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An adaptive selection combining (SC) scheme is proposed for time varying mobile communication channel in Class-A impulsive
noise. The receiver adaptively selects a diversity branch out of the available branches and discards the others. This is performed
by computing the maximum likelihood (ML) metric of each diversity branch and selects the branch with the maximum metric.
The proposed adaptive SC scheme dynamically adjusts the threshold value according to the time variations of the channel.
Equalization and data detection are performed after combining using maximum likelihood sequence estimation implemented by
Viterbi algorithm (MLSE-VA). The minimum survivor technique is employed to reduce the complexity of the receiver.

1. Introduction

In wireless communication networks, fading phenomenon
imposes serious limitations upon the system performance.
Diversity techniques as means of achieving high capacity
communication systems and combating fading effects have
been the subject of interest for many years. The traditional
diversity combining techniques include maximal ratio com-
bining (MRC), equal gain combining (EGC), and selection
combining (SC). MRC coherently combines all diversity
branches after weighing each branch with the respective gain
of the branch. EGC coherently combines all diversity branch-
es after weighing each branch with equal gain. In SC only one
diversity branch is used for data reception. The usual way of
selecting this branch is to choose the branch with the largest
instantaneous SNR.

Most literature in diversity is mainly limited to the
conventional assumption of AWGN. AWGN realistically rep-
resents the thermal noise at the receiver but ignores the im-
pulsive nature of atmospheric noise, electromagnetic inter-
ference, or man-made noise. Automatic ignition noise and
power transmission lines are examples of impulsive noise
sources encountered mainly in metropolitan areas [1]. One
of the noise models that combines the Gaussian noise with

a non-Gaussian impulsive noise is Class-A impulsive noise
proposed by Middleton. Despite the practical and theoretical
importance of the problem, only few results on diversity com-
bining for Class-A noise are available in the literature [1–6].
In [1], the performance of a multirelay network with amplify-
and-forward relaying over a flat Rayleigh fading channel in
impulsive noise is considered. In [2], the performance of
maximum ratio combining (MRC), equal gain combining
(EGC), selection combining (SC), and postdetection combin-
ing under Class-A impulsive noise is analyzed. In [3], the bit
error rate of diversity combining schemes for a single user
communication system operating over flat Rayleigh fading
channel subject to impulsive alpha-stable noise is derived. In
[4], the authors study the asymptotic behavior of the bit error
probability and the symbol error probability of quadratic
diversity combining schemes such as MRC, differential EGC,
and noncoherent combining in correlated Rician fading and
non-Gaussian noise. In [5], the performance of postdetection
combining over Rayleigh fading channel with impulsive noise
is obtained and compared with the performance of MRC. In
[6], optimum and suboptimum diversity combining schemes
for coherent and differential M-ary phase shift keying im-
paired by Class-A impulsive noise over Rician fading channel
are proposed.
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From the previous discussionwe observe that SC schemes
are developed for slow flat fading channel. However, in prac-
tice, most wireless channels of the communication systems,
such as mobile radio, are time varying frequency selective
fading channels and it is shown that diversity can also lead to
significant performance improvements for frequency selec-
tive fading channels [7]. Moreover, as mentioned previously,
most studies in this area consider the interfering noise as
Gaussian. However, in many cases, the transmission is addi-
tionally disturbed by man-made noise which is impulsive
noise. In this paper, an adaptive SC receiver is proposed for
time varying frequency selective fading channel in presence
of Class-A impulsive noise. The selection of the branch is
performed according to the time variations of the channel.
Therefore, the proposed adaptive SC receiver is more suitable
for mobile channels. Channel estimation is performed by
sign algorithm which is more stable than LMS algorithm in
presence of strong impulsiveness of the noise. The rest of the
paper is organized as follows. In Section 2, the Class-A
impulsive noise is presented. In Section 3, the proposed
adaptive SC receiver is introduced. Section 4 provides the
numerical results and the conclusions are given in Section 5.

2. System Model

In this section, the model of the frequency selective channel
and the class-A impulsive noise is described.

2.1. Channel Model. The channel is characterized by 𝐿

branches, each of which is time varying and has the same
fading characteristics but is statistically independent of one
another. For the 𝑙th branch, 𝑙 = 1, 2, . . . , 𝐿, the sampled
received signal is given by

𝑟
𝑙

𝑛
=

𝑄−1

∑

𝑞=0

𝑠𝑛−𝑞ℎ
𝑙

𝑞,𝑛
+ 𝑛
𝑙

𝑛
, 𝑛 = 1, 2, . . . , 𝑁, (1)

where 𝑄 is the channel memory length (the ISI length),𝑁 is
the number of symbols, 𝑛𝑙

𝑛
are independent and identically

distributed (i.i.d) complex valued zero mean white class-A
impulsive noise samples of the 𝑙th channel, {𝑠𝑛} is the sam-
pled transmitted sequence with alphabet size𝑀 and autocor-
relation 𝑅𝑥 = 𝜎

2

𝑥
𝐼, and ℎ𝑙

𝑞,𝑛
is the discrete time varying pa-

rameters of the 𝑙th channel.The channel time varying param-
eters ℎ𝑙

𝑞,𝑛
are usually modeled as Gaussian random process.

However, a more precise description of the time variations
of the channel coefficients can be provided for the multipath
channels, which have small number of reflectors. For exam-
ple, for constant vehicle velocity, the mobile radio channel
is almost periodically varying when the multipath delays
change linearly with time due to the carrier modulation
inherent in the transmitted signal [8]. Its time varying pa-
rameters can be expressed as a combination of exponentials
whose frequency depends on the carrier frequency and the
vehicle speed. We consider the channels, whose time varying

parameters ℎ𝑙
𝑞,𝑛

can be approximated by a linear combination
of a finite number of basis sequences 𝑏V,𝑛 [8], [9, page 383]:

ℎ
𝑙

𝑞,𝑛
=

𝑉

∑

V=1

𝜃
𝑙

V𝑞𝑓V,𝑛, (2)

where 𝜃𝑙V𝑞 are nonrandom expansion coefficients. For mobile
radio channels, these basis sequences are expressed as 𝑓V,𝑛 =
exp{𝑗𝛼V𝑛}, where 𝛼V are some known frequencies [8].

2.2. Class-A Impulsive Noise Model. Class-A impulsive noise
model of Middleton is a generalized model of the Gaussian
noise combined with a non-Gaussian impulsive noise. In
this model, a frequency component of the impulsive noise is
constrained within the bandwidth of the receiver.The class-A
impulsive noise for complex channel has a probability density
function (pdf), 𝑓(𝑛), given by [10]

𝑓 (𝑛) =

∞

∑

𝑚=0

𝑒
−𝐴
𝐴
𝑚

𝑚!2𝜋𝜎2
𝑚

exp(− |𝑛|
2

2𝜎2
𝑚

) , (3)

where the parameter 𝐴 is called the impulsive index: it is the
product of the received average number of impulses per unit
time and the duration of an impulse. This parameter defines
the impulsiveness of the noise. For small𝐴, the noise becomes
more impulsive; that is, 𝑓(𝑛) exhibits large impulsive “tails”
and for larger 𝐴, the statistical characteristics of the class-
A impulsive noise approach those of Gaussian noise. The
variances 𝜎2

𝑚
are related to the physical parameters and are

given by

𝜎
2

𝑚
= 𝜎
2

𝑛

(𝑚/𝐴) + Γ

1 + Γ
, 𝑚 = 0, 1, 2, . . . , (4)

where the parameter 𝜎2
𝑛
defines the mean variance of the

class-A impulsive noise. The model of the white class-A
noise combines the presence of an additive man-made noise
componentwith variance𝜎2

𝐼
and awhiteGaussian noise com-

ponent with variance 𝜎2
𝐺
. The parameter Γ in (4) is the ratio

of the mean power of the Gaussian noise component to the
non-Gaussian impulsive noise component. The white Gaus-
sian noise component is presented in the class-A noise
model to describe the influence of thermal noise which is
naturally present in the real physical receiver. Note that 𝑓(𝑛)
consists of an infinite weighted sum of zero mean Gaussian
densities with decreasing weights and increasing variances.
An approximation to the model in (3) can be obtained by
limiting the sum to the first three terms only which are found
to be sufficient to give excellent approximation to the noise
probability density functions [10].

3. The Proposed Adaptive SC Receiver

3.1. Selection of Diversity Branch. In this subsection, the
method of selection of the best diversity branch is described.
By substitution of (2) into (1), 𝑟𝑙

𝑛
can be expressed as

𝑟
𝑙

𝑛
=
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∑
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𝜃
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V𝑞𝑠𝑛−𝑙𝑓V,𝑛 + 𝑛
𝑙

𝑛
. (5)
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Let us define the following vectors:

𝜃
𝑙

𝑞
= [𝜃
𝑙

1𝑞
, 𝜃
𝑙

2𝑞
, . . . , 𝜃

𝑙

𝑉𝑞
]
𝑇

,

x𝑞,𝑛 = [𝑓1,𝑛𝑠𝑛−𝑞 𝑓2,𝑛𝑠𝑛−𝑞 ⋅ ⋅ ⋅ 𝑓𝑉,𝑛𝑠𝑛−𝑞]
𝑇
.

(6)

Let the parameters 𝜃𝑙
𝑞
be assembled into the (𝑉 × 𝑄) × 1

unknown vectorΘ𝑙:

Θ
𝑙
= [𝜃
𝑙

0

𝑇

𝜃
𝑙

1

𝑇

⋅ ⋅ ⋅ 𝜃
𝑙
𝑇

𝑄−1
]

𝑇

(7)

and also

x𝑛 = [x𝑇0,𝑛 x𝑇
1,𝑛

⋅ ⋅ ⋅ x𝑇
𝑄−1,𝑛

]
𝑇

, (8)

where the superscript 𝑇 denotes matrix transposition. Note
that the vector Θ collects the unknown channel parameters
from all paths and it is called the channel parameters vector
(CPV). Using the previous definitions, we can rewrite (5) in
the following representation:

𝑟
𝑙

𝑛
= x𝑇
𝑛
Θ
𝑙
+ 𝑛
𝑙

𝑛
. (9)

Let r𝑙 = [𝑟
𝑙

1
, 𝑟
𝑙

2
, . . . , 𝑟

𝑙

𝑁
]
𝑇 and s = [𝑠1, 𝑠2, . . . , 𝑠𝑁]

𝑇 denote
𝑁-symbols of the noisy received signal and the transmitted
signal, respectively. Since the observation noise is assumed
to be class-A impulsive noise, then the probability density
function (pdf) of the received signal vector r𝑙, conditioned
on the vectors s andΘ𝑙, can be written as

𝑝 (r𝑙 | s,Θ𝑙) =
𝑁
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(10)

For equiprobable messages, the ML metric of the received
signal from the 𝑙th diversity branch can be written as
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Evaluating 𝛾𝑙
𝑛
has a great difficulty because it requires evalua-

tion of an infinite sum, which is not possible. A simplification
can be performed under the condition that the impulsive
index𝐴 is sufficiently small. In this case, the infinite sum in (1)
can be approximated by the maximum value of its first three
terms [10]. According to this approximation the pdf of the
class-A impulsive noise becomes

𝑓 (𝑛) = max
𝑚=0,1,2

[
𝑒
−𝐴
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exp(− |𝑛|
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)] . (12)

Using this approximated pdf, 𝛾𝑙
𝑛
can be written as
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The selection of the best diversity branch is performed by
evaluating the ML metric 𝛾𝑙

𝑛
for 𝑙 = 1, 2, . . . , 𝐿 and selecting

the branch that has the maximum 𝛾
𝑙

𝑛
and turning off the rest

of branches. The selected diversity branch is most probably
ML diversity branch at that time. This branch is regarded as
the most likely close to the signal samples at that time. Note
that, since the channel is time varying, the values of 𝛾𝑙

𝑛
are

changed every 𝑛, and consequently, the best branch is updated
every 𝑛 corresponding to channel fading level. Therefore, the
receiver selects the optimum ML branch dynamically every
time according to the variation of the channel. The selection
of the branch is optimum in the sense of maximizing the log-
likelihood function.

Let Θ̂𝑙
𝑛
denote the estimation of theCPVat time 𝑛, then, in

order to evaluate 𝛾𝑙
𝑛
, the CPV at time 𝑛, Θ̂𝑙

𝑛
, and the data vec-

tor x𝑛 must be known. Therefore, at the start-up, a preamble
sequence is transmitted and used to obtain Θ̂𝑙

𝑛
and 𝛾𝑙
𝑛
. After

the start-up phase, the data sequence corresponding to the
survivor with the maximum metric is used to update these
values. The structure of the proposed adaptive SC receiver is
discussed in detail in Section 3.3.

3.2. Data Detection and CPV Estimation. After selecting the
strongest branch, data detection is performed using MLSE-
VA. The trellis structure for this problem has𝑀𝑄 states, and
each state Δ 𝑛, for the 𝑛th signaling interval, corresponds
to one of the possible 𝑄 previous symbols so that Δ 𝑛 =
(𝑠𝑛−1, 𝑠𝑛−2, . . . , 𝑠𝑛−𝑄). For each state Δ 𝑛, there are 𝑀 transi-
tions emerging from it and going to𝑀 different statesΔ 𝑛+1 =
(𝑠𝑛, 𝑠𝑛−1, . . . , 𝑠𝑛−𝑄+1). Each transition corresponds to one of
the𝑀 possible choices for the symbol 𝑠𝑛. In our problem, the
trellis branch metric 𝜂𝑛 that is associated with each transition
from state Δ 𝑛 to state Δ 𝑛+1 in the Viterbi trellis is defined as

𝜂 (Δ 𝑛, 𝑠𝑛) = max
𝑚=0,1,2
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(14)

and the trellis path metric is given by

𝐸 =
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2

} . (15)

The sign algorithm is used to estimate Θ𝑙 and uses the
sequence estimated from VA. The decision delay inherent in
the VA, that is necessary to obtain reliable data estimates,
causes performance degradation in the adaptive channel
estimation algorithm. To overcome this problem and to
reduce the complexity of the algorithm, we use minimum
survivor processing technique [8], in which one channel
coefficients estimate is performed per time step 𝑛 for all
states in the trellis instead of one estimate per survivor path.
This estimate is performed using the data sequence associated
with survivor path which has the lowest metric among all
survivors. This procedure reduces the complexity of the
algorithm.The realization of this procedure requires only the
comparison of all survivor metrics at every time step. The
sequence with the lowest metric is used to estimate the CPV
at the new time step and then update the branchmetric given
by (15).
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Figure 1: Structure of the proposed SC diversity receiver for the frequency selective fading channel.

It is important to observe that the true CPV is time
invariant, so the task of the adaptive estimation algorithm is
to converge to the CPV as opposed to tracking them as in the
case of time varying coefficients. The estimation of CPV can
be performed using the least mean square (LMS) algorithm.
Occasionally, the LMS algorithm becomes unstable when the
noise impulsiveness becomes stronger. This is because the
LMS is based on a squared error functionwhich is sensitive to
strong impulsive samples [10]. A more robust alternative to
the LMS algorithm, when the noise becomesmore impulsive,
is the sign algorithm (SA).The iterations of this algorithm are
given as

Θ̂
𝑙

𝑛+1
= Θ̂
𝑙

𝑛
+ 𝜇x𝑙
𝑛
sign (𝑒𝑙

𝑛
) , (16)

where 𝑒∗𝑙
𝑛
= [𝑟
𝑙

𝑛
− x𝑙
𝑇

𝑛
Θ̂
𝑙

𝑛
]
∗ is the estimation error conjugate

at time step 𝑛. This algorithm is based on clipping the error
signal to its sign and it is also called least mean absolute devi-
ation algorithm. The initialization of both algorithms is ob-
tained by setting Θ̂𝑙

0
= 0.

3.3. Structure of the Adaptive SC Receiver. The structure of
the proposed adaptive SC is shown in Figure 1. At the start-
up phase, the transmitter sends a preamble sequence to the
receiver.The receiver uses this sequence to calculate the initial
values of Θ̂𝑙

𝑛
and 𝛾𝑙

𝑛
for all diversity branches. The receiver

selects the branch which hasmaximum 𝛾𝑙
𝑛
. After selecting the

strongest diversity branch, sequence detection is performed
using MLSE-VA with trellis branch metric given by (14) to
identify the survivor path. The data sequence corresponding
to the survivor with the lowest metric is used to update the
CPV. Then, the data sequence corresponding to the survivor
with the lowestmetric and the updated CPV is used to update
𝛾
𝑙

𝑛
for the next time period.This procedure is repeated until all

the received data are processed.

4. Numerical Results

In this section, the performance of the proposed adaptive
SC receiver in impulsive noise environment over frequency
selective channel is evaluated. The parameters of simulation
are as follows.The number of symbols is 100000.The number
of diversity branches is 𝐿 = 3. A class-A impulsive noise is
generated with Γ = 0.1 and added to the signal at the input of
the receiver. The impulsive index of the noise 𝐴 is varied.

First, the convergence properties of the SA under severe
impulsiveness of the noise are evaluated in terms of the
normalized mean square error of estimation (NMSE). The
parameters of the generated impulsive noise are 𝐴 = 0.0001

and Γ = 0.1. The results are shown in Figure 2 which is
obtained by performing 10 independent runs of the algo-
rithms.The result for𝐴 = 0.1 is also included for comparison.
The number of the processed symbols is 100000 and the step
size parameter is set to 𝜇 = 0.01 for the sign algorithm. The
initial value is Θ̂(𝑖)

𝑛
= 0 and the SNR is 15 dB.The results show

that the sign algorithm converges to a steady state value of the
NMSE. It is also shown that the steady state value of the
NMSE for 𝐴 = 0.0001 is greater than that one in case of 𝐴 =
0.1. This is because as 𝐴 decreases, the impulsiveness of the
noise increases, causing increase in the NMSE.

It is noted that the value of theNMSEdepends on the SNR
which is illustrated in Figure 3. Both figures (Figures 2 and 3)
show that the SA is suitable for estimation of the channel over
impulsive noise and converges to a steady state value even for
severe impulsiveness of the noise (𝐴 = 0.0001).

To illustrate the effect of the impulsive noise on the per-
formance of the SC receiver, we plot Figures 4 and 5. Figure 4
is plotted assuming that the channel is known while Figure 5
is plotted when the sign algorithm is used to estimate the
channel. The performance of the receiver is measured in
terms of bit error rate (BER). In these figures, the BER is
plotted versus SNR for 𝐴 = 0.1, 𝐴 = 0.01, and 𝐴 = 0.001.
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Figure 2: NMSE for the fifth channel estimation for different values
of 𝐴 and at SNR = 15 dB, and 𝜇 = 0.01.
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Figure 3: NMSE for the fifth channel estimation for different SNR,
𝜇 = 0.01, and 𝐴 = 0.001.

The results show that at lowSNR, the noise dominates the per-
formance of the receiver and the BER is high for all values of
𝐴. When SNR increases, the performance of the SC receiver
degrades as the value of 𝐴 decreases. This is because as the
value of the impulsive index 𝐴 becomes smaller, the noise
impulsiveness becomes stronger, thus causing larger perfor-
mance degradation.

Finally, the comparison between the performance of the
SC receiver with known channel and estimated channel is
shown in Figure 6 for 𝐴 = 0.01 and 0.001. The figure shows
that there is a gap between the performance in case of known
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Figure 4: The performance of the adaptive SC receiver with
estimated channel and for different values of impulsive index 𝐴.
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Figure 5: The performance of the adaptive SC receiver with known
channel and for different values of impulsive index 𝐴.

channel and estimated channel.This gap is due to the channel
estimation error which affects the performance of the SC
receiver.

5. Conclusion

An adaptive SC receiver has been proposed for time varying
mobile communication channel contaminated with Class-A
impulsive noise. The receiver adaptively selects one diversity
branch out of the available branches and discards the others.
This is performed by computing the maximum likelihood
(ML) metric of each diversity branch and selects the branch
which has maximum value. The proposed SC receiver
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Figure 6: Comparison between the performance of the adaptive SC
receiver for known and estimated channels.

dynamically selects the branch according to the time vari-
ations of the channel. Since the noise is impulsive, channel
estimation is performed by sign algorithm which is more
stable than LMS algorithm in presence of strong impulsive-
ness of the noise. The results show that the sign algorithm is
adequate in estimation of the channel parameters in strong
impulsiveness of the noise. The results also show that as the
value of the impulsive index increases, the performance of the
SC receiver is enhanced. This is because as the value of the
impulsive index 𝐴 becomes larger, the noise impulsiveness
becomes weaker, thus causing enhancement in the receiver
performance.
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