
Hindawi Publishing Corporation
BioMed Research International
Volume 2013, Article ID 410294, 9 pages
http://dx.doi.org/10.1155/2013/410294

Research Article
Using Nanoinformatics Methods for Automatically
Identifying Relevant Nanotoxicology Entities from
the Literature

Miguel García-Remesal,1, 2 Alejandro García-Ruiz,2 David Pérez-Rey,1, 2

Diana de la Iglesia,2 and Víctor Maojo1, 2

1 �epartamento de Inteli�encia Arti�cial, Facultad de Informática, Universidad Politécnica de Madrid,
Boadilla del Monte, 28660 Madrid, Spain

2 Biomedical Informatics Group, Facultad de Informática, Universidad Politécnica de Madrid,
Boadilla del Monte, 28660 Madrid, Spain

Correspondence should be addressed to Miguel García-Remesal; mgarcia�infomed.dia.�.upm.es

Received 8 May 2012; Revised 3 July 2012; Accepted 10 July 2012

Academic Editor: Raffaele Calogero

Copyright © 2013 Miguel García-Remesal et al.is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

Nanoinformatics is an emerging research �eld that uses informatics techni�ues to collect, process, store, and retrieve data,
information, and knowledge on nanoparticles, nanomaterials, and nanodevices and their potential applications in health care.
In this paper, we have focused on the solutions that nanoinformatics can provide to facilitate nanotoxicology research. For
this, we have taken a computational approach to automatically recognize and extract nanotoxicology-related entities from the
scienti�c literature. e desired entities belong to four different categories: nanoparticles, routes of exposure, toxic effects, and
targets. e entity recognizer was trained using a corpus that we speci�cally created for this purpose and was validated by two
nanomedicine/nanotoxicology experts. We evaluated the performance of our entity recognizer using 10-fold cross-validation. e
precisions range from 87.6% (targets) to 93.0% (routes of exposure), while recall values range from 82.6% (routes of exposure)
to 87.4% (toxic effects). ese results prove the feasibility of using computational approaches to reliably perform different named
entity recognition (NER)-dependent tasks, such as for instance augmented reading or semantic searches. is research is a “proof
of concept” that can be expanded to stimulate further developments that could assist researchers in managing data, information,
and knowledge at the nanolevel, thus accelerating research in nanomedicine.

1. Introduction

Nanoinformatics is a nascent research �eld at the intersec-
tion of several disciplines, including informatics (informa-
tion technologies and computer science), nanotechnology,
medicine, biology, chemistry, and physics [1]. Nanoinfor-
matics refers to theyu practical application of information
technologies to gather, store, retrieve, and process informa-
tion, data, and knowledge on the physicochemical charac-
teristics of nanoparticles, nanomaterials, and nanodevices
and their potential applications, especially in the biomedical
�eld [1].

Applications of nanoinformatics include, for instance,
nanoparticle characterization and design, modeling and sim-
ulation, data integration and exchange, linking nanoparti-
cles information to clinical data, semantic annotation and
retrieval, domain ontologies, terminologies and standards,
and data and text mining for nanomedical research [2]. In
this context, we can recall and emphasize the role that
bioinformatics—a related informatics discipline—played in
accelerating theHumanGenome Project. One can conjecture
that nanoinformatics might play the same role for nanotech-
nology and nanomedicine that bioinformatics and medical
informatics have played in biology and medicine. We have
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already begun to de�ne the role that nanoinformatics could
play for nanomedicine, as reported elsewhere [3, 4].

In our recent work in this �eld, we have focused on the
challenges, opportunities, and solutions that nanoinformatics
can provide to a critical sub�eld of nanomedicine: nan-
otoxicology. is discipline aims to determine whether and
to what extent the unique properties of nanoparticles (that
arise due to questions such as quantum size effects and/or
their large surface-to-volume ratio) may present potential
or real threats to humans, the environment, or to other
species.

Publications have recently highlighted how nanoparticles
enable a wide range of applications for clinical and thera-
peutic purposes. Bolhassani and colleagues [5] discuss the
use of different types of nanoparticles, such as dendrimers,
polymeric nanoparticles, metallic and magnetic nanoparti-
cles, and quantum dots as effective vaccine adjuvants for
infectious diseases and cancer therapy. Kosuge and colleagues
[6] report the use of FeCo/graphitic-carbon nanocrystals
(FeCo/GCNs) to enhance cellular �uorescence and magnetic
resonance imaging of vascular in�ammation due to their
accumulation in vascular macrophages in vivo. Similarly,
akor and colleagues [7] describe the use of polyethy-
lene glycosylated Raman-active gold nanoparticles (PEG-R-
AuNPs) in different clinical trials targeting dysplastic bowel
lesions during colonoscopy. More extensive reviews can be
found in [8, 9].

Despite these advances, the use of nanoparticles may
involve serious risks for both patients and environment due
to potential secondary toxic effects, also reported in the
literature [10–14]. erefore, it is essential for clinicians and
researchers using nanoparticles for therapeutic purposes to
be able to access relevant nanotoxicology information in
an integrated and intuitive manner. Similarly, regulatory
and environmental researchers need data and information
integration in performing risk assessments or environmental
forecasts as the result of manufacturing, use, degradation,
disposal, and recycling of these materials. Taking advantage
of nanoinformatics methods—most speci�cally text mining
and natural language processing techniques applied to toxi-
cological issues—should contribute to automatically identi-
fying, organizing and making available speci�c nanotoxicity
information reported in the literature to researchers and
physicians.

Based on related research, we have carried out in the
Biomedical Informatics �eld (BMI) [15–18], we present in
this paper a nanoinformatics approach based onnamed entity
recognition (NER) techniques for automatically extracting
nanotoxicology-related entities from the literature. is, to
our knowledge, is the �rst reported effort to automatically
identify and extract relevant entities from scienti�c papers
relevant to nanotoxicology.e extracted entities include, for
instance, names of nanoparticles, nanomaterials, and nan-
odevices, types of toxicity/damage—for example, cell death or
lung in�ammation—and potential routes of exposure to toxic
agents—for instance, inhalation or dermal contact. Once this
information is retrieved and gathered, it can be used for a
wide variety of applications.

is paper is organized as follows. In the background
Section 2, we provide a survey of existing NER-focused
methods and tools, most of them developed in the con-
text of bioinformatics and medical informatics research. In
the methods Section 3, we describe the building of the nan-
otoxicology training corpus, the training and construction
of the automated entity recognizer, and the design of the
evaluation experiment. Next, we present and discuss the
results of the evaluation. Finally, we present the conclusions.

2. Background

Over the past few years, named Entity recognition (NER)
methods and techniques have been widely used in medical
informatics and bioinformatics research to automatically
identify and extract different types of named entities (NEs)
such as gene and/or protein names [19–23], medications and
dosages [24], primary diseases and comorbidities [24], or raw
sequences of nucleic acids and proteins [16, 20, 25, 26].

According to Park and Kim [27], there are four main
approaches to performing NER from textual sources: (1)
dictionary-based approaches, (2) rule-based approaches, (3)
machine-learning approaches and (4) hybrid approaches.
Dictionary-based approaches, try to identify entity names
belonging to domain-speci�c controlled vocabularies, tax-
onomies and/or ontologies directly from the literature.ere
are different techniques for matching entities mentioned
in the text to dictionary entries. ese include, simple
pattern-matching [28–30] or statistical techniques [31] to
compare sequences of tokens from the text to dictionary
entries, advanced symbolic natural language processing and
computational linguistic techniques such as those used in
the National Library of Medicine’s MetaMap program [32,
33], and innovative hybrid approaches such as the one
described in [34]. is encodes both biomedical texts and
dictionary entries into sequences of nucleotide symbols—i.e.,
A, C, G, and T. Once the dictionary entries and the tex-
tual documents have been converted into sequences, the
authors use BLAST [35]—the most ubiquitous tool for DNA
and protein sequence matching—to automatically identify
the entity instances in the text. Although dictionary-based
approaches are relatively simple to design and implement
if the appropriate dictionary is available, they have several
limitations. ese include false positive and false negative
recognition issues arising from ambiguous names and from
synonym and spelling variants, respectively.

Rule-based approaches address some of the limitations of
dictionary-based approaches by dealing with morphological
variants not covered by the latter approaches [27]. Rule-
based methods resort to handcraed patterns and rules to
deal with the different types of morphological variants. Some
examples of rule-based approaches include [36–42]. e
main disadvantage of rule-based approaches is the difficulty
to adapt or reuse them for different domains.

In contrast to rule-based methods—that use handcraed
rules and patterns—machine learning approaches are aimed
at “learning” predictive models that can be used to auto-
matically detect the occurrence of NEs in the text. Exam-
ples of machine learning methods and techniques used for
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NER include conditional random �elds [21, 43–46], hidden
markov models [47–49], support vector machines [45], and
context-aware rule-based classi�ers [33, 50]. To automatically
generate the desired predictive models, nearly all machine
learning-based approaches require a set of documents to train
themodel.is training set is a body of text documents (oen
just single passages) that has been manually analyzed and
annotated by domain experts to identify different entities
occurring in them. Examples of widely used corpora in the
biological domain include GENIA [51]—an annotated body
of literature related to the MeSH terms “human”, “blood
cells”, and “transcription factors”—the BioCreAtIvE body
for Task 1A [52]—text passages annotated with names of
genes and related entities—, or Linnaeus [53]—aimed at
recognizing and identifying species names in the biomedical
literature. Similar corpora—although considerably smaller in
size—have been developed for the medical domain. ese
include, for instance, the corpora used in the I2B2medication
extraction challenge [24, 54] and the I2B2 Obesity NLP
Challenge [55], or a recently developed corpus aimed at
the automated discovery of anaphoric relations in clinical
narrative [56].

Finally, hybrid approaches combine two or more of the
previously described techniques to achieve better perfor-
mance, since each of the described approaches have its own
advantages and disadvantages. Examples of hybrid systems
approach include [45], which combines two machine learn-
ing algorithms (conditional random�elds and support vector
machines) with several rule-based engines, the approaches
described in [16, 33], that rely on rule-based systems and
lookup lists, or the hybrid method reported in [20] that
describes a system combining a preprocessing dictionary and
a rule-based �lter with several independently trained support
vector machines.

Aer reviewing the results of recent NER-related chal-
lenges [24, 55], we decided to adopt a machine learning
approach based on conditional random �elds (CRFs) to
build our nanotoxicology-related named entity recognizer.
We made this decision since CRF-based biomedical NER
systems are fast, effective, accurate, and perform relatively
well even if trained with small training sets [21, 24, 55]. e
latter issue is critical for the purpose reported in this paper,
since to our knowledge there are no any available corpora for
the nanotoxicological domain.erefore, we had to build our
own nanotoxicology corpus from scratch, which is a difficult
and time-consuming task.

In the next section, we describe (1) the methods we used
to build the corpus for training and evaluating the recognizer,
(2) the CRF training process, and (3) the metrics we used
to evaluate the performance of the nanotoxicology-related
named entity recognizer.

3. Methods

e proposed NER system is designed to recognize instances
of entities belonging to four different categories: NANO,
EXPO, TOXIC, and TARGET. Entities belonging to the
NANO category represent nanoparticles, nanodevices, or

e purpose of  this study was to review

published dose-response data on acute lung

inflammation in rats aer instillation of

titanium dioxide particles or six types of

carbon nanoparticles.

e purpose of  this study was to review

published dose-response data on acute

<TARGET> lung </TARGET>

<TOXIC> inflammation </TOXIC> in

<NANO> titanium dioxide particles </NANO>

or six types of  <NANO> carbon

nanoparticles </NANO>

<TARGET> rats </TARGET> aer

<EXPO> instillation </EXPO> of

F 1: Sample annotated sentence belonging to the current “gold
standard”, containing 6 different mentions of entities belonging to
different categories.

nanomaterials, such as for instance, “polyamidoamine den-
drimers” or “buckminsterfullerene”. Similarly, EXPO-labeled
instances describe different routes of human, animal, or
environmental exposure to nanoparticles, such as “inhala-
tion”, “dermal contact” or “pulverization”. On the other
hand, TOXIC-labeled terms represent toxicological hazards
of nanoparticles such as “detachment” or “death”, while
TARGET-labeled terms refer to the actual targets of the
hazards such as “cell” or “kidney”.

We trained a CRF model using an annotated corpus con-
taining 300 sentences selected from the available literature.
Further details on the creation of the annotated corpus, the
training of the CRFmodel and the evaluation protocol follow.

3.1. Building the Annotated Corpus. To build the corpus,
we submitted the query “nanoparticles/toxicity(MeSH major
topic)” to PubMed, obtaining 654 results at the time of
writing.Wemanually analyzed the resulting set of abstracts to
choose 300 sentences containing relevant entities. Members
of our research group manually annotated the selected
sentences. Both the selection of the 300 sentences and
the annotation process were validated by two experts in
nanomedicine and nanotoxicology.

e outcome of the labeling process was an annotated set
of 300 sentences. Figure 1 shows a sample annotated sentence
containing instances for all the target categories. As depicted
in the �gure, each entity is enclosed between an opening
and ending tag that denotes the category to which it belongs.
For this sample sentence, we have two different instances
belonging to the NANO category: “titanium dioxide particles”
and “carbon nanoparticles”, one to EXPO: “instillation”, two
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T 1: Number of entities and tokens manually identi�ed by the
annotators in the 300 selected phrases and annotated as belonging
to one of the target categories.

Nano Expo Toxic Target Total
Entities 426 144 485 385 1440
Tokens 717 186 637 705 2245

to TARGET: “lung” and “rats”, and one to TOXIC: “in�am-
mation”.

Table 1 summarizes the number of entities belonging
to each category that were identi�ed in the 300 selected
phrases and labeled as such by the annotators. As entities
may be composed of 2 or more words (tokens), such as for
instance “titanium dioxide particles”, the table also reports
the total number of tokens belonging to each category.
us, the mention “titanium dioxide particles”, belonging to
the NANO category at entity-level would be counted as 3
different mentions of the NANO category at the token-level.
We made this distinction to evaluate the performance of the
systemboth at entity-level (exactmatching) and at token level
(partial or inexact matching). Further detail is given in the
section Evaluation Metrics.

3.2. Training the CRFModel. We trained a CRFmodel on the
300 annotated sentences to automatically identify instances
of entities belonging to the four target categories. To train the
CRF, we used the Java Application Programming Interface
(API) provided by ABNER [21]. e latter is an open-
source named entity recognizer designed to identify protein
names and gene products. e model was trained using the
default set of features provided by ABNER that includes

orthographic, morphological, and contextual features. e
latter are mostly based on regular expressions and n-gram
features. We also performed minor modi�cations on the
default tokenizer supplied with ABNER to properly identify
chemical formulas.

3.3. Evaluation Metrics. We assessed the performance of the
CRF-based NER system by calculating the precision, recall,
and F-measure values for each type of entity—that is, NANO,
EXPO, TOXIC, and TARGET. ese metrics were computed
both at entity and token levels [54]. Entity-level metrics
measure the ability of the system to successfully recognize
the full text of multiword entities labeled as such in the gold
standard—i.e., the training set of manual annotations in the
corpus. Conversely, token-level metrics are targeted at evalu-
ating the performance of the systemwhen labeling individual
words. For instance, let us suppose that the annotation pro-
vided by our system for the sentence “In this study, metallic
nickel nanoparticles caused higher…” is “In this study, metal-
lic <NANO>nickel nanoparticles</NANO> caused higher…”,
and that the provided annotation for this sample sentence in
the gold standard is “In this study, <NANO>metallic nickel
nanoparticles</NANO> caused higher…”. erefore, for this
example, the system would fail to provide a correct entity-
level annotation for the NANO-labeled entity “metallic nickel
nanoparticles”, since the systemonly achieved a partialmatch.
However, this annotation would lead to an increase in recall
for the NANO category at the token level, since the system
successfully recognized 2 tokens (out of 3) in the phrase
“metallic nickel nanoparticles” as belonging to the NANO
category. We used formulas (1) to compute entity-level and
token-level precision, recall, and F-measure:

Entity-level Precision (EP) =
#correctly returned entities by system

#entities returned by system
,

Entity-level Recall (ER) =
#correctly returned entities by system

#entities in gold standard
,

Entity-level𝐹𝐹-measure (EF) = 2 ⋅ EP ⋅ER
EP+ER

,

Token-level Precision (TP) =
#correctly returned tokens from each entity in systemoutput

# tokens in system output
,

Token-level Recall (TR) =
#correctly returnedtokens from each entity in systemoutput

# tokens in gold standard
,

Token-level𝐹𝐹-measure (EF) = 2 ⋅ TP ⋅ TR
TP + TR

.

(1)

Although the size of the set of annotated sentences—in
terms of number of sentences, entities, and tokens—is rea-
sonable and could be divided into a training and test set
to evaluate the system’s performance, we instead chose to
use 10-fold cross-validation to avoid over�tting. In the next
section, we report the results of the evaluation activity.

4. Results and Discussion

Table 2 summarizes the results of the evaluation of the CRF-
based entity identi�er against the manually annotated gold
standard using 10-fold cross-validation. e table shows the
precision, recall, and F-measure for each target category
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T 2: Summary of results of the evaluation of the CRF-based recognizer using 10-fold cross-validation.

Entity-level Token-level
Precision (EP) Recall (ER) F-measure (FR) Precision (TP) Recall (TR) F-measure (TF)

Nano 0.892 0.873 0.883 0.945 0.943 0.944
Expo 0.930 0.826 0.875 0.981 0.855 0.914
Toxic 0.926 0.874 0.899 0.967 0.909 0.937
Target 0.876 0.860 0.868 0.906 0.916 0.911

(NANO, EXPO, TOXIC, and TARGET) both at entity and
token level.

As shown in Table 2, our CRF-based entity recognizer
yields entity-level precision values that range from 87.60%
(TARGET) to 93.00% (EXPO). Similarly, entity-level recall
values range from 82.60% (EXPO) to 87.40% (TOXIC).
Performance of the recognizer at the token level, include
precision values ranging from 90.06% (TARGET) to 98.10%
(EXPO), while recall values range from 85.50% (EXPO) to
94.30% (NANO). ese results show that the CRF-based
approach performs particularly well at recognizing nanotox-
icology entities—with entity-level F-measure values close
to 90% for all categories—even when trained with such a
reduced set of sentences. Moreover, the CRF-based approach
seems to perform better at recognizing nanotoxicology enti-
ties than at identifying entities belonging to the biomedical
domain, as reported for protein and gene names (precision
= 65.90%, recall = 74.50%) [21], or medication information
(precision = 90.37%, recall = 66.12%) [44]. e targeted
entities are, of course, quite different, so direct comparisons
should be treated with caution.

To ensure a fair evaluation, we compared the adopted
CRF-based approach to a hybrid approach used as baseline.
is hybrid method combines a dictionary-based approach
with a term selection scheme based on TF/IDF (term fre-
quency/inverse document frequency) weights [57].e latter
are widely accepted statistics that measure the importance
of a term in the context of a textual collection or corpus.
To evaluate the hybrid method used as baseline, we pro-
ceeded as follows. First, we built a dictionary containing all
terms occurring in the corpus we created, composed of 300
sentences. is dictionary contained all tokens—excluding
stop words—and n-grams of sizes ranging between 2 and 6
occurring in the corpus. N-grams are groups of tokens that
appear consecutively in the text. For instance, for the sentence
“Gold nanoparticles have the potential to …” we would
have the following n-grams of size 2: “Gold nanoparticles”,
“nanoparticles have”, “have the”, “the potential”, “potential to”.
Examples of n-grams of size 3 include “Gold nanoparticles
have” or “nanoparticles have the”. We chose using n-grams
in addition to single-word tokens since many concepts
belonging to different ontologies are multiword concepts.
Next, for each term T in the vocabulary, we calculated its
TF/IDF score for the document containing the maximum
number of occurrences of the term T. Aer that, all terms
in the vocabulary were sorted in descending order of the
TF/IDF score. We discarded all terms having a TF/IDF
score smaller than 0.1. Finally, we compared the remaining

T 3: Summary of results of the evaluation of the hybrid
approach used as baseline.

Entity-level
Precision Recall F-measure

Nano 1.00 0.33 0.496
Target 0.75 0.48 0.585

terms in the vocabulary to terms belonging to two different
ontologies: the Foundational Model of Anatomy [58]—to
detect anatomical locations that might be potential targets
of nanoparticles—and the Nanoparticle Ontology [59]—to
identify names of nanoparticles. If a term from the vocab-
ulary matched a term from any of the ontologies, then it
was marked as belonging to the NANO category—if the
matched term belonged to the Nanoparticle Ontology—or
to the TARGET category—if the matched term belonged to
the Foundational Model of Anatomy. Note that, we did not
focus on identifying toxic effects of nanoparticles and modes
of exposition since there are no currently available ontologies
or controlled vocabularies addressing such topics, and thus
it is not possible using a vocabulary-based approach. Table
3 shows the results of the evaluation for the method used as
baseline.

As shown in Table 3, the baseline approach yields preci-
sions of 100% and 75% for the NANO and TARGET
categories respectively. ese �gures are reasonable, since
most termsmatching concepts belonging to the Nanoparticle
Ontology refer to names of nanoparticles with high probabil-
ity.is is not the case, however, for termsmatching concepts
from the Foundational Model of Anatomy, since anatomical
locations may be mentioned together with nanoparticle
names and there not might exist any toxicity relationships
between them. Regarding the recall values yielded by the
baseline method, it must be noted that these values are much
smaller than those yielded by the CRF-based approach.ese
values are also reasonable, since the Nanoparticle Ontology
was initially designed to provide a conceptualization of
the domain of cancer nanotechnology research, while the
documents in the corpus are targeted at different diseases.
Similarly, the Foundational Model of Anatomy alone is
not suitable for detecting potential targets of nanoparticles,
since in addition to anatomical locations, potential targets of
nanoparticlesmay also include animals and the environment.

ese results suggest that the CRF-based approach is
suitable for performing NER-dependent tasks, especially
when other approaches such as the vocabulary-based one
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F 2: Screenshot of the prototype of the “nanotoxicity searcher”.

cannot be performed due to the lack of a well-established
controlled vocabularies or ontologies.

Examples of NER-dependant tasks that can be carried out
using our nanotoxicology recognizer include, for instance,
�nding relationships between the detected entities, or index-
ing scienti�c papers with the different entities appearing
in them. In fact, the latter task is a signi�cant research
topic in biomedical informatics research, since many dif-
ferent systems for automatically indexing and searching the
biomedical literature have been developed over the last few
years. Examples include Pharmspresso [60], an information
retrieval and extraction system for pharmacogenomic-related
literature that follows a dictionary-based approach to identify
instances of genes, drugs, polymorphisms and diseases, or
PubDNA Finder [17], an online repository that we developed
to link PubMed Central manuscripts to the sequences of
nucleic acids appearing in them, following a hybrid approach
that combines a rule-based system and lookup lists. We have
already begunworking in this directionwith the development
of a prototype of the “nanotoxicity searcher”. e latter is
an intelligent search engine that provides users with a web
interface to search for PubMed-indexed papers that were
automatically annotated with speci�c mentions of relevant
nanotoxicology entities using the methods described in this
paper. Figure 2 shows a screenshot of the current prototype
of the “toxicity searcher”. We believe that our search engine
can be a valuable tool for nanomedical researchers to easily
discover toxic and secondary effects of nanoparticles reported
in the literature.

�o our knowledge, the results we report are the �rst
application of textminingmethods to extract nanotoxicology
information from the literature—in fact, the �rst text mining
application in the whole �eld of nanomedicine. Considerable
interaction between nanoinformatics professionals should

enable building extended corpora in this and other �elds,
where challenges and competitive testing can be carried out
to evaluate these methods from text mining, information
retrieval, and how they perform with different information
types. Similar competitions have been earlier carried out in
BMI, with signi�cant results and success [52, 54, 55]. In this
way, we can consider our research as a �rst “proof of concept”,
which needs to be followed up soon by efforts by others, and
may provide opportunities in an entirely new area of research
for nanoinformaticians.

Extending the research presented in this work to include
more general entities—that is, nanomedicine and nanotech-
nology-related entities—can open new and signi�cant chal-
lenges for nanoinformaticians, given the novelty of this topic
and approach. ese potential challen-ges include, for
instance: (a) populating electronic health records and/or
clinical trials with nanolevel information extracted from
the literature, (b) automatically annotating and indexing
nanomedical documents mentioning concepts and entities
belonging to well-known ontologies and controlled vocabu-
laries, (c) aligning and bringing together existing biomedical
and nanomedicine/nanotechnology ontologies—such as for
example the Nanoparticle Ontology [59], the Foundational
Model of Anatomy [58], or the Gene Ontology [61]—or (d)
automatically creating inventories of nanoparticles contain-
ing details about their characterization and design, potential
uses, and applications—for example tissue regeneration, drug
delivery, medical imaging, identi�cation of cancerous cells,
for example—toxicity, links to relevant literature, links to
modeling, and simulation tools, and so forth.

is research is an example of the potential chal-
lenges and synergies that lie ahead for future interactions
between experts in nanotechnology, nanomedicine, and
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nanoinformatics. Such interactionsmay lead to a broad range
ofmedical applications involving different nanomedical chal-
lenges. In this regard, the authors are currently working
together on the development of new methods and tools for
addressing these issues.

5. Conclusion

In this paper, we have presented a nanoinformatics approach
based on NER techniques for automatically identifying rele-
vant nanotoxicology entities in scienti�c articles. e results
of the evaluation suggest that the entity recognizer, we
have developed could be used by other nanoinformaticians
to reliably perform different NER-dependant tasks. ese
include extracting nanotoxicity information from textual
sources to populate structured databases, or to automati-
cally index and search nanotoxicology articles. In addition,
this work can be extended to recognizing more general
nanomedicine and nanotechnology entities, thus providing
new research opportunities for nanoinformaticians. is is,
to our knowledge, the �rst report that explores the use of text
mining techniques in the area of nanotechnology. Further
research in this emerging nanoinformatics �eld may lead to
the development of novel methods and tools that could assist
researchers inmanaging data, information, and knowledge at
the nanolevel, thus accelerating research in nanoscience.
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