first order of approximation, Eqs. (57)
and (58) take the form

∂ρ
(1)
DE

∂t
+ ρ

(0)
DE∇ · �v1 = 0, (60)

∂ �v1

∂t
= − v2

s

ρ
(0)
DE

∇ρ
(1)
DE + �g1 + η0

ρ
(0)
DE

∇2�v1

+ 1

ρ
(0)
DE

(
ξ0 + η0

3

)
∇ (∇ · �v1) , (61)

with

∇ × �g1 = 0, ∇ · �g1 = −8π

(
D − 3

D − 2

)
G Dρ

(1)
DE, (62)

where we have introduced the adiabatic sound speed vs in the

condensed dark energy fluid, defined as vs =
√

p(1)
DE/ρ

(1)
DE =√

∂p(1)
DE/∂ρ

(1)
DE = √

w, with w �= w0. It is important to note
that the requirement that the speed of sound in the dark energy
condensate be real imposes the condition w > 0 for the newly
formed fluid. This implies the physically important result that
the dark energy can condense only into a ‘normal’ matter
fluid, satisfying a linear barotropic equation of state.

Next, by taking the partial derivative of the continuity
equation, Eq. (60), with respect to the time, and with the
use of Eq. (61), we obtain the equation describing the prop-
agation of the density perturbations in the condensed dark
energy fluid as

∂2ρ
(1)
DE

∂t2 = v2
s ∇2ρ

(1)
DE + (D − 3)�Dc2

D − 2
ρ

(1)
DE

+�0
∂

∂t
∇2ρ

(1)
DE +

(
�0 + �0

3

)
∂

∂t
∇2ρ

(1)
DE, (63)
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where we have introduced the notations

�0 := η0

ρ
(0)
DE

, �0 := ξ0

ρ
(0)
DE

. (64)

4.2 Condensation of the ideal dark energy fluid

If we neglect the viscous type dissipative effects in the dark
energy fluid, that is, if we assume that �0 = �0 = 0, the
equation describing the propagation of the density perturba-
tions takes the form

∂2ρ
(1)
DE

∂t2 = v2
s ∇2ρ

(1)
DE + (D − 3)�Dc2

D − 2
ρ

(1)
DE. (65)

We now look for a solution of Eq. (65) of the form ρ
(1)
DE ∝

exp[i(�kD · �r − ωDt)], where ωD, �kD = constant. Thus, for
the angular frequency ωD , we obtain the following dispersion
relation:

ω2
D = v2

s
�k2

D − (D − 3)�Dc2

D − 2
. (66)

From Eq. (66) we see that, for k < k(D)
J , where

k(D)
J =

√
(D − 3)�Dc2

(D − 2)v2
s

, (67)

is the Jeans wave number, ωD becomes an imaginary quan-
tity. In this case, we have an instability in the dark energy
fluid, which implies that ρ

(1)
DE can increase (or decrease)

exponentially. This leads to either a gravitational conden-
sation (phase transition), or to a rarefaction. Therefore, for

kD < k(D)
J , it follows that ωD = ±vs

√
k2

D − k(D) 2
J =

iIm ωD , where Im ωD = ±vs

√
k(D) 2

J − k2
D and, conse-

quently, ρ1 ∝ exp [± |ImωD| t].
Thus, when the mass of the newly formed dark fluid phase

exceeds the mass of a sphere with radius 2π/k(D)
J , a gravita-

tional instability occurs, leading to the collapse of the system.
The critical mass corresponding to the onset of the instability
is the Jeans mass M (D)

J , defined in D dimensions as

M (D)
J =

(
�D−2

D − 1

) (
2π

k(D)
J

)D−1

ρ
(0)
DE

= �D−2

D − 1

(2π)D−1

8π

(
D − 2

D − 3

)(D−1)/2 (vs

c

)D−1

× c2

G D
�

(3−D)/2
D . (68)

It should be noted that, for D = 3, the Jeans mass is indepen-
dent of �3. Hence, the four-dimensional Jeans mass of the
condensed phase of the dark energy fluid can be expressed
as [15]

M (4)
J = 8

√
2

3
π3

(vs

c

)3 c2

G
�−1/2

≈ 1.6 × 1030 × (� cm−2)−1/2
(vs

c

)3
g, (69)

where we have written G4 = G, �4 = �, by convention. In
four dimensions, we have � = 3 × 10−56cm−2, and hence
we obtain

M (4)
J = 9.24 × 1057

(vs

c

)3
g = 4.62 × 1024 ×

(vs

c

)3
M�.

(70)

Using the representation of the four-dimensional cosmologi-
cal constant in terms of the universal physical constants sug-
gested in Eq. (1), we obtain the equivalent expression for the
critical Jeans mass of the condensed dark energy

M (4)
J = 8

√
2

3
π3

(vs

c

)3 e6

h̄G2m3
ec

. (71)

The effective four-dimensional radius R(4)
J of the stable con-

densed dark energy system is then given by

R(4)
J = 23/2π

vs

c
�−1/2 = 23/2π

vs

c

e6

h̄Gm3
ec3

≈ 5.13 × 1028 × vs

c
cm. (72)

4.2.1 Ideal dark energy jeans mass as a Chandrasekhar
mass

An important result in theoretical astrophysics is the value
of the maximum mass of stable compact objects, such as
white dwarfs, neutron stars and quark stars (see [54–60] and
references therein), obtained by Chandrasekhar. This maxi-
mum mass, known as the Chandrasekhar mass MCh, or the
Chandrasekhar limit [61], is given by the relation

MCh ≈
[(

h̄c

G

)
m−4/3

B

]3/2

= m3
Pl

m2
B

, (73)

where mB represents the mass of the particle species giving
the main contribution to the stellar mass [61] (for example,
in the astrophysically important cases of white dwarfs and
neutron stars, mB represents the baryon mass) and mPl is
the reduced Planck mass. Thus, it turns out that, with the
exception of some composition-dependent numerical factors
of order unity, the maximum mass of a compact star can be
expressed in terms of fundamental physical constants only.

Using Eq. (71), the four-dimensional Jeans mass for the
condensed dark energy fluid can also be written in a form
similar to the Chandrasekhar mass if we assume that dark
energy consists of particles having an effective mass meff ,
which are given by
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meff = (Gh̄5c5)1/4 m3/2
e

e3 . (74)

The Jeans mass of the dark energy phase is then obtained as

M (4)
J =

[
8
√

2π3

3

(vs

c

)3
] [(

h̄c

G

)
m−4/3

eff

]3/2

≈
(vs

c

)3 m3
Pl

m2
eff

. (75)

In this scenario, the effective mass of the elementary dark
matter particles is of order of meff ≈ 8 × 10−20 g.

4.3 The effect of the bulk viscosity on dark energy
condensation

In order to investigate the effects of the dissipative processes
on the Jeans condensation of the dark energy fluid, we con-
sider a simple case in which we neglect the shear viscosity
by taking �0 ≈ 0. The only viscous dissipative effect is then
given by the bulk viscosity and the equation describing the
density perturbations of the dark energy fluid takes the form

∂2ρ
(1)
DE

∂t2 = v2
s ∇2ρ

(1)
DE + (D − 3)�Dc2

D − 2
ρ

(1)
DE + �0

∂

∂t
∇2ρ

(1)
DE.

(76)

By looking again for plane wave solutions of Eq. (76)
of the form ρ

(1)
DE ∝ exp[i(�kD · �r − ωDt)], we obtain the

generalized dispersion relation

ω2
D = v2

s
�k2

D + i�0�k2
DωD − (D − 3)�Dc2

D − 2
. (77)

The D-dimensional dispersion relation for dark energy in
the presence of bulk viscosity has the solutions

ωD = i
�0�k2

D

2
±

√
ω

(0)
D , (78)

where

ω
(0)
D = −

�k4
D�2

0

4
+ v2

s
�k2

D − (D − 3)�Dc2

D − 2
. (79)

Thus, from Eq. (78), it follows that we obtain a time depen-
dent exponential regime for ω

(0)
D < 0, and a damped oscilla-

tory regime for ω
(0)
D > 0. It is important to note that the pure

oscillatory Jeans condensation regime of the D-dimensional
ideal dark energy fluid is lost. On the other hand, the viscous
effects do not change the threshold value of the Jeans mass
of the dark energy fluid, though they may drastically modify
the evolution of the perturbations.

The equation ω
(0)
D = 0 has two solutions for kD , given by

k±
D =

√
2vs

�0

⎡
⎣1 ±

√
1 − �2

0

v4
s

D − 3

D − 2
�Dc2

⎤
⎦

1/2

. (80)

and the existence of such solutions imposes the constraint

�0 ≤
√

D − 2

(D − 3)�Dc2 v2
s , (81)

or, equivalently,

ξ0 ≤ 1

8πG D

√
D − 2

D − 3
�Dc2 v2

s , (82)

on the bulk viscosity coefficient of the dark energy fluid.

5 Quantum implications of a classical minimum mass
density

In this section, we consider the quantum mechanical impli-
cations of a classical minimum mass density, implied by the
generalized Buchdahl inequalities in the presence of a posi-
tive cosmological constant, � > 0. For simplicity, we con-
sider the D = 4 case, in which the generalized Buchdahl
inequality implies [3,12]

2G M ≥ �c2

6
R3, ρ = 3M

4π R3 ≥ �c2

16πG
=: ρmin, (83)

where ρmin denotes the minimum density.
We now define the (non-reduced) Planck length and mass

scales as

RP :=
√

hG

c3 , MP :=
√

hc

G
, (84)

and the (non-reduced) Wesson masses [62] as

MW := h

c

√
�

3
= MP

RP

RW
, M ′

W := c2

G

√
3

�
= M2

P

MW
, (85)

where we have parameterized � in terms of a characteristic
length scale via

� =: 3

R2
W

. (86)

In his original definitions [62], Wesson used h̄ instead of h
but, for convenience, we adopt the definitions in Eq. (85) and
use the non-reduced Planck scales, since these are analogous
to the standard definition of the Compton wavelength using h,
not h̄. Hence, RW is just the Compton wavelength associated
with the first Wesson mass, MW . The approximate value of
the second Wesson mass is therefore M ′

W ≈ 1.347 × 1056

g, which may be interpreted as the mass of the observable
universe, whereas it has been suggested that MW ≈ 1.809 ×
10−65 g should be interpreted as a minimum mass scale in
nature [3,12,62].
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Another way to derive M ′
W is to note that the temperature

and entropy of the de Sitter cosmic horizon are given by [63]

kBT = 3(h̄c)

2π RW
, (87)

and

S = 4π R2
W kBc3

12Gh̄
, (88)

respectively. Using the Smarr formula for a non-rotating
uncharged black hole,

MBH = 2T S

c2 ,

we obtain the mass of the corresponding black hole as

MBH = c2

G

√
3

�
,

which is simply the second (non-reduced) Wesson mass M ′
W .

Thus, this mass can be naturally interpreted as the maximum
possible mass contained within the de Sitter horizon, above
which the observable universe would collapse to form a cos-
mic black hole. In addition, as RW ≈ 1026 cm is of the order
of the current horizon radius, we may interpret the proposed
bound M ≥ MW in another way, at least at the present epoch,
as stating that no particle can have a Compton wavelength
larger than the radius of the universe.

However, combining the classical bound on the mass den-
sity, Eq. (83), with the Compton bound on the radius of a
quantum mechanical object

R ≥ RC := h

Mc
, (89)

leads to a new prediction of a minimum mass scale:

M ≥ M� := 1√
2

√
MP MW . (90)

This implies the existence of a maximum Compton radius:

RC ≤ R� := √
2
√

RP RW . (91)

These new critical scales, M� and R�, are functions of
MP and MW or RP and RW , respectively. That is, unlike the
Wesson masses defined in Eq. (85), or their associated length
scales, and unlike the Planck scales Eq. (84), each depends on
all four ‘universal’ constants G, c, h, and �, simultaneously.
Using the approximate values given above, the new scales
can be estimated as

R� ≈ 9.002 × 10−3 cm, M� ≈ 2.456 × 10−35 g. (92)

For comparison, the current upper bound on the average
neutrino mass obtained from the Planck mission data is
Mν ≤ 0.23 eV = 1.8 × 10−33 g [33–36].

We may also associate a temperature with a given mass
scale via the identification T ∼ Mc2/kB, where kB ≈
1.381 × 10−23JK−1 is Boltzmann’s constant. Interestingly,
defining the temperature T� associated with the minimum
mass M� via

T� := 1

16π

M�c2

kB
, (93)

gives T� ≈ 3.18 K. This is remarkably close to the cur-
rent temperature of the CMB radiation, though the numeri-
cal value of the constant of proportionality is somewhat arbi-
trary, here being chosen to match the numerical factor in the
Einstein–Hilbert action.

Nonetheless, it is interesting that this mass scale has pre-
viously been proposed as a minimum mass for stable dark
matter relics, based on loop quantum gravity calculations
[64]. Sub-Planck mass loop black hole (LBH) solutions have
been shown to exist if quantum gravity effects give rise to
a quadratic generalized uncertainty principle (GUP) [65]. In
this case, the usual relations between the black hole mass,
its horizon and its temperature invert at M ∼ MP , so that
RS ∝ M−1 and TH ∝ M for M < MP . Such objects behave
like ‘black atoms’, but continue to decay via radiation emis-
sion until they reach thermal equilibrium with the CMB pho-
ton bath [65] (see also [66] and references therein).

We can also use the fact that the Planck density must be
greater than the minimum classical density, ρP ≥ ρmin, to
place theoretical constraints on the values of MW and RW

relative to MP and RP , respectively, and hence on the value
of � in terms of the other three constants G, c, and h. The
Planck density is defined as

ρP := 3MP

4π R3
P

= 3

4π

c5

hG2 , (94)

so that

RW ≥ 1

2
RP , MW ≤ 2MP . (95)

These conditions are satisfied (by many orders of magni-
tude) for the actual values of RW , RP , MW , and MP but it is
interesting to note that, regardless of the measured values of
G, c, h, and �, they leave two possible scenarios for stable
compact objects which behave quantum mechanically:

RP ≤ RC ≤ R� ⇐⇒ MP ≥ M ≥ M�, (96)

RC ≤ RP ≤ R� ⇐⇒ M ≥ MP ≥ M�. (97)
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The horizons of a Schwarzschild–de Sitter black hole are
defined by the equation

R3 − R2
W R + R2

W RS ≥ 0, (98)

so that the inner horizon is of the order of the standard
Schwarzschild radius RS , whereas the outer horizon is com-
parable to the horizon of the universe, RW . Therefore,
Eq. (96) corresponds to the realm of elementary particles,
whereas Eq. (97) corresponds to objects with the potential
to form black holes, if compressed beyond the critical radius
implied by Eq. (41).

Equation (96) may have profound implications, since it
predicts the existence of a phenomenologically significant
length scale R� which, we may conjecture, demarcates the
boundary between quantum mechanical and classical behav-
ior. This may have implications for the study of gravitational
decoherence. Surprisingly, despite the common interpreta-
tion of the cosmological constant as a ‘gravitational’ phe-
nomenon, relatively little work had been done on this topic
in the context of models with � �= 0 (see [67–71] and refer-
ences therein).

Furthermore, setting

RW ≥ Rmin := 9

4

RP M

MP
(99)

implies

M � M ′
W := M2

P

MW
, (100)

which bolsters the claim that M ′
W should be interpreted as a

maximum mass. By contrast, the classical minimum radius
for a gravitationally stable object may either be above or
below the maximum Compton wavelength: Rmin ≤ R�

implies that the system behaves like a quantum mechanical
‘particle’, whereas Rmin ≥ R� corresponds to the classical
regime. Using Eq. (41) and defining

M ′
� := M2

P/M�, (101)

the different regimes may also be defined via the mass of the
system, so that

Rmin ≥ R� ⇐⇒ M � M ′
�

Rmin ≤ R� ⇐⇒ M � M ′
�. (102)

In summary, the results obtained above suggest that sys-
tems with masses in the range:

• M� ≤ M � MP correspond to elementary particles,
whose behavior is manifestly quantum mechanical;

• MP � M � M ′
� behave quantum mechanically but

have the potential to form black holes (which continue
to behave like quantum ‘particles’) if compressed below
their Buchdahl limit;

• M ′
� � M � M ′

W behave classically and have the poten-
tial to form black holes (which continue to behave like
classical particles) if compressed below their Buchdahl
radius.

In this model, both fundamental particles with mass M� ≤
M � MP and stable compact objects with masses MP �
M � M ′

� behave quantum mechanically: what they have in
common is that both have radii R ≤ R�. These conclusions
follow from a simple combination of results from classical
general relativity and ordinary quantum mechanics.

We can also interpret the new length and mass scales in
the following way. Let us begin by defining the minimum
classical energy density, given in Eq. (83), as the energy
density associated with the cosmological constant which,
in turn, is the minimum possible energy density of space–
time, ρ� := ρmin. Next, we interpret this as a ‘sea’ of dark
energy particles, each with effective mass M� and associated
Compton wavelength R� = RP MP/M�. Furthermore, we
assume that space is saturated with such particles and that
the de Sitter vacuum expands in such a way as to maintain
the associated energy density, so that

ρ� := 3�c2

4πG
= 3M�

4π R3
�

. (103)

Substituting for M� and R�, respectively, then yields the
order of magnitude values defined in Eqs. (91)–(90).

Hence, by combining standard Compton type arguments,
which imply a minimum radius for a quantum object with a
given mass, with classical Buchdahl type bounds for � > 0,
which imply a minimum mass density, we are led naturally
to a picture in which dark energy is composed of a sea of
quantum particles with effective mass M� ∝ �1/4. The
associated mass density ρ� is given by M� divided by the
volume occupied by each particle due to its Compton wave-
length. In this picture, the dark energy condensation picture
discussed in Sect. 4 occurs due to fluctuations which lower
the effective mass within a localized region, leading to local
over-densities. This is equivalent to a local softening of the
effective equation of state.

It is interesting to observe that in the hierarchy of
mass scales MW < M� < MP < M ′

� < M ′
W ,

each mass is all related to its ‘neighbors’ by the geo-
metric mean Mi � √

Mi−1 Mi+1, for Mi−1 < Mi <

Mi+1, i = 1, 2, . . . , 5, where {M1, M2, M3, M4, M5} :=
{MW , M�, MP , M ′

�, M ′
W }. An illustration (not to scale) of

the mass scale hierarchy is given in Fig. 1.
Since the geometric relations are transitive among Mi−1,

Mi , Mi+1, and Mi−2, Mi , Mi+2 triplets, Fig. 1 also implies
that M ′

W � M ′2
�/MP which is straightforward to verify

directly. We note that these geometric relations originate
from the following three physical constraints: (1) the size
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Fig. 1 A schematic representation of the hierarchy of mass scales,
related by geometric means

of a classical object is larger than or equal to its Compton
wavelength, (2) both a minimum mass and minimum density
exist, in general relativity, in space–times with a positive cos-
mological constant, � > 0, and (3) the maximum mass of a
gravitationally stable classical compact object also exists in
this scenario.

Remarkably, these mass scales also admit other physical
interpretations. As stated above, there exist both sound the-
oretical reasons and empirical evidence to support the claim
that M ′

W should be interpreted as the maximum possible mass
of a de Sitter universe. In addition, it is straightforward to
verify that the Chandrasekhar mass for a condensate of par-
ticles of mass M� is also equal, up to numerical coefficients
of order unity, to M ′

W . Since we require M � M ′
W , this is

another way of saying that our (known) universe cannot col-
lapse and must expand forever, as implied by observations
suggesting a phase of accelerated expansion beginning at the
current epoch [33–37].

Furthermore, if we assume that dark matter particles, with
mass M�, formed from the condensation of dark energy, this
implies that the initial dark matter temperature, at the epoch
of formation, is equal to the (constant) temperature of the dark
energy fluid in its original phase. Even if this is not the case,
by envisaging dark energy as a ‘sea’ of quantum mechanical
particles, the onset of accelerated expansion then coincides
with the point at which the temperature of the thermal bath
of photons drops below the temperature associated with the
effective mass of the dark energy particles, M�, for the first
time. It would be interesting to further investigate this in
the context of thermodynamic interpretations of gravity (see,
for example, [72–74] and references therein). In particular,
one may hope to obtain a ‘thermodynamic interpretation’ of
the coincidence problem, posed by the onset of accelerated
expansion at the present time.

We also note that the expression for the minimum radius,
R ≥ Rmin = (R2

P RW )1/3 ≈ 10−15 m, which is of the same
order of magnitude as the classical electron radius re, and
which was obtained previously, by two different methods, in
[15,17], may also be obtained a third way by requiring the
density of the Universe to be less than the Planck density,
(3/4π)M ′

W /R3 ≤ (3/4π)MP/R3
P =: ρP . In this context,

Rmin = (R2
P RW )1/3 ≈ re may be interpreted as the mini-

mum classical radius to which the known universe may be
compressed before it exceeds the Planck density.

Finally, before concluding this section, we note that, using
Eq. (44), we may obtain a further generalization of Eq. (83)

which is valid in arbitrary dimensions. An analysis similar
to that given above should then yield results valid for any
value of D ≥ 2. However, in this case a subtlety may arise,
since it has recently been proposed in [75] that, for space–
times with compact dimensions, the Compton wavelength
changes on scales RC < RE , where RE is the length scale
of the compactification. We therefore leave a full analysis
of the higher-dimensional case, including both spherically
symmetric and non-spherically symmetric space–times, to a
later publication.

6 Conclusions and discussions

The existence of dark energy, as proved by a plethora of astro-
physical and cosmological observations [33–37], has funda-
mentally modified the landscape of theoretical physics. If
dark energy, represented by a cosmological constant, is one
of the major components of the Universe, it is a reasonable
assumption to include it among the fundamental constants
of nature [62]. Hence, we can extend the set of fundamen-
tal constants, which can be taken as the speed of light c,
the gravitational constant G, Planck’s constant h, and the
cosmological constant �. Therefore, the mere existence of
the cosmological constant, or, at least, of some form of dark
energy, may imply drastic modifications or extensions of the
basic laws of physics.

If the set of fundamental constants is enlarged, it fol-
lows that there are two different masses that can be con-
structed from c, G, h, and � [62]. The first Wesson mass,
MW = (h/c)

√
�/3 ≈ 10−66 g, may be relevant at the

quantum scale, while the second Wesson mass, M ′
W =

(c2/G)
√

3/� ≈ 1056 g, has the same order of magnitude
value as the observable mass of the Universe.

From a theoretical point of view, M ′
W can be obtained

as the upper bound on the mass of a gravitationally stable
spherically symmetric object in four-dimensional general rel-
ativity in the presence of a positive cosmological constant,
� > 0, and as the Jeans mass of a gravitationally unsta-
ble dark energy condensate, respectively. Alternatively, the
Smarr formula for uncharged non-rotating black holes sug-
gests that the mass of the Universe, MU ≈ M ′

W , follows from
thermodynamic properties of the de Sitter horizon.

In the present paper, we have extended previous results
concerning the Buchdahl, Jeans and minimum mass lim-
its, derived initially in four space–time dimensions with
� > 0, to arbitrary D-dimensional, static, spherically sym-
metric geometries with generic �D �= 0. We have shown
that such limits exist and are well defined for D ≥ 4. More-
over, the existence of a minimum mass is closely related
to the existence of a minimum density. From the investi-
gation of the Jeans instability in the framework of a sim-
ple Newtonian model, we obtained M ′

W as the critical Jeans
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mass of the dark energy fluid, corresponding to the mass
of gravitationally stable dark energy objects. Using this
result, we were also obtain a new physical interpretation of
the cosmological constant in arbitrary space–time dimen-
sions. From Eq. (67), by taking the speed of sound vs in
the gravitationally condensed dark energy fluid as approx-
imately equal to the speed of light, vs ≈ c, we obtain
for the D-dimensional cosmological constant the expression
�D ≈ [(D − 2)/(D − 3)] [k(D)

J ]2, where k(D)
J = 2π/R(D)

J
is the D-dimensional Jeans radius. Hence, from a physical
point of view, the D-dimensional cosmological constant rep-
resents the square of the D-dimensional Jeans wave number
of the dark energy fluid embedded in a higher-dimensional
geometry. In addition, with the use of Eq. (1), the mass of the
Universe MU can be expressed, in four dimensions, in terms
of the fundamental constants (c, G, h̄, e, me) as

M ′
W ≈ MU ≈

√
3e6

cG2h̄m3
e

≈ r3
e mPl

l3
Pl

. (104)

where lPl = √
h̄G/c3 and mPl = √

h̄c/G are the reduced
Planck length and mass scales and re and me are the classical
electron radius and rest mass, respectively.

In addition, we investigated the quantum mechanical
implications of the existence of both a classical minimum
mass and a minimum density. By combining simple Comp-
ton type arguments for the minimum radius of a quantum
mechanical object, RC , with the classical minimum radius,
Rmin (and assuming RC ≥ Rmin) we obtained a new mini-
mum mass scale, M� ∼ √

MP MW ∼ 10−35 g, where MP

denotes the (non-reduced) Planck mass, which depends on
all four ‘universal’ constants, G, c, h, and �, simultaneously.
Interestingly, the temperature associated with this mass scale
is of the order of the present day CMB temperature. The asso-
ciated length scale R� ∼ √

RP RW ∼ 10−3 cm, where RP

denotes the (non-reduced) Planck length, represents the max-
imum possible Compton wavelength of a quantum mechan-
ical object, suggesting an absolute maximum decoherence
length associated with ‘gravitational’ decoherence through
the interaction of the system with omnipresent dark energy.

Furthermore, these considerations lead naturally to a
model in which dark energy, represented at the classical
level by a cosmological constant, exists as a ‘sea’ of quan-
tum mechanical particles, each with effective mass M�

and associated Compton wavelength R�. In this scenario,
the de Sitter vacuum expands so as to keep the energy
density of the particle ‘sea’, ρ� := (3/4π)(�c2/G) =
(3/4π)(M�/R3

�), constant, and the dark energy conden-
sation process corresponds to local fluctuations in the
effective mass, which is equivalent to local softening of
the equation of state. Interestingly, in the hierarchical set
of mass scales thus obtained, {M1, M2, M3, M4, M5} :=
{MW , M�, MP , M ′

�, M ′
W }, each mass is simply the geomet-

ric mean of its nearest neighbors, Mi = √
Mi−1 Mi+1, for

i = 1, 2, . . . , 5, providing an elegant, though as yet unex-
plained, geometric relation between the series of fundamen-
tal, phenomenologically significant mass scales in nature.
Remarkably, by using dimensional analysis, the geometric
relations can be shown to originate from the unique dimen-
sionless quantity

M2

M1
� M3

M2
� M4

M3
� M5

M4
�

(
c3

h̄G�

)1/4

, (105)

constructed from the four ‘fundamental’ constants. Namely,
neighboring masses are separated universally by roughly
1030 orders of magnitude. Therefore, we propose that
(

h̄G�

c3

)
� R2

P� ∼ R2
P

R2
W

∼ M2
W

M2
P

∼ MW

M ′
W

≈ 10−120,

(106)

should be taken as the fundamental dimensionless constant.
It is the order of magnitude discrepancy between the expected
value of the vacuum energy (assuming a quantum gravity the-
ory with an energy scale characterized by the Planck mass)
and the observed value. It also has an interpretation as N−1,
where N is the number of fundamental mass quanta in the
universe. In other words, if we assume that all particles are
made from fundamental mass quanta of the order of the first
Wesson mass, MW , there must be N ∼ 10120 of these parti-
cles in the current horizon radius.

In this case, there are

n� = M�

MW
=

√
MP

MW
= N 1/4 ∼ 1030, (107)

fundamental mass quanta in each dark energy particle, and

N� =
(

RW

R�

)3

=
(

MP

MW

)3/2

= M ′
W

M�

= N 3/4 ∼ 1090,

(108)

dark energy particles within the horizon at the present epoch.
Hence, the above considerations may ‘explain’ (or at least
interpret from a simple physical point of view) the multiply-
ing factors between the different mass scales in the particle
mass hierarchy.

Another interpretation of the dimensionless quantity R2
P�

is the ratio between Planck area and the area of the cos-
mic horizon. Holographically, this is the number of quantum
gravity bits present on the boundary. The fact that the total
number of bits on the boundary is equal to the total number
of quanta in the bulk space indicates that holography is at
work in the entire universe.

Finally, we note that the existence of mass/density bounds
in the asymptotically AdS case, when the dark energy satis-
fies the conditions w > −(D − 2)/(D − 1), �D < 0, has
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interesting implications from the viewpoint of holographic
duality. The maximum mass bound for a given radius guar-
antees that any object with larger mass will inevitably col-
lapse to form a black hole. Holographically, the maximum
mass would correspond to the maximum temperature (iden-
tified with Hawking temperature of the maximum mass black
hole) of the dual gauge matter before the inevitable decon-
finement phase transition occurs [47,76]. On the other hand,
the existence of a minimum mass and a minimum density
determines the conditions under which a gravitationally sta-
ble, static object can be formed in the presence of dark energy.
If the average density of the object is too small, it will not
be able to support itself gravitationally under the outward
pressure. At present, it is unclear what the gauge theory dual
of this minimum mass/density should be, since the boundary
space is always asymptotically AdS regardless of the mass
and size of the static star located at the center. We leave this
interesting question for a future publication.
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