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Cohomological invariants of hyperelliptic

curves of even genus

Roberto Pirisi

Abstract

Let g be an even positive integer, and let p be a prime number. We compute the
cohomological invariants with coefficients in Z/pZ of the stacks of hyperelliptic curves
Hg over an algebraically closed field k0.

1. Introduction

Notation. We fix a base field k0 and a prime number p 6= char(k0). All schemes and algebraic
stacks will be assumed to be of finite type over k0. If X is a k0-scheme, we will denote by Hi(X)
the ith étale cohomology group of X with coefficients in µ⊗ip (here µ⊗0p := Z/pZ) and by H•(X)

the direct sum ⊕i Hi(X). If R is a k0-algebra, we set H•(R) = H•(Spec(R)).

Cohomological invariants of algebraic groups have been widely studied in the last three
decades, culminating in a number of important results by Merkurjev, Serre, Rost, and many
others. They are invariants of the functor describing the isomorphism classes of G-torsors, which
also naturally makes them invariants of the classifying stack BG.

A natural extension of the concept is to construct corresponding invariants for more com-
plicated moduli problems, such as for example smooth curves of a given genus. Differently from
the case of BG, the classifying stacks for these moduli problems are not gerbes over a point.
One could say that the stack BG is a purely arithmetic object, which from a geometric point
of view is just a point, with a group of automorphisms attached. On the opposite end of the
spectrum, a variety can be thought of as a purely geometric object. Stacks such as Mg, which
parametrizes families of smooth curves of genus g, have both geometric information, which we
can roughly think about as the moduli space, and arithmetic information, corresponding to the
curves’ automorphism groups.

In [Pir14], the author introduced the notion of cohomological invariant of a smooth algebraic
stack. Given a smooth algebraic stack M , we can consider the functor of isomorphisms classes
of its points

PM :
(

field�k0
)
→ (set) ,

which sends a field K/k0 to the set of isomorphism classes of objects over K in M . Then
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Cohomological invariants of hyperelliptic curves

a cohomological invariant for M is defined as a natural transformation

α : PM → H•(−)

satisfying a natural continuity condition.

The theory set up in [Pir14] can be used to compute the cohomological invariants of the
stacks of hyperelliptic curves of all even genera. The main result of this paper is the following.

Theorem (Theorem 4.1). Suppose that our base field k0 is algebraically closed, of characteristic
different from 2 and 3. Let g be an even positive integer, and let Hg be the stack of smooth
hyperelliptic curves of genus g.

– For p = 2, the cohomological invariants of Hg are freely generated as a graded F2-module
by 1 and invariants α1, . . . , αg+2, where the degree of αi is i.

– If p 6= 2, the cohomological invariants of Hg are nontrivial if and only if 2g + 1 is divisible
by p. In this case, they are freely generated by 1 and a single invariant of degree 1.

Moreover, we obtain partial results for non–algebraically closed fields, proving in general
that the cohomological invariants above are freely generated as a H•(k0)-module by the same
elements if p differs from 2. If p is equal to 2, we show that the cohomological invariants of M2

can be decomposed in a freely generated H•(k0)-module whose generators are the same as in the
algebraically closed case except for the one of highest degree and a module K, which can be seen
as a submodule of H•(k0) shifted in degree by 4.

The computation uses heavily Rost’s theory of Chow groups with coefficients [Ros96] and
its equivariant version, which was first introduced by Guillot in [Gui07]. This is due to the fact
that for a smooth quotient stack [X/G], the zero-codimensional equivariant Chow group with
coefficients A0

G(X,H•) is equal to the ring of cohomological invariants Inv•([X/G]).

Our method is based on the presentation by Arsie and Vistoli [AV04, Corollary 4.7] of the
stacks of hyperelliptic curves as the quotient of an open subset of an affine space by GL2. We use
a technique similar to the stratification method introduced by Vezzosi in [Vez00] and used by
various authors afterward [Gui07, MRV06]. The idea is, given a quotient stack [X/G], to construct
an equivariant stratification X = X0 ⊃ X1 ⊃ · · · ⊃ Xn = ∅ of X such that the (equivariant)
geometry of XirXi+1 is simple enough that we can compute inductively the invariants for Xi

using the result for Xi+1 and the localization exact sequence [Ros96, Section 5, p. 356].

One flaw of our method of computation is that it does not provide any real insight into the
product in the ring of cohomological invariants of Hg. The reason is that repeatedly applying
the localization exact sequence causes loss of information about our elements, making it very
difficult to understand what their products should be.

Description of content

In Section 2, we define a theory of Chern classes for Chow groups with coefficients, following
[EKM08]. All the basic formulae for Chern classes hold with coefficients, and we use them to
compute the Chow rings with coefficients of Grassmann bundles.

The second part of the section is dedicated to the equivariant version of the theory, which
was introduced in [Gui07]. We show that for a quotient stack, the zero-codimensional equivariant
Chow group with coefficients computes the ring of cohomological invariants. To see that the whole
theory translates to the equivariant setting, we can just repeat the proofs used for the ordinary
Chow groups in [EG98]. We then compute the Chow rings with coefficients of BGLn and BSLn.
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In Section 3, we describe the presentation of the stacks Hg, together with some related
spaces that will appear in the computation. Consider A2g+3 as the space of binary forms of
degree 2g + 2, and let Xg ⊂ A2g+3 be the open subscheme of nonzero forms with distinct roots.
Then we have Hg = [Xg/GL2] for even g. The starting idea to compute the cohomological
invariants of [Xg/GL2] is that we can first compute those of [Zg/GL2], where Zg is the GL2-
equivariant quotient Zg = Xg/Gm. Here Gm acts by multiplication. We introduce a stratification
P 2g+2 ⊃ ∆1,2g+2 ⊃ · · · ⊃ ∆g+1,2g+2 which will be the base of our computation. We can see ∆i,2g+2

as the closed subscheme of binary forms divisible by the square of a form of degree i, so we have
Zg = P 2g+2r∆1,2g+2.

In Section 4, we compute the invariants for Hg for all even g. The argument is based on the
fact that the equivariant Chow groups with coefficients of ∆i,nr∆i+1,n are isomorphic to those
of Pn−2ir∆1,n−2i × P i, giving rise to an inductive reasoning relying heavily on the localization
sequence.

Section 5 is dedicated to extending the previous results to fields that are not algebraically
closed. The extension turns out to be immediate when the prime p is different from 2 and rather
troublesome for p = 2. The main difficulty lies in understanding whether the pushforward of
some elements is zero or not in the equivariant Chow ring with coefficients of P 6. To prove it,
we construct an element in A•GL2

(P 6) that belongs to the annihilator of these images, but whose
annihilator cannot contain them unless they are zero.

2. Chow rings with coefficients

2.1 Chern classes

Chow groups with coefficients were first defined in Rost’s paper [Ros96]. They form a theory
analogous to the classical theory of Chow groups, but with added arithmetic properties coming
from the fact that the coefficients are taken, rather than in Z, in a cycle module M . The latter is
a functor from fields to graded abelian groups satisfying a long list of properties. The two most
important examples of cycle modules are Milnor’s K-theory and Galois cohomology, in which
case Chow groups with coefficients actually contain the ordinary Chow groups and the ordinary
Chow groups mod p, respectively.

Chow groups with coefficients have all the versatility of ordinary Chow groups, and, moreover,
they satisfy a long exact sequence extending the short exact sequence of Chow groups. For a brief
introduction to the subject, the reader can refer to [Gui07, Section 2]. The entire theory is
reworked in the greater generality of quasi-separated algebraic spaces in the author’s PhD thesis
[Pir15, Chapter 2].

The Chow group with coefficients of dimension i, written Ai(X,M), is defined as the ith
homology group of the complex

0→ Cd=dim(X)(X,M)→ Cd−1(X,M)→ · · · → C1(X,M)→ C0(X,M)→ 0 ,

where Ci(X,M) =
⊕

P∈X(i)
M(k(P )) is the direct sum of the cycle module computed in the

generic points of closed irreducible subschemes of X of dimension i and the differential comes
from data attached to the cycle module [Ros96, Definitions 1.1 and 2.1]. When each connected
component of X is equidimensional, we can group points by codimension, so that we get the
complex

0→ C0(X,M)→ C1(X,M)→ · · · → Cdim(X)(X,M)→ 0 ,
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with Cj(X,M) =
⊕

P∈X(j) M(k(P )). Then the Chow group with coefficients of codimension i,
written Ai(X,M), is defined as the ith cohomology group of the complex above. When X is
moreover equidimensional, we have the equality Cj(X,M) = Cdim(X)−j(X,M) and consequently
Ai(X,M) = Adim(X)−i(X,M).

If the scheme X is smooth over k0 and M admits a bilinear pairing M ×M → M , then we
get a product Ai(X,M) × Aj(X,M) → Ai+j(X,M). In this case we call A•(X,M) the Chow
ring with coefficients of X. Note that it is a bigraded ring: we have the degree coming from the
cycle module and codimension.

Just as ordinary Chow groups, Chow groups with coefficients have a flat pullback, a proper
pushforward, and a pullback for maps to smooth schemes; they satisfy a projection formula and
have a localization long exact sequence.

Rost’s paper notably lacks the definition of a theory of Chern classes “with coefficients.”
This has been done when M is equal to Milnor’s K-theory in Chapter 9 of Elman, Karpenko
and Merkurjev’s book [EKM08]. We will extend their idea to all cycle modules. Our approach is
slightly more cycle-based than the approach in [EKM08].

Definition 2.1. Let E → X be a vector bundle. A coordination σ for E is a sequence of closed
subsets (X = X0 ⊃ X1 ⊃ · · · ⊃ Xn) together with trivializations of E along each of the locally
closed subschemes X0rX1, . . . , Xn−1rXn, Xn.

Definition 2.2. Let L
π−→ X be a line bundle. Let σ be a coordination for L, and let i be the zero-

section imbedding. In [Ros96, Section 9], Rost defines a retraction rσ : C•(L,M) → C•(X,M),
depending on the coordination σ, for the pullback C•(X,M) → C•(L,M). We define the first
Chern class c1,σ(L) : Cp(X,M)→ Cp−1(X,M) of the couple (L, σ) as

c1,σ(L)(α) = rσ ◦ i∗(α) .

Clearly, the choice of a coordination is irrelevant in homology, and we will just refer to c1(L)
when we are interested in the induced map in homology. The additional data of the coordinations
allows for slightly more precise statements on the cycle level when we pull back the coordination
together with the line bundle, as we will see.

Proposition 2.3. Consider a morphism Y
f−→ X and form the cartesian square

E
f1 //

π1
��

L

π
��

Y
f // X .

Let σ′ be the induced coordination on Y . Then the following hold:

(i) If f is proper, then f∗(c1,σ′(L)(α)) = c1,σ(L)(f∗(α)).

(ii) If f is flat, then c1,σ′(L)(f∗(β)) = f∗(c1,σ(L)(β)).

(iii) If a ∈ O∗X(X), then c1,σ({a}(α)) = {a}(c1,σ(α)).

(iv) Suppose that X is normal. Suppose E = O(D) for an irreducible subvariety D of codimen-
sion 1, defined by a valuation v on k(X), and let σ be a coordination with X1 = D. Then
the restriction of c1,σ(E) to A0(X) is equal to the map sτv defined in [Ros96, Definition 1.1,
Rule R3f]. In particular, c1(E)(1) = D.

The following properties are true at homotopy level:
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(v) If (U, V ) is a boundary couple, then ∂UV (c1(L|U )(α)) = c1(L|V )(∂UV (α)).

(vi) If L and E are two line bundles over X, then c1(L)(c1(E)(α)) = c1(E)(c1(L)(α)).

(vii) The first Chern class of L⊗ E satisfies c1(L⊗ E)(α) = c1(L)(α) + c1(E)(α).

Proof. Properties (i), (ii), (iii) can be immediately obtained by the compatibility of the retrac-
tion rσ with the fundamental maps [Ros96, Section 9.5].

We prove property (iv) by an explicit local computation. Given an element α ∈ A0(X), we

can write down c1,σ(L)(α) explicitly. It is equal to rσ|D ◦ ∂
LXrD
LD

◦Htriv ◦ (i0)∗(α).

By explicit verification, we see that Htriv ◦ (i0)∗(α) = {t}(π∗(α)), where t is the parameter
for the trivial bundle over XrD. The expression makes sense as the cycle π∗(α) is not supported
in any point where t is zero.

Now, we consider the boundary map ∂
LXrD
LD

. As µ = {t}(π∗(α)) lives in the generic point

of L, the only point where the value of ∂
LXrD
LD

(µ) can be nonzero is the generic point of LD. Then

∂
LXrD
LD

(µ) is equal to the value of µ through the map ∂v : H•(k0(L))→ H•(k0(LD)). To compute

it, we first base change µ to a neighborhood UD
ρ−→ X of the generic point of D such that the

bundle is trivial.

In base changing µ to UD, we need to keep track of what happens to {t}, which is no longer
the parameter for our trivial bundle: if t′ is the new parameter, we see that we can write t = τt′,
where τ ∈ O∗X(UD ×X (XrD)) vanishes in D with order 1. Then the pullback of µ to UD is
equal to {t′}(π∗α) + {τ}(π∗α) = µ1 + µ2.

Now, it is easy to see that

∂
LXrD
LD

(µ1) = {t′}π∗∂D(α) = 0

∂
LXrD
LD

(µ2) = ∂v(τπ
∗α) = sτvL(π∗(α)) ,

where vL is the valuation defining LD. By the compatibility of the map sτvL with the retraction rσ,
we obtain the result. It should be noted that at the homology level, the maps sτv do not depend
on the choice of the uniformizing parameter τ .

Property (v) is obtained using the compatibility of pullback and differential, by writing
rσ = π−1 as homology maps.

We still need to prove the last two properties.

Consider a cartesian square

L×X E
π′1 //

π1
��

E

π

��
L

π′ // X ,

and let i, i′ be the zero sections of, respectively, E and L, and i1, i
′
1 the zero sections of,

respectively, π and π′. Then c1(L)(c1(E)(α)) = (π′∗)−1 ◦ i′∗ ◦ (π∗)−1 ◦ i∗. By the compatibility
with proper pushforward, we have (π′∗)−1 ◦ i′∗ ◦ (π∗)−1 ◦ i∗ = (π′∗)−1 ◦ (π′∗1)

−1 ◦ i∗ ◦ (i′1)∗. By
the functoriality of pullback and pushforward, we get the equality (π′∗)−1 ◦ (π′∗1)

−1 ◦ i∗ ◦ (i′1)∗ =
((π′ ◦ π1)∗)−1 ◦ (i′1 ◦ i)∗, which is equal to ((π′1 ◦ π)∗)−1 ◦ (i1 ◦ i′)∗ as the two maps are the same.
Doing the reasoning above backward, we obtain the desired equality (vi).

For the last equality, recall that there is a flat product map L×X E
ρ−→ L⊗ E such that the

composition of ρ and the projection π′′ : L ⊗ E → X is the projection π2 : L ×X E → X. It is
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easy to see that if i′′ is the zero section of π′′, then ρ∗ ◦ i′′∗(α) = π∗1 ◦ i′∗(α) + π′∗1 ◦ i∗(α). As the
projections from E ×X L and E ⊗ L to X both induce an isomorphism, we know that ρ∗ must
be an isomorphism too. But then

c1(E ⊗ L)(α) = (π′′
∗
)−1 ◦ i′′∗(α) = (π′′

∗
)−1 ◦

(
(ρ∗)−1 ◦ ρ∗

)
◦ i′′ = (π∗2)−1 ◦ ρ∗ ◦ i′′ ,

which is in turn equal to

(π∗2)−1(π∗1 ◦ i′∗(α) + π′
∗
1 ◦ i∗(α)) = c1(L)(α) + c1(E)(α) .

As the maps we defined commute on homology level, we can see the composition c1(L1)◦c1(L2)
as a commutative product: c1(L1) ◦ c1(L2) = c1(L1) · c1(L2).

Having this definition down, we can follow closely Sections 53–55 of [EKM08] to obtain
a complete theory of Chern classes. This is done in detail in the author’s PhD thesis [Pir15,
Chapter 2].

Proposition 2.4. Let P (E)
π−→ X be the projectivization of a vector bundle E of rank r + 1

over X. The following formula holds for all p:

Ap(E) =
⊕
n−i=p
i6r

c1(OP (E)(−1))i(π∗(An(X,M))) '
⊕

p+r6n6p

An(X,M) .

Proof. The proof in [EKM08, Section 53] holds without changes.

Proposition 2.5. There is a theory of Chern classes for Chow groups with coefficients satisfying
all of the usual properties.

Proof. This is done in the author’s PhD thesis [Pir15, Chapter 2, Section 4], and it can also be
obtained easily following Sections 53–55 in [EKM08].

For the rest of the section, we assume that our cycle module M has a pairing M ×M →M ,
so that for smooth schemes we have a ring structure. With the next corollary we show that for
smooth schemes, Chern classes are represented by multiplication by elements in the Chow ring
with coefficients.

Corollary 2.6. If X is smooth over k0 and D is an irreducible divisor, then c1(O(D))(α) = α·D
and the classes ci(E) are all equal to the product by β for some cycle β of degree zero.

Proof. Let L = O(D). As L is smooth, we can consider the pullback through the zero section
i : X → L, and by the compatibility with flat pullback, we must have i∗ ◦ π∗ = IdA•(X). Now,
consider a product α ·β. We can see α as i∗◦π∗α, so by the projection formula we have i∗(α ·β) =
π∗α · i∗β. Then as c1(L) = (π∗)−1 ◦ i∗, we have c1(L)(α · β) = (π∗)−1(π∗α · i∗β) = α · c1(L)(β).
Then we can take β = 1 to get the identity c1(L)(α) = α · c1(L)(1), and as c1(L)(1) = D by
Proposition 2.3, we can conclude.

The general case is a direct consequence of the line bundle case by using the splitting principle
and the Whitney sum formula.

With the next proposition, we use the theory available to us to compute the Chow groups
with coefficients of Grassmann bundles. This will be instrumental in computing the equivariant
Chow groups with coefficients of GL2 in the next section.
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Corollary 2.7. Suppose that X is smooth over k0 and either M is equal to Milnor’s K-theory
or M = H•. Let E

π−→ X be a vector bundle, and let Grm(E)→ X be the Grassmann bundle of
m-dimensional subbundles of E. Then

A•(Grm(E),M) = A•(X,M)⊗CH•(X) CH•(Grm(E)) .

Proof. We have an obvious map

A•(X,M)⊗CH•(X) CH•(Grm(E))
ψ−→ A•(Grm(E),M)

given by pulling back the first factor to A•(Grm(E)) and multiplying:

α⊗ λ ψ7→ α · λ .

Now, note that we can obtain the bundle of complete flags FLm(E) from either X or Grm(E)
by a sequence of projective bundles, via the usual splitting construction. Using Propositions 2.4
and 2.5, we can conclude that composing with the pullback to FLm(E), we obtain an injective
map

A•(X,M)⊗CH•(X) CH•(Grm(E))→ A•(Flm(E),M) .

This shows injectivity. Let π : A•(Flm(E))→ A•(Grm(E)) be the projection. We can construct
a section to π∗ by composing the sections for each projective bundle: it amounts to multiplying by
a fixed element x of degree zero and then taking the pushforward π∗. Now, consider an element β ∈
A•(Grm(E)). Inside A•(Flm(E)) we have α = β · y, where β comes from A•(X) and y has degree
zero. Then α = π∗(π

∗α · x) = π∗(π
∗β · x · y) = β · π∗(x · y), which belongs to the image of ψ.

2.2 Equivariant theory

A cycle-based approach is clearly only feasible when points have a well-defined underlying field.
Defining a theory of Chow groups with coefficients for a suitably large class of algebraic stacks will
require a different approach. For a quotient stack [X/G], we can use the same type of equivariant
approach, defined in [Tot99] and [EG98]. This has already been described in [Gui07].

The basic idea is that any extension of the theory should be homotopy invariant and that the
Chow groups with coefficients of dimension i should not change if we remove or somehow modify
a subset of dimension at least i − 2. Using this, up to readjusting the dimension index, we can
replace our object of study [X/G] with a scheme E → [X/G] that, up to some high-codimension
subset, is a vector bundle over [X/G].

In the next definition, we use the fact that in the author’s PhD thesis [Pir15], a theory of Chow
groups with coefficients for algebraic spaces is defined. One can add some technical conditions
(for example, quasi-projective scheme with a linearized group action, see [EG98, Proposition 23]),
which will be true in every case we consider in this paper, to make sure that all quotients involved
are schemes.

Definition 2.8. Let i be a positive integer, and let X be a scheme equipped with an action by
an algebraic group G. Let V be an r-dimensional representation of G such that G acts freely
outside of a closed subset W = V rU of codimension greater than or equal to i + 2, and set
U = V rW .

Consider the quotient X ×G U = (X × U)/G, where the action of G is the diagonal action.
By [SP15, Tag 02Z2], we know that X ×G U is an algebraic space, and if X is quasi-separated,
so is X ×G U . In this case, we define AGi (X,M), the equivariant Chow group with coefficients of
dimension i, to be Ai+r−dim(G)(X ×G U,M).
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If X is equidimensional, we can also switch to the codimensional notation by writing

AiG(X) = Ai
(
X ×G U,M

)
= AGr+dim(X)−dim(G)−i(X,M) .

The groups above are well defined (that is, they do not depend on the particular represen-
tation V ) by the double fibration argument, as in [EG98, Section 2.2]. The argument consists
of the fact that if we have two representations V and V ′ of dimension r and r′, respectively,
satisfying the requirements for the definition, we can construct a third representation V × V ′
and then Ai+r+r′(X ×G (U × U ′)) is isomorphic to both Ai+r(X ×G U) and Ai+r′(X ×G U ′).

Note that there is no reason why the equivariant groups should be zero for codimension much
greater than zero or negative dimension, and in fact this is not the case even for the most basic
examples.

Proposition 2.9. The equivariant Chow groups with coefficients AiG(X,M) depend only on the
quotient stack [X/G].

Every result in [Ros96] can be restated for G-equivariant Chow groups with coefficients and
G-equivariant maps.

Proof. We can use the double fibration argument and the fact that equivariant maps are well
behaved when passing to equivariant approximation, as in [EG98, 5.2, Proposition 16], [EG98,
2.2, Proposition 3].

Proposition 2.10. Let [X/G] be a quotient stack, smooth over k0. Then

A0
G(X,H•) = Inv•([X/G]) .

Proof. Consider an equivariant approximation [X×U/G]
π−→ [X/G] such that T := [X×U/G] is

an algebraic space. The pullback π∗ induces an isomorphism on cohomological invariants. This is
an immediate consequence of the fact that cohomological invariants do not change when passing
to a vector bundle or when removing a subset of codimension 2 or more [Pir14, Propositions 4.13
and 4.14].

Now, recall that on a scheme, or more generally on an algebraic space T , we know that
A0(T,H•) = Inv•(T ) by [Pir14, Proposition 4.9]. Then, we have a natural identification

Inv•([X/G]) = Inv•(T ) = A0(T,H•) = A0
G(X,H•) .

We will now compute some equivariant Chow groups with coefficients, taking G a classical
group acting trivially on the spectrum of a field. The computations for G = GLn, SLn are an
immediate consequence of our description of the Chow ring with coefficients for Grassmanian
bundles.

Recall that the GLn-equivariant Chow ring of a point is

CH•GLn
(Spec(k0)) = Z[c1, . . . , cn] ,

where c1, . . . , cn are the Chern classes of the canonical representation. The SLn-equivariant Chow
ring of a point is

CH•SLn
(Spec(k0)) = Z[c2, . . . , cn] ,

where again the ci are the Chern classes of the canonical representation.

Proposition 2.11. Let our cycle module M be equal to either Milnor’s K-theory or Galois
cohomology, and let G be the general linear group GLn or the special linear group SLn. Then,
the equivariant Chow ring with coefficients A•G(Spec(k0),M) is equal to the tensor product of
the corresponding ordinary equivariant Chow groups and M(Spec(k0)).
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Proof. As in [EG98, Section 3.1], by choosing an appropriate representation of GLn, we can com-
pute its equivariant Chow groups with coefficients on Grassmann schemes. Then the description
given in Corollary 2.7 of the Chow groups of Grassmann bundles allows us to conclude immedi-
ately. Note that the product structure is the same as that induced on the tensor product by the
two products on ordinary Chow groups and on M(Spec(k0)); this can be seen as a consequence
of Proposition 2.6.

Now, following [MRV06, Section 3] if we consider the representation of SLn induced by our
original representation of GLn, we see that the natural map Spec(k0)×SLn U → Spec(k0)×GLn U
is a Gm-torsor with associated line bundle the determinant bundle. Using the injectivity of c1,
a simple long exact sequence argument shows that the ring A•SLn

(Spec(k0)) must be isomorphic
to A•GLn

(Spec(k0),M)/c1.

3. Preliminaries

In this section, we state some general considerations that will be needed for all the computa-
tions in the paper. From now on, whenever we use Chow groups with coefficients or equivariant
Chow groups with coefficients, our cycle module will be H•, so we shorten A•(X,H•) to A•(X)
and A•G(X,H•) to A•G(X).

We begin by recalling the presentations of the stacks we will work with, all due to Arsie and
Vistoli [AV04].

Theorem 3.1. Let g be an even positive integer. Consider the affine space A2g+3, seen as the
space of all binary forms φ(S) = φ(s0, s1) of degree 2g+2. Denote by X the open subset consisting
of nonzero forms with distinct roots, with the action of GL2 on Xg defined by A(φ(S)) =
det(A)gφ(A−1S).

Denote by Hg the stack of smooth hyperelliptic curves of genus g. In particular, as any
smooth curve of genus 2 is hyperelliptic, H2 = M2. Then we have

Hg ' [Xg/GL2] ,

and the canonical representation of GL2 yields the Hodge bundle of Hg.

Proof. This is [AV04, Corollary 4.7]. When g = 2, the presentation of M2 was originally shown
by Vistoli in [Vis98, Proposition 3.1].

In both cases, the quotient of Xg by the usual action of Gm defined by (x0, . . ., x2g+2, t) →
(tx0, . . ., tx2g+2), which we will name Zg, is naturally an open subset of the GL2-scheme P (A2g+3),
namely the complement of the discriminant locus.

We will first construct the invariants of the quotient stack [Zg/GL2], then use the principal
Gm-bundle [Xg/GL2]→ [Zg/GL2] to compute the invariants of Hg for g even.

We generalize the family of equivariant schemes above the following way: Let F be the dual of
the standard representation of GL2. We can see F as the space of all binary forms φ = φ(s0, s1)
of degree 1. It has the natural action of GL2 defined by A(φ)(x) = φ(A−1(S)). We denote by Ei
the ith symmetric power Symi(F ). We can see Ei as the space of all binary forms of degree i,
with an action of GL2 induced by the action on F , which is A(φ)(S) = φ(A−1(S)).

Note that while this action is different from the action of GL2 on Xg ⊂ E2g+2, it is the same
when we pass to the projectivized schemes Zg.
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Definition 3.2. We denote by ∆̃r,i the closed subspace of Ei composed of forms φ such that
there exists a form f of degree r whose square divides φ. We can think of it as the image of the
map

Ei−2r × Er → Ei, (f, g) 7→ fg2 ,

which is a closed subset, as the map passes to the projectivizations. With this notation, the
scheme Xg in Theorem 3.1 is equal to E2g+2r∆̃1,2g+2.

We denote by ∆r,i the closed locus in the projectivizations P (Ei) composed of forms φ such
that there exists a form f of degree r whose square divides φ. With this notation, we have
Zg = P (E2g+2)r∆1,2g+2.

Thanks to the localization exact sequence, understanding the cohomological invariants of
[P (Ei)r∆1,i/GL2] can be reduced to understanding the invariants of [P (Ei)/GL2], which are
understood thanks to the projective bundle formula, the top Chow group with coefficients
A0

GL2
(∆1,i) (which is not equal to the group of cohomological invariants of [∆1,r/GL2], as

∆1,i is not smooth), and the pushforward map A0
G(∆1,i) → A1

GL2
(P (Ei)). The computation

of A0
GL2

(∆1,i) will be based on the following two propositions.

Proposition 3.3. Let πr,i : P (Ei−2r)×P (Er)→ ∆r,i be the map induced by (f, g) 7→ fg2. The
equivariant morphism πr,i restricts to a universal homeomorphism on ∆r,ir∆r+1,i. Moreover, if
char(k0) > 2r or char(k) = 0, then any k-valued point of ∆r,ir∆r,i+1 can be lifted to a k-valued
point of P (Ei−2r)× P (Er).

Proof. See [Vis98, Lemma 3.2]. The reasoning holds in general as long as we can say that a poly-
nomial with r double roots must be divisible by the square of a polynomial of degree r. This is
clearly true for char(k) = 0, but in positive characteristic it holds only as long as 2r < char(k), as
we can find irreducible polynomials of degree char(k) with only one distinct root. It is, however,
always true that the map πr,i is a bijection when restricted to ∆r,ir∆r+1,i. Being proper and
bijective, it is a universal homeomorphism.

Proposition 3.4. The pushforward of an (equivariant) universal homeomorphism induces an
isomorphism on (equivariant) Chow groups with coefficients in H•.

Proof. Note first that the non-equivariant statement implies the equivariant one, because if X
and Y are G-schemes on which G acts freely, then an equivariant universal homeomorphism
between them induces a universal homeomorphism on quotients.

Let f : X → Y be a universal homeomorphism. Given a point y ∈ Y , its fiber x is a point
of X and the map fx : x→ y is a purely inseparable field extension. The pullback (fx)∗ : H•(y)→
H•(x) is an isomorphism, and the projection formula yields (fx)∗((fx)∗α) = [k(x) : k(y)]α. As
the characteristic of k(x) is different from p, the degree [k(x) : k(y)] is invertible modulo p and
the corestriction map is an isomorphism. This implies that f∗ induces an isomorphism on the
cycle level.

In the following, we will write P i for P (Ei), which should not cause any confusion as
dim(Ei) = i+ 1. We will exploit the stratification

∆1,i = ∆1,ir∆2,i t∆2,ir∆3,i t · · · t∆[i/2],i

and the isomorphism

A0
G(∆r,ir∆r+1,i) ' A0

GL2

((
P i−2rr∆1,i−2r

)
× P r

)
to inductively compute A0

GL2
(∆1,i) and A0

GL2
(P ir∆1,i).
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4. The invariants of Hg for g even

We are now going to compute the cohomological invariant of the stacks Hg for all even g. We
assume that our base field k0 is algebraically closed.

Recall that as we are working with schemes over k0, all the cohomological invariants and
Chow groups with coefficients that we are going to consider are H•(k0)-modules, and all the
maps are maps of H•(k0)-modules. Due to the fact that k0 is algebraically closed, we have
H•(k0) = H0(k0) = Z/pZ. Our main result is the following.

Theorem 4.1. Suppose that our base field k0 is algebraically closed, of characteristic different
from 2 and 3, and let g be even.

– For p = 2, the cohomological invariants of Hg are freely generated as a graded F2-module
by 1 and invariants α1, . . . , αg+2, where the degree of αi is i.

– If p 6= 2, then the cohomological invariants of Hg are nontrivial if and only if 2g + 1
is divisible by p. In this case they are generated by 1 and a single nonzero invariant in
degree 1.

A few last considerations on equivariant Chow rings are needed.

Lemma 4.2. Let F be a vector bundle of rank 2 on a variety S smooth over k0, let P = P (F )
be the projective bundle of lines in F , and let ∆ be the image of the diagonal embedding
δ : P → P ×S P . Let y1 and y2 in CH•(P ×S P ) be the two pullbacks of the first Chern class of
OP (1), and let c1 ∈ CH•(P ×S P ) be the pullback of the first Chern class of F . Then the class
of ∆ is y1 + y2 + c1.

Proof. This is [Vis98, Lemma 3.8].

Using the previous, lemma we are able to compute the classes of ∆1,i in CH1
GL2

(P i). Recall
that the GL2-equivariant Chow ring of Pi is generated by the Chern classes λ1 and λ2 of the
Hodge bundle and the first Chern class of OP i(−1), which we will call ti. The only relation is
a polynomial fi(ti, λ1, λ2) of degree i+1 ([EG98, 3.2, Proposition 6] and the formula for projective
bundles).

Proposition 4.3. The class of ∆1,2i in CH1
GL2

(P 2i) is always divisible by 2. It is divisible by p
if and only if 2i− 1 is divisible by p.

Proof. Consider the following commutative diagram:

(P 1)(2i−2) × P 1

ρ1
��

i // (P 1)2i

ρ2
��

P 2i−2 × P 1
π1,2i // P 2i .

First, note that the equivariant Chow rings of all GL2-schemes involved are torsion-free, so
we can make computations with rational numbers. The map ρ1 is defined by (f1, . . . , f2i−2, g) 7→
(f1, . . . , f2i−2, g), the map ρ2 is defined by (f1, . . . , f2i) 7→ (f1, . . . , f2i), and the map i is defined
by (f1, . . . , f2i−2, g) 7→ (f1, . . . , f2i−2, g, g). All the maps in the diagram are GL2-equivariant, i is
a closed immersion, and ρ1 and ρ2 are finite, of degree (2i− 2)! and 2i!, respectively.

Now, the class of ∆1,2i is the image of 1 through (π1,2i)∗. Following the left side of the diagram,
we obtain [∆1,2i] = (1/(2i− 2)!)(π1,2i ◦ ρ1)∗(1). Now, consider the right side of the diagram. The
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equivariant Chow ring of (P 1)2i is generated by all the different pullbacks of t1, which we will
call y1, . . . , y2i, plus λ1 and λ2. It is easy to check that the pullback of t2i is y1 + · · ·+ y2i, which
by the projection formula, and by symmetry, implies (ρ2)∗(yj) = (2i− 1)!t2i.

Using Lemma 4.2, we see that i∗(1) = yi + y2i−1 + λ1. Its image is 2(2i − 1)!t2i + 2i!λ1. By
comparing the two formulae, we obtain

[∆1,2i] =
1

(2i− 2)!
(2(2i− 1)!t2i + 2i!λ1) = 2(2i− 1)t2i + (2i− 1)2iλ1 ,

which implies the statement of the proposition.

The proposition above, together with the algebraic closure of our base field, will allow us
to understand the pushforward A0

GL2
(∆1,n) → A1

GL2
(Pn). With the following proposition, we

establish a comparison between A0
GL2

(∆1,n) and A0
GL2

(∆1,nr∆2,n).

As above, using the projective bundle formula and the computation of AGL2(Spec(k0)) (Pro-
positions 2.4 and 2.11), we see that the equivariant Chow groups with coefficients A•GL2

(P 2i)
are just the tensor product of the usual equivariant Chow groups and H•(k0); that is, they are
generated as H•(k0)-algebras by λ1, λ2, and t2i, modulo a polynomial of degree 2i+ 1 in λ1, λ2,
t2i whose coefficients are in H0(k0) = Z/pZ.

Before moving on, we should make the following remark: Suppose that X is a scheme over k0
such that there is an open subset U of X that is a smooth-Nisnevich covering of Spec(k0), that is,
U is smooth and has a rational point (see [Pir14, Definition 3.2]). Then by [Pir14, Theorem 3.8],
the pullback H•(k0) = Inv•(Spec(k0))→ Inv•(U) = A0(U) is injective.

The pullback above factors through A0(X) → A0(U), so we can conclude that H•(k0) maps
injectively to A0(X). All of the equivariant approximations we will be using will have a smooth
open subset with a rational point, so it makes sense to say that a group A0

GL2
(T ) is trivial if it

is equal to H•(k0).

The following proposition describes the zero-codimensional Chow group with coefficients
A0

GL2
(∆r,2i).

Proposition 4.4. If r + 1 is divisible by p, the inclusion map ∆r,2ir∆r+1,2i
j−→ ∆r,2i induces

an isomorphism on A0
GL2

. If r+ 1 is not, the group A0
GL2

(∆r,2i) is trivial, that is, it is generated
by 1 as a (free) H•(k0)-module.

Proof. As A0
GL2

(∆r,2i) is isomorphic to A0
GL2

(∆r,2ir∆r+2,2i) (because ∆r+2,2i has codimension 2
in ∆r,2i), we can compute it using the following exact sequence:

0→ A0
GL2

(∆r,2ir∆r+2,2i)→ A0
GL2

(∆r,2ir∆r+1,2i)
∂−→ A0

GL2
(∆r+1,2ir∆r+2,2i) .

When r+1 is coprime to p, we want to prove that the kernel of ∂ is equal to H•(k0). This will
then imply that the image of A0

GL2
(∆r,2ir∆r+2,2i) must be equal to H•(k0), and thus it must be

trivial. When r + 1 is divisible by p, we want to prove that ∂ is zero, so that the second arrow
will be an isomorphism.

The map (P 2i−2rr∆2,2r) × P r
π−→ ∆r,2ir∆r+2,2i yields the following commutative diagram
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with exact columns:

A0
GL2

((P 2i−2rr∆2,2i−2r)× P r)
π∗ //

��

A0
GL2

(∆r,2ir∆r+2,2i)

����
A0

GL2
((P 2i−2rr∆1,2i−2r)× P r) �

� π∗ // //

∂1
��

A0
GL2

(∆r,2ir∆r+1,2i)

∂
��

A0
GL2

((∆1,2i−2rr∆2,2i−2r)× P r)
π∗ // A0

GL2
(∆r+1,2ir∆r+2,2i) .

The second horizontal map is an isomorphism by Propositions 3.3 and 3.4, because π∗ is
a universal homeomorphism when restricted to ∆r,2ir∆r+1,2i.

The group A0
GL2

((P 2i−2r r∆2,2i−2r) × P r) is trivial, as A0
GL2

(P 2i−2r × P r) is trivial by the
projective bundle formula of Proposition 2.4 and ∆2,2i−2r×P r has codimension 2. Consequently,
the kernel of ∂1 is trivial. We claim that when r + 1 is coprime to p, the third horizontal map is
an isomorphism, implying that the kernel of ∂ must be trivial too, and when r + 1 is divisible
by p, the third horizontal map is zero, so that ∂ must be zero too.

Let ψ be the map from (P 2i−2r−2r∆1,2i−2r−2)× P r × P 1 to (P 2i−2r−2r∆1,2i−2r−2)× P r+1

sending (f, g, h) to (f, gh). We have a commutative diagram

(P 2i−2r−2r∆1,2i−2r−2)× P 1 × P r π1 //

ψ
��

(∆1,2i−2rr∆2,2i−2r)× P r

π

��
(P 2i−2r−2r∆1,2i−2r−2)× P r+1 π2 // ∆r+1,2ir∆r+2,2i ,

where π1 and π2 are defined, respectively, by (f, g, h) 7→ (fg2, h) and (f, g) 7→ (fg2). The
maps π1 and π2 are universal homeomorphisms, so the pushforward maps (π1)∗ and (π2)∗ are
isomorphisms by Proposition 3.4. Then, if we prove that ψ∗ is an isomorphism, π∗ will be an
isomorphism too, and if ψ∗ is zero, then π∗ will be zero too. Consider this last diagram:

(P 2i−2r−2r∆1,2i−2r−2)× P r × P 1

p1

,,
ψ
��

(P 2i−2r−2r∆1,2i−2r−2)× P r+1 p2 // P 2i−2r−2r∆1,2i−2r−2 .

The pullbacks along p1 and p2 are both isomorphisms by the projective bundle formula of Propo-
sition 2.4, implying that the pullback of ψ is an isomorphism. We have ψ∗(ψ

∗α) = deg(ψ)α by
the projection formula. Then, as the degree of ψ is r + 1, we see that ψ∗ is zero if p | r + 1 and
an isomorphism otherwise.

Corollary 4.5. Let p 6= 2. If the class of ∆1,2i is divisible by p in CH1
GL2

(P 2i), then the group
A0

GL2
(P 2ir∆1,2i) is generated by 〈1, α〉, where α 6= 0 is the invariant in degree 1 corresponding

to an equation for ∆1,2i. Otherwise, A0
GL2

(P 2ir∆1,2i) is trivial.

Proof. Proposition 4.4 shows that A0
GL2

(∆1,2i) is always trivial for p 6= 2. Then, applying the
localization exact sequence to the inclusion ∆1,2i → P 2i yields the result.

Remark 4.6. The results of Proposition 4.4 and Corollary 4.5 do not require that k0 be alge-
braically closed. However, this hypothesis will be fundamental in the next few steps.
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From the next corollary on, we will rely heavily on the algebraic closure of k0, which is
necessary to prove that the image of i∗ : A0

GL2
(∆1,2i)→ A0

GL2
(P 2i) is zero. In the next sections,

we will explore some ideas to get around this obstacle. Recall that for Chow rings with coefficients,
we will always refer to the grading coming from the cycle module as degree and we will use the
word codimension for the other grading.

Corollary 4.7. If p = 2, then A0
GL2

(P 2ir∆1,2i) is generated as an F2-module by {1, α1, . . . , αi},
where the degree of αi is i and all the αi are nonzero.

Proof. As we are assuming that our base field is algebraically closed, we know that the Chow
ring with coefficients A•GL2

(P 2i) is contained in (cohomological) degree zero (because H•(k0) =

H0(k0) = Z/pZ). Moreover, the class of ∆1,2i in A1
GL2

(P 2i) is divisible by 2 due to Proposition 4.3,

so the pushforward A0
GL2

(∆1,2i)→ A1
GL2

(P 2i) must always be zero.

Proposition 4.4 tells us that A0
GL2

(∆1,2i) is isomorphic to A0
GL2

(∆1,2ir∆2,2i), which in turn

is isomorphic to A0(P 2i−2r∆1,2i−2). Then, we can set up an inductive reasoning using the
localization exact sequence,

0→ A0
GL2

(
P 2i
)
→ A0

GL2

(
P 2ir∆1,2i

)
→ A0

GL2
(∆1,2i)→ 0 .

The first step is given by considering ∆1,2, which is universally homeomorphic to P 1, mapping
to P 2. All the modules appearing in the exact sequences above are free, so the sequences all split.
We can easily conclude.

Proof of Theorem 4.1. If p = 2, we start from Corollary 4.7. The Gm-bundle[
A4g+3r∆/GL2

]
→
[
P 2g+2r∆1,2g+2/GL2

]
can be extended to a line bundle

L
f−→
[
P 2g+2r∆1,2g+2

]
.

By taking a retraction r, we identify the equivariant Chow groups with coefficients of L with
those of [P 2g+2r∆1,2g+2/GL2]. Then, we can consider the exact sequence

0→ A0
GL2

(
P 2g+2r∆1,2g+2

) j∗◦f∗−−−→ A0
GL2

(
A4g+3r∆

)
∂−→ A0

GL2

(
P 2g+2r∆1,2g+2

) r◦s∗−−−→ A1
GL2

(
P 2g+2r∆1,2g+2

)
,

where s is the zero section of L and j is the open immersion [A4g+3r∆/GL2]
j−→ L . We want to

understand the kernel of the map r ◦ s∗. Using Definition 2.2, we can identify r ◦ s∗ with the first
Chern class of the line bundle L , which by [EF09, Lemma 3.2] is equal to gλ1 − t2g+2. As g is
even, we have gλ = 0 and our claim boils down to understanding whether the products t2g+2αj
are zero or not.

Recall that by Corollary 4.7, we have A0
GL2

(P 2ir∆1,2i) = 〈1, α1, . . . , αi〉, so by αj we mean
the generator in degree j for some given i, which should be clear from context.

We will proceed by induction on i. First, we take a look at the products in A•GL2
(P 2r∆1,2).

The second part of the localization exact sequence for ∆1,2 → P 2 reads

0→ A1
GL2

(
P 2
)
→ A1

GL2

(
P 2r∆1,2

) ∂−→ A1
GL2

(∆1,2) .

We need to understand what t2α1 is. By the compatibility of Chern classes and boundary maps
from Proposition 2.3(v), we know that ∂(t2α1) = ∂(c1(OP 2(−1))(α1)) = c1(i

∗OP 2(−1))(∂(α1)) =
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c1(i
∗OP 2(−1))(1). As the pullback of OP 2(−1) through P 1 π1,2−−→ ∆1,2 → P 2 is equal to OP 1(−1)2,

we see that ∂(t2α1) = 0. Then, by the exact sequence above, t2α1 must be the image of some
γ ∈ A1

GL2
(P 2), but there are no elements of positive degree in A•GL2

(P 2) when k0 is algebraically
closed, so t2α1 = 0.

Suppose by induction that for 2i < 2g + 2, we know that t2iαj ∈ A0
GL2

(P 2ir∆1,2i) is equal
to zero if and only if j = i. We already know this for i = 1, giving us the base for the induction.
Again, we consider the exact sequence

0→ A1
GL2

(
P 2g+2r∆2,2g+2

)
→ A1

GL2

(
P 2g+2r∆1,2g+2

) ∂−→ A1
GL2

(
∆1,2g+2r∆2,2g+2

)
.

We can see, for example by looking at the proof of Proposition 4.3, that the pullback of
OP 2g+2(−1) to ∆1,2g+2 is equal to OP 2g(−1) ⊗ OP 1(−1)2, whose Chern class is the same as
c1(OP 2g(−1)) as we are working modulo 2.

Then, by Proposition 2.3(v), we have ∂(t2g+2αj) = (π1,2g+2)∗t2gαj−1, where we consider
α0 = 1, showing that t2g+2αj 6= 0. This immediately implies the statement for j < g + 1.

Now, consider the case where j = i = g + 1. As

∂(t2g+2αg+1) = (π1,2g+2)∗t2gαg = 0 ,

the element t2g+2αg+1 must be the image of an element of A1
GL2

(P 2g+2r∆2,2g+2). The elements
of A1

GL2
(P 2g+2r∆2,2g+2) can have degree only up to 1 plus the maximum degree of an element

of A0
GL2

(∆2,2g+2), again due to the localization exact sequence and the fact that the Chow ring
with coefficients A•GL2

(P 2g+2) is contained in degree zero. Then by Proposition 4.4 their degree
is less than or equal to 1 and t2g+2αg+1 must be zero, concluding the proof.

If p 6= 2, starting from Corollary 4.5 we only have to possibly check that gλ1 − t2g+2α1 is
not zero, which can be done exactly as above. The explicit result for p 6= 2 can be obtained by
looking at whether the class of ∆1,2g+2 is divisible by p in the equivariant Picard group of P 2g+2,
which can be easily done using Proposition 4.3.

Remark 4.8. For g = 2, we understand the multiplicative structure of Inv•(M2) almost com-
pletely. We have α2

4 = α4α3 = α4α2 = α4α1 = 0 as there are no elements of degree higher than α4,
and similarly α2

3 = α3α2 = α3α1 = 0 as these elements are pullbacks from Inv•([P 6r∆1,6/GL2])
and we can apply the same reasoning.

The squares α2
1 and α2

2 are both zero, as the second is of degree 4 and there are no elements
of degree 4 in Inv•([P 6r∆1,6/GL2]), and the first is represented by the square of an element
α̃1 ∈ H1(k(P 6)) = k(P 6)∗/(k(P 6)∗)2 which is equal to the element {−1}α̃1 ∈ H2(k(P 6)), which
is zero as k contains a square root of −1. The product α1α2 may be equal either to zero or to α3.

In general, we have no instruments to understand the multiplicative structure of Inv•(Hg),
and considerations like the above are less and less useful as the number of generators and pos-
sible degrees grows. The problem seems to be that it is very difficult to keep track of how the
products of our elements behave when using the localization exact sequence, and in fact in most
computations (that the author knows of) of classical cohomological invariants, the multiplicative
structure stems from an explicit a priori description of the invariants.

5. The non–algebraically closed case

In this section, we obtain a partial result on the cohomological invariants of M2 for a general
base field. This should give an idea of the inherent problems that arise when we have nontrivial
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elements of positive degree in the cohomological invariants of our base field.

Note that this will happen even for an algebraically closed field if we are considering quotients
by groups that are not special, making the development of techniques and ideas to treat these
types of problems crucial for the future development of the theory.

Theorem 5.1. Suppose that the characteristic of k0 is different from 2 and 3.

– Let p be a prime different from 2. Then the cohomological invariants of Hg are nontrivial if
and only if 4g+1 is divisible by p. In this case, they are freely generated as an H•(Spec(k))-
module by 1 and a single nonzero invariant in degree 1.

– Let p be equal to 2. Then the cohomological invariants of M2 fit into the following exact
sequence of H•(Spec(k))-modules:

0→M → Inv•(M2)→ K → 0 ,

where M is freely generated by 1 and elements α1, α2, α3 of respective degrees 1, 2, 3 and
K is isomorphic to a submodule of H•(Spec(k)), shifted in degree by 4.

The first statement is a direct consequence of Remark 4.6. The part of the proof of Theo-
rem 4.1 where p 6= 2 can be carried out exactly in the same way. The case p = 2 will require
some work, and in the rest of the section we always work in this case.

There are two points that we need to prove for the machinery we used in the previous section
to work:

(i) The pullback through the map ∆r,2ir∆r+1,2i → ∆r,2i must induce an isomorphism on A0

for i 6 3, as in Proposition 4.4.

(ii) The pushforward through the map ∆1,2i → P 2i must be zero for i 6 3, as in Corollary 4.7.

The first point is again implied by Remark 4.6. The proof of the second point in the previous
section completely depends on k0 being algebraically closed, so we will have to think of something
new. We begin by reducing to the non-equivariant case when i = 3.

The main idea of the section is that we can use the properties of Chern classes to construct an
element f in A•GL2

(P i) (respectively, A•(P i)) such that f annihilates the image of A0
GL2

(∆1,2i)

(respectively, A0(∆1,2i)) but multiplication by f is injective on A1
GL2

(P 2i) (respectively, A1(P 2i)).

Lemma 5.2. The map A0
GL2

(∆1,6)→ A1
GL2

(P 6) is zero if and only if the map A0(∆1,6)→ A1(P 6)
is zero.

Proof. One arrow is trivial: the equivariant groups for P 6 map surjectively to the non-equivariant
groups and the assignment is functorial, so if the equivariant map is trivial, the same must be
true for the non-equivariant map.

We now remove ∆2,6 from both sides, so that we are reduced to considering the map (P 4r
∆1,4)× P 1 → P 6r∆2,6. All elements in A0

GL2
((P 4r∆1,4)× P 1) are pullbacks through the first

projection. Following [Vis98, p. 638] and using the fact that we are working modulo 2, we see
that an element α ∈ A0

GL2
(P 4r∆1,4) satisfies the equation (t54 + t34λ

2
1)α = 0. The pullback

α ∈ A0((P 4r∆1,4)× P 1) must then satisfy the same equation.

Recall that modulo 2, the pullback of OP 6(−1) is equal to OP 4(−1). As λ1 is also the pullback
of the corresponding equivariant line bundle on P 6, by the projection formula we see that the
image of α must satisfy the same equation. As i∗(α) is an element of A1

GL2
(P 6), we can write

i∗(α) = λ1 · a + t6 · b with a, b ∈ H•(spec(k)). Then, we have (t56 + t36λ
2
1)(λ1 · a + t6 · b) = 0 in

A6
GL2

(P 6r∆2,6).
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Suppose that we know the result in the non-equivariant case, that is, we know that b = 0. We
want to show that (t56 + t36λ

2
1)λ1 ·a belongs to the image of A4

GL2
(∆2,6) if and only if a = 0. Recall

that ∆2,6 can be seen as the union of (P 2r∆1,2) × P 2 and ∆3,6. The elements in A•GL2
(∆2,6)

are sums of elements of three types: those that come from P 2 × P 2, those that come from ∆3,6

(which is universally homeomorphic to P 3), and the elements of A•GL2
((P 2r∆1,2)×P 2) that are

ramified on ∆1,2 × P2 but unramified on ∆3,6.

Using again the computations in [Vis98], we see that the first two images form the ideal
(t66 + t56λ1 + t46λ

2
1 + t36λ

3
1). For elements of the third type, the computation reduces to finding out

the kernel of the pushforward A•GL2
(P 1×P 2)→ A•(P 3). Using the fact that the map is finite of

degree 3, one sees that if we write t = c1(OP 1(−1)) and s = c1(OP 2(−1)), the kernel is generated
as an A•GL2

(Spec(k))-module by 1, s, st. Then any element in codimension 4 belonging to the
kernel of our pushforward can be written as a sum λ21a1 + λ2a2, and the same must hold for any
element in A4

GL2
(∆2,6) belonging to the third type (up to elements coming from P 2 × P 2). By

the projection formula, we can conclude that the image of A4
GL2

(∆2,6) must be contained in the
ideal (t66 + t56λ1 + t46λ

2
1 + t36λ

3
1, λ

2
1, λ2), which does not contain (t56 + t36λ

2
1)λ1 · a unless a = 0.

Of course, the same trick will not work on the non-equivariant case, as the relation would
be t66 · a = 0 and ∆2,6 contains rational points. We will have to dirty our hands and work at
the cycle level. Recall that the first Chern class of a line bundle L can be defined on cycles by
choosing a coordination for L.

Lemma 5.3. Let E → X be a line bundle that is isomorphic to L⊗W⊗p for some line bundles L
and W . Let τL and τW be coordinations for, respectively, L and W , and consider the coordination
τ ′ = τL ∪ τW for E. Additionally, let τ ′′ be the coordination for L that is set-theoretically
τL ∪ τW , with the trivializations induced by those of τL. Then, for all α ∈ C0(X), we have
c1,τ ′(E)(α) = c1,τ ′′(L)(α).

Proof. Fix the additional data of an open covering U = tUi of X such that E, L, W are
all trivial on U . Then the three bundles are each described by a choice of coordinate change
elements αi,j ∈ O∗(Ui ×X Uj) for each couple (i, j), and we can take αi,j,E = αi,j,L · αpi,j,W . It
can be seen directly as in Proposition 2.3(iv) that given a compatible choice of a trivialization
and coordination for E, the Chern class c1,τ ′(E)(α) can be decomposed (not uniquely) as the
sum of c1,τL∪τW (X × A1)(α) and a function that is linear in the coordinate change elements
αi,j,E ∈ O∗(Ui ×X Uj).

As the elements αi,j,E satisfy αi,j,E = αi,j,L · αpi,j,W , and a pth power is zero in Galois coho-
mology with coefficients in µp, we can conclude.

Now, consider the line bundle O(−1) on P 2i, with the coordination given by repeatedly taking
the hyperplane at infinity. We think of P 2i as the space of forms of degree 2i up to scalars, by

(x0 : x1 : · · · : x2i) 7→
[
x0s

2i
0 + α1s

2i−1
0 s1 + · · ·+ x2is

2i
1

]
,

so we can think of the lth element of the coordination as imposing that the first l coefficients
must be zero. We will name this coordination σ.

The pullback of σ to P 2i−2 × P 1 looks somewhat strange. We want to think of the map
P 2i−2×P 1 → P 2i as (f, g) 7→ fg2, so we are imposing that the first l coefficients of fg2 must be
zero. One then easily checks that the pullback of the coordination above is in the form

P 2i−2 × P 1 ⊃ H0 × P 1 ∪ P 2i−2 × {p} ⊃ H1 × P 1 ∪ P 2i−2 × {p}
⊃ H2 × P 1 ∪H0 × {p} ⊃ · · · ,
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where H0 ⊃ H1 ⊃ H2 ⊃ · · · is the same coordination as above on P 2i−2, the point p corresponds
to the point (0 : 1) ∈ P 1, and the terms in the form X × {p} each repeat twice as imposing the
condition on g kills two coefficients at a time. We will name this second coordination τ .

Note that the pullback of O(−1) to P 2i−2 × P 1 is OP 2i−2(−1) ⊗ OP 1(−1)2. Then, by the
lemma above, taking the Chern class of the pullback of O(−1) with respect to τ is the same as
taking c1,τ (OP 2i−2(−1)).

Note that the considerations above are still perfectly true for Pn when n is odd. We just
never had to consider this case. We will need to do it in the following lemma and proposi-
tion.

Lemma 5.4. Let n be a positive integer (possibly odd). Let α be an element in C0(Pn−2), possibly
ramified only at ∆1,n−2. Let α′ be its pullback to C0(Pn−2 × P 1). Then c1,τ (OPn−2(−1))(α′)
belongs to C0(H0 × P 1), and it is the pullback of an element β ∈ C0(H), possibly ramified only
at H ∩∆1,n−2.

Proof. We follow the local computation in the proof in Proposition 2.3(iv). There are two main
differences. The first is that the first step of the coordination we are working with is not an
irreducible divisor, but rather the union of two irreducible divisors. This will not pose a problem
as it is easy to explicitly check that the part of the map coming from P 2i−2 × {p} does not
contribute to c1,τ (OPn−2(−1))(α′). The second difference is that our element α′ is not unramified.
The hypothesis that α′ should be unramified is only needed at the end, and the reasoning in
Proposition 2.3(iv) only uses the fact that it is unramified at the generic point of our irreducible
divisor, which is true in the case of H. Following this, we see that c1,τ (OPn−2(−1))(α′) is equal
to c1,σ′(OPn−2(−1))(α′), where σ′ denotes the coordination on Pn−2 × P 1 obtained by pulling
back σ through the first projection. Then, the claim follows from the compatibility of the first
Chern class with pullbacks and differentials.

Proposition 5.5. Let α be as above. We have c1,τ (OPn−2(−1))n−1(α′) = 0.

Proof. Consider the element c1,τ (OPn−2(−1))(α′). By Lemma 5.4, it is the pushforward of some
element β inH×P 1. We haveH ' Pn−3, and the isomorphism sendsH∩∆1,n−2 to ∆1,n−3. By the
projection formula, the Chern class c1,τ (OPn−2(−1))(α′) can be computed onH×P 1 ' Pn−3×P 1.
It is easy to see that we are in the same situation as in Lemma 5.4. By applying this reasoning
n− 1 times, we will eventually be in the situation where H is just a point and we get zero.

Corollary 5.6. The map A0(∆1,2i)
i−→ A1(P 2i) is zero for all i.

Proof. Consider an element γ ∈ A0(∆1,2i). It can be seen as the pushforward of an element
α′ ∈ C0(P 2i−2×P 1), satisfying the hypothesis of the lemma above. By Proposition 5.5, we know
that c1,τ (OP 2i−2(−1))2i−1(α′) = 0. By the projection formula, this tells us that t2i−12i i∗α

′ = 0,
but the only element in A1(P 2i) that satisfies this equation is zero, so i∗α

′ = 0.

Proof of Theorem 5.1. Once we put together the results we accumulated, we will prove the theo-
rem in the same way as we proved Theorem 4.1.

We have mainly concerned ourselves with P 6 up to now, so we should begin by tackling the
lower-dimension cases. Then the results in this section will allow us to conclude easily.

(i) The maps

A0
GL2

(∆1,2)
i∗−→ A1

GL2

(
P 2
)
, A0

GL2
(∆1,4)→ A1

GL2

(
P 4
)

are both zero.
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The first statement is due to the projection formula. All elements in A0
GL2

(∆1,2) = H•(k0)
are pullbacks from A0

GL2
(P 2), so we have i∗(α) = i∗(i

∗α) = i∗(1)α. As i∗(1) = [∆1,2] = 0 by
Proposition 4.3, we can conclude.

To check the second statement, note that by the previous point and point (iii) below, we
have that A0

GL2
(∆1,4) = 〈1, α〉 as a free H∗(Spec(k))-module, where α is an element of degree 1,

coming from the cohomological invariants of [P 2r∆1,2/GL2]. The image of 1 is zero as the class
of ∆1,4 in A1

GL2
(P 4) is even.

Now, consider the boundary map ∂ : A0
GL2

((P 2r∆1,2) × P 1) → A0
GL2

(∆1,2 × P 1); we have
∂(t2 · α) = 0, implying that t2α comes from A0

GL2
(P 2 × P 1). Moreover, by the compatibility

with flat pullback of Proposition 2.3(ii), we know that t2α is a pullback from A1
GL2

(P 2), and
thus it can be written as at2 + bλ1 with a, b ∈ H•(k0). Using again the projection formula and
Proposition 4.3, we see that the image of an element in this form must be zero, so we must
have t4i∗α = 0. By the structure of the Chow groups with coefficient of a projective bundle, this
implies i∗α = 0.

(ii) The map A0
GL2

(∆1,6)→ A1
GL2

(P 6) is zero. This is due to Lemma 5.2 and Corollary 5.6.

(iii) The pullback A0
GL2

(∆1,2i)→ A0
GL2

(∆1,2ir∆2,2i) is an isomorphism. This is Remark 4.6.

(iv) Using the localization exact sequence, the points above easily imply that the group
A0

GL2
(P 6r∆1,6) is freely generated as an H∗(Spec(k))-module by 1 and elements α1, α2, α3 of

degree, respectively, 1, 2, 3. This can be done exactly as in Corollary 4.7.

As in the previous section, all that is left is to understand the kernel of

c1(OP 6(−1)) : A0
GL2

(
P 6r∆1,6

)
→ A0

GL2

(
P 6r∆1,6

)
.

We can proceed as in the previous section to prove by induction that the map is injective on
the submodule generated by 1, α1, α2. Unfortunately, the reasoning we used before to prove
that α3 must belong to the kernel of c1(OP 6(−1)) no longer works, as it relied heavily on the
algebraic closure of k, so we have to add the unspecified module K ' Ker(c1)∩ 〈α3〉 to our final
result.
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