
Better Client OFF Time Prediction to Improve Performance
in Web Information Systems�

Alan Berfield, Bill Simons, Panos K. Chrysanthis, Kirk Pruhs
Department of Computer Science

University of Pittsburgh
Pittsburgh, PA 15260, USA

falandale,simons,panos,kirkg@cs.pitt.edu

ABSTRACT
Prefetching is a potential technique for reducing latency in
Web information Systems. However, it has been shown that
the burstiness of standard prefetching can drastically in-
crease network congestion, and can even increase, rather
than decrease, average user perceived latency. Accurate
OFF time, the idle periods between user requests, predic-
tion potentially allows the document to be downloaded at
an even rate over the OFF time, which can ameliorate the
burstiness, and signi�cantly improve both network conges-
tion and average user perceived latency. Yet accurate pre-
diction of such OFF times has been di�cult to achieve. This
paper examines the use of two machine-learning techniques,
namely, neural networks and genetic algorithms, for OFF
time prediction. Our performance evaluation results show
that these techniques provide better accuracy than those
previously reported, with an average increase of twice the
correlation. Our results also show that document type is
the best predictor of OFF time. Further, our functions can
be tailored to favor underpredictions, which would have less
negative e�ects on the overall network than overpredictions.

1. INTRODUCTION AND MOTIVATION
As the Internet becomes more and more popular, it also

becomes more di�cult to deliver content in a timely manner.
There is a strong need for reducing user perceived delays,
especially in Web Information Systems and E-Commerce ap-
plications in which the quality of the o�ered services is �rst
judged by the web site responsiveness. A lot of work has
been done on studying various approaches to either reduce or
hide network latency, in particular caching (e.g., [7],[4]) and
prefetching (e.g., [1],[3]). Caching involves storing frequently
accessed or large, static documents closer to users. Proxy-
caches, for example, can quickly return requested documents

�This work is supported in part by National Science Foun-
dation under grants IIS-9812532 and CCR-0098752.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

previously accessed by other users in the same organization.
Prefetching is the retrieval of documents before a user re-
quests them in anticipation of the user's future requests. In
this paper, we will focus on prefetching and in particular on
client initiated prefetching.
In order to be e�ective, the prefetching algorithm needs

(1) to predict which documents a user might reference next
with high accuracy and (2) to take advantage of the idle time
between user requests to download the document to the user
site. Several methods have been proposed in predicting fu-
ture references with varying degree of accuracies (e.g., [4]).
Orthogonal to the choice of the document to prefetch, is
the choice of the rate to prefetch this document. The stan-
dard option is to prefetch the document at the maximum
rate that the network will support. But this option creates
bursty tra�c patterns, and increases network congestion.
In fact, in a paper by Crovella and Barford paper [1] it was
shown that the increase in congestion caused by prefetching
can actually increase, and not decrease, user perceived la-
tency. Crovella and Barford [1] proposed a rate-controlled
prefetching scheme that utilizes client OFF times. OFF time
is the time between a client's requests (from the completion
of the last request until the initialization of new one):

OFF time = <completion time of last request>
-<time of initiation of next request>

During the OFF time the user is typically examining the
latest transferred document. In this rate-controlled scheme,
the document is downloaded at an even rate over the OFF
time. The speed of the client's network connection has little
a�ect on the OFF time, though it is utilized by the prefetch-
ing scheme to compute the download rate. In [1] it was
shown that using their rate-controlled scheme with a good
OFF time predictor would signi�cantly decrease both net-
work congestion and user perceived latency.
Unfortunately, good OFF time prediction does not appear

to be easy. Barford and Crovella [1] suggested a scheme
based on the size of the previous document, with the ra-
tionale being that it takes a user longer to process larger
documents. This scheme met with only limited success. In
[1] it was shown that the correlation between document size
and next OFF time to be around 0.14, that is, these two
parameters are not that closely related. As far as we know,
there have been no other papers that have attempted to
improve on this document size predictor, nor have any pro-
posed alternative prediction methods.
There are many other document characteristics besides

document size that potentially might be correlated with

OFF time, but it was not obvious which document prop-
erty is most closely related to OFF times. In this paper, we
report on the use of standard machine-learning techniques
in identifying those documents characteristics that best pre-
dict OFF times. Speci�cally, we apply neural networks and
genetic algorithms [5, 6]. Neural networks are mathematical
models based on the biology of the brain that can learn cer-
tain tasks including pattern recognition. On the other hand,
genetic algorithms are modeled after genetics and evolution.
Both techniques learn a function from past behavior for pre-
dicting future OFF times. These two approaches were cho-
sen because they tend to perform well with continuous data
and data without a large number of features.
To facilitate comparison with the only other predictor,

that is, the document size predictor given in [1], we ran
our experiments on the same inputs that used in [1]. Our
results show that these learned functions performed signif-
icantly better than the document size predictor in [1]; On
average, the correlations for these learned functions were
approximately twice those for the document size predictor,
with some having correlation as high as 0.5. Further, our re-
sults show that document type is the best predictor of OFF
time. The rationale for this is probably that users exam-
ine di�erent document types in vastly di�erent ways, e.g. a
large image can be assimilated more quickly by a user than
a large text �le.
Another signi�cant property of our approach is that our

functions can be tailored to favor underpredictionsover over-
predictions. Intuitively, underprediction can has a less neg-
ative e�ect on network congestion than overprediction. If
there is a serious overprediction then when the user requests
the document, much of the document still not been down-
loaded, and then the �le must then downloaded at the rate
that network can support, once again causing burstiness and
network congestion.
The rest of this paper is organized as follows: In the next

section, we explain our experimental setup and provide some
brief background on Neural Nets and Genetic Algorithms.
In Sections 3 and 4, we present the results of our exper-
iments for both methods. We conclude in Section 5 with
some comments on performance and future directions for
research.

2. EXPERIMENTAL SETUP

2.1 Training and Test Data
The data used in the training and testing of the neural

network and genetic algorithm are client web traces from the
computer science department at Boston University [2]. Each
client web trace contains data for a single user on a speci�c
machine for a given day. The original data was modi�ed
into the following vector:

< previous OFF time, picture boolean,

compression boolean, text boolean, movie boolean,

other boolean, �le size, retrieval time, target output>

Previous OFF time is the duration of time since the last
transfer completed and the current one began. Only one
of the boolean values in each vector could be set to true
(1). These booleans represented the type of �le that was
downloaded. Also, data items that had a zero for retrieval
time were ignored since those documents were fetched from
the client's cache and did not a�ect the OFF times.

The speci�c data sets used for training both the neural net
and the genetic algorithm were chosen at random from those
trace �les with a large �le size. This was done because we
believed large �le size would correspond to a large number of
records, but as it turned out this was not the case. Instead,
we got a variety, with some having many records and others
much less.
We performed experiments on a large number of traces

from a variety of users in the set. For brevity, in the rest of
the paper we report only on the results of two users: Con55
and Con112. These reults are typical for the entire set.
Speci�cally, we chose the �les con55.rooh.798816043 and

con112.rolph.792266342 to be used for training. Both of these
had more than 200 records. The data sets used for testing
the e�cacy of the trained Con55 neural net and genetic
algorithm were:

� con55.animal.800142146 (64 records)

� con55.tigger.800122654(47 records)

� con55.beaker.791497209 (105 records)

The data sets used for testing the Con112 neural net and
genetic algorithm were:

� con112.piglet.791661469 (160 records)

� con112.pooh.791768842 (238 records)

The names of the �les come unchanged from the collection
of traces. Each �le in the collection corresponds to an indi-
vidual user for a particular day.

2.2 Neural Network
Neural networks are mathematical models based on the

biology of the brain. They can learn to perform certain
tasks including pattern recognition and function approxima-
tion. Similar to networks of biological neurons, the knowl-
edge acquired by these models as a result of the algorithms
by which they learn, is gained through the manipulation of
connections between the nodes of the network.
In our experiments, we use the QNet 2000 Shareware pro-

gram to create a three level, feed-forward, network with
eight input nodes, three hidden-level nodes, and one out-
put node. Each of the eight input nodes corresponds to one
value in the test data vectors described above. The value
of the output node after each input vector has propagated
through the network is the network's OFF time prediction.
The network was trained using the back-propagation learn-
ing algorithm which adjusts the network's inter-node con-
nections by using gradient descent to determine the contri-
bution of each connections' weight to the error between the
network's actual output on each training vector and the de-
sired output for that vector. The weights are adjusted in
order to minimize the network's error over all the training
vectors.
The network was trained through 80,000 presentations of

training data. After 80,000 presentations the network be-
came over trained meaning that its error began to steadily
increase. (This is commonly referred to as over�tting[6], and
is a problem that a�ects every kind of learning algorithm. It
occurs because in a large search space, irrelevant attributes
in the training data can appear to be patterns even though
in the whole population they are actually not.)

Figure 1: Con55 Animal Figure 2: Con55 Animal Error

2.3 Genetic Algorithm
A genetic algorithm (GA) is a technique for searching a

large space more quickly. Such algorithms are modeled af-
ter genetics and evolution. They incorporate principles of
inheritance, mutation, and natural selection. A population
of individuals, each a di�erent possible solution, is gener-
ated.
Each individual is assigned a �tness value based on a pre-

determined �tness function. Based on the selection rate, a
certain percentage of those with highest �tness survive to the
next generation. These survivors reproduce via crossover of
genes to replace the dead ones, and a percentage of the o�-
spring are mutated according to the mutation rate. Fitness
is calculated again, and the process repeats until a desired
�tness is reached or a speci�ed number of generations have
elapsed.
The GA we created learns a vector of nine real numbers

< C1; :::;C9 >, that are used in the following prediction
function:

Prediction = C1 � F1 + C2 � F2 +C3 � F3 +
C4 � F4 +C5 � F5 +C6 � F6 +
C7 � F7 +C8 � F8 +C9

Where F1 through F8 are the known data features (F1 =
previous OFF time, F2 = picture boolean, F3 = compression
boolean, F4 = text boolean, F5 = movie boolean, F6 = other
boolean, F7 = �le size, F8 = retrieval time).
After running a series of tests on various settings for pop-

ulation size, number of generations, selection rate, and mu-
tation rate, the following were determined to perform best
and used in our experiments:

� Population Size of 500

� 2000 Generations

� Selection Rate of 30%

� Mutation Rate of 90%

An individual's �tness was de�ned as the di�erence be-
tween the actual OFF time and the prediction, averaged
over the the training set. Thus, a higher �tness would be a
number closer to zero.

3. EXPERIMENTAL RESULTS:
NEURAL NETWORK

3.1 Experiment 1
The results of the Con55 training session, corresponding

to user Con55, are summarized in the following table. The
table shows the percentage of contribution of each data fea-
ture to the value of the output node. Recall that these fea-
tures correspond to the parameters of the vector capturing
the properties of a document.

Input Node % Contribution

Previous OFF time 3.79
Picture boolean 16.17
Compression boolean 17.81
Text boolean 10.24
Movie boolean 8.79
Other boolean 31.30
File size 4.12
Retrieval time 7.78

As can be seen, the Con55 network based its OFF time
predictions primarily on the type of the previously down-
loaded �le captured by the boolean values.
As mentioned above, the Con55 network was tested for

three di�erent daily sessions of user Con55. The results
of the �rst test of the Con55 network for the Animal data
set are shown in Figures 1 and 2. Figure 1 compares the
actual output values (the predicted OFF time) of the Con55
network to the desired output values (the real OFF time).
We can see a number of peaks in the two data series that
are aligned. The correlation between the two data series
is 0.517314 with a probability of obtaining the results with
random data (referred to from now on as the p-value) of
0.001.
The distribution of error over the test inputs, the di�er-

ence between actual and desired output, is shown in Fig-
ure 2. Negative values indicate inputs where the algorithm
was underpredicting, while positive values represent over-
predicting. In this case, the neural network is clearly over-
predicting, mostly between 16 and 24 seconds.

Figure 3: Con55 Tigger Figure 4: Con55 Tigger Error

Figure 5: Con112 Piglet Figure 6: Con112 Piglet Error

Figure 7: Con112 Pooh Figure 8: Con112 Pooh Error

The results for the second test on the Con55 Tigger data
set are shown in Figures 3 and 4. The relationship is less
obvious visually, yet there is a relatively high correlation
of 0.416825 and 0.01 p-value. The error is less than the
�rst case, although the neural network is still overpredicting,
mostly around 16 seconds.
For the last test set, Con55 Beaker, we got similar behav-

ior as in the �rst two ones although lower correlation. The
neural network is overpredicting around 16 seconds, and cor-
relation is 0.202934 with a p-value of 0.05.

3.2 Experiment 2
For the Con112 user, the results of the training session

are summarized in the following table. The table shows the
percentage of contribution of each data feature to the value
of the output node.

Input Node % Contribution

Previous OFF time 16.84
Picture boolean 13.36
Compression boolean 2.67
Text boolean 4.99
Movie boolean 4.89
Other boolean 8.04
File size 24.04
Retrieval time 24.87

The table shows that, as opposed to the Con55 network
which based its prediction on �le type, the Con112 network
based its predictions for user Con112's OFF times primarily
on the previous OFF time and the size and retrieval time of
the previously downloaded �le.
The generated neural network was tested on two di�erent

daily sessions of user Con112. In the Con112 Piglet graph,
Figure 5, we see some alignment of peaks and valleys but
the two data series have a low correlation of 0.153071 with
a high p-value of approximately 0.06. Error is shown in
Figure 6. As in the case of the Con55 network, we again
observe more overprediction rather than underprediction.
The results of the second test case on the Con112 Pooh

data set is shown in Figures 7 and 8. There is a correlation
of 0.126419 and a high p-value around 0.06. Error is similar
to the �rst test.
These relatively low correlations are equivalent to those

found in [1]. One possible explanation is a di�erence in user
behavior from that exhibited in the training set.

4. EXPERIMENTAL RESULTS:
GENETIC ALGORITHM

4.1 Experiment 1
The genetic algorithm (GA) learned the following vector

for the Con55 user:

< 0:00; 1:68; 19:51; 1:46; 5:17; 2:50; 0:00; 2:02; 11:72 >

This means that the algorithm based its predictions mostly
on the type of �le that was downloaded last. While there ap-
pears to be an emphasis on compressed �le type (C3=19.51),
this is not actually the case. After some thought and exam-
ination of the training data, we came to realize that very

few of the training inputs actually contained a true value
for the compression boolean. This means that most of the
training had that coe�cient multiplied by zero (false), thus
rendering the coe�cient practically useless for the predic-
tion. With no information to guide the learning, the value
of the coe�cient became a meaningless random number. In-
terestingly, the coe�cient for the �le size is 0.00 meaning
that no importance was placed on it at all.
As in the case of the neural network, we perform three

tests using the same daily sessions of user Con55. Figure 9
shows the performance of the Con55 genetic algorithm on
the Animal test data. The correlation between the desired
output of the algorithm and its actual output is 0.530229
with a p-value of 0.001. Error, shown in Figure 10, is less
diverse than in the Neural Net and is concentrated around
an overprediction of 16 seconds. The GA primarily ranges
between -150 and 85 seconds as opposed to -150 and 130
seconds.
For the Tigger test data, the correlation between the de-

sired and actual output shown in Figure 11 is 0.230931259
with a p-value of 0.1. The error is shown in Figure 12, and
again appears concentrated around 16 seconds but with sig-
ni�cantly better range (-150 to 24 seconds).
The last test data set for the Con55 algorithm, the Beaker

data, is shown in Figures 13 and 14. The data series have a
0.395252112 correlation with a p-value of 0.001. The error
is similar to the second test.

4.2 Experiment 2
The vector that the genetic algorithm learned for the

Con112 user is:

< 0:08;�4:19;�32:26; 1:50; 6:76;�1:38; 0:00; 0:98; 4:61 >

For this user, the algorithm again gives more emphasis to
�le type than to the other features. As stated previously,
the large negative coe�cient on the compressed boolean is
insigni�cant. File size is once again being ignored.
We perform two tests for this user on the same test data

as in the case of the neural network. These tests produced
the best results for the GA. The graphs for the Con112 test
data sets are shown in Figures 15, 16, 17, and 18.
The correlation between the desired and actual output for

the Pooh test is 0.233832703 and 0.274605 for the Piglet test.
Both have a p-value of 0.001. Most of the error for each test
is around 0 seconds, meaning that most of the time this GA
has no actual and predicts the correct OFF time.

4.3 Biased Learning
The concentration of error in the overpredicting range in-

trigued us in both the neural network and the GA. If the
error cannot be eliminated, it would be preferable for the
error to be in the underpredicting range, as close as possible
to zero. Underprediction a�ects the individual user but has
less impact on the overall network performance.
As a further test, we decided to try biasing the genetic

algorithm's learning. We hoped that this would shift the
bulk of the error shown in the graphs to the left, closer to
zero. The biasing was done quite easily by modifying the �t-
ness function to include information about the percentage of
overpredictions. Fitness was scaled by a factor proportional
to this percentage. The results were very encouraging. We
ran the new learner on both the Con55 and Con112 user.
The new vector learned for the Con55 user was:

< �0:03; 2:05; 20:68; 3:71; 9:54; 2:13; 0:00; 1:13;�2:59 >

Figure 9: GA Con55 Animal Figure 10: GA Con55 Animal Error

Figure 11: GA Con55 Tigger Figure 12: GA Con55 Tigger Error

Figure 13: GA Con55 Beaker Figure 14: GA Con55 Beaker Error

Figure 15: GA Con112 Piglet Figure 16: GA Con112 Piglet Error

Figure 17: Con112 Pooh Figure 18: Con112 Pooh Error

Figure 19: Con55 Animal Error w/Bias Figure 20: Con55 Beaker Error w/Bias

and for the Con112 user:

< 0:08;�3:70;�17:42; 1:57; 4:09;�0:89; 0:00; 0:97; 4:13 >

Although the coe�cients are di�erent than before, the algo-
rithm is still basing its predictions on �le type and ignoring
�le size.
The graphs of the error for the Con55 Animal and Beaker

data sets are shown in Figures 19 and 20. As can be seen,
there is very little positive error, and most of the error is now
concentrated directly above zero. For both data sets, the
correlation actually increased very slightly by about 0.01.
The Tigger data set had a similar shift in error, but its

correlation dropped signi�cantly. This set also had the low-
est correlation with the unbiased learner, and could be an
example of user behavior di�ering from that exhibited in the
training data.
For the Con112 user, the bias had only minimal e�ect,

with a very slight shift in error and virtually no change in
correlation. The original function found by the unbiased
�tness function is already fairly strong in this respect.

5. CONCLUSIONS
The innovation of this paper is the use of machine learning

techniques in predicting user OFF times. These OFF times
can be utilized by a rate-controlled prefetching scheme to
improve network performance while reducing individual user
perceived latency. This will have a signi�cant impact on the
overall performance of a Web Information System or an E-
Commerce application.
In our experiment we used two di�erent machine learning

techniques, namely, neural networks and genetic algorithms.
The results of the neural network's performance were sur-
prising to us. We had expected the network that had learned
to predict the next OFF time based on the previous OFF
time, �le size, and retrieval time to perform much better
than one that used the �le types as its primary inputs. A
possible explanation for this behavior is that the amount of
time that a client spends examining the downloaded mate-
rial may be dependent on the content (type) of �le.
The genetic algorithm's primary prediction methods did

not vary quite like the neural network's. It based its predic-
tion primarily on �le type for both users, while the neural
network used �le type for only one of the users presented.
Our additional test sets exhibited similar results. The ge-
netic algorithm's behavior supports further the hypothesis
that the type of a document plays an important role in de-
termining the duration between successive requests.
It is clear from our results that machine learning tech-

niques do in fact perform better than the prediction method
used by Mark Crovella and Paul Barford in [1]. In fact, both
of our algorithms performed better. The neural network and
genetic algorithm each had an average correlation approxi-
mately twice that of the old method, which only averaged
0.14. Of our two methods, the genetic algorithm appears to
perform slightly better overall. We came to this conclusion
because it does much less overpredicting and can be easily
biased to do even less. We believe it is better to underpre-
dict OFF time as overprediction could result in increased
burstiness and network latency. If OFF time prediction is
tied to the number of data documents to be prefetched, the
overprediction might unnecessarily overload the Web Infor-
mation System with requests that are less likely to be used.
Correlations produced by the two methods were practically

the same.
One area still to explore is retraining. This could be done

periodically as the user works, based on either time elapsed
or amount of data collected since the last training. The old
learned function would provide the starting point for the
learning algorithm to make modi�cations based on the new
user data. Such retraining would ensure the algorithm kept
up with the changing nature of the user and the network. As
an initial investigation, we ran some additional experiments,
training on data from one month and testing on data from 6
months later. Our techniques still showed good predictions
and similar correlations.

6. REFERENCES
[1] M. Crovella and P. Barford. The Network E�ects of

Prefetching. In Proceedings of IEEE INFOCOM, San
Francisco, CA, 1998.

[2] C. Cunha, A. Bestavros, and M. Crovella.
Characteristics of WWW Client Traces. Boston
University Department of Computer Science Technical

Report TR-95-010, April 1995.

[3] B.D. Davison and V. Liberatore. Pushing Politely:
Improving Web Responsiveness One Packet at a Time.
In Proceedings of PAWS00, 2000.

[4] L. Fan, P. Cao, and Q. Jacobson. Web Prefetching
Between Low-Bandwidth Clients and Proxies:
Potential and Performance. In Proceedings of

SIGMETRICS, 1999.
[5] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[6] S. Russell and P. Norvig. Arti�cial Intelligence: A
Modern Approach. Prentice-Hall, 1994.

[7] B. Williams. Transparent Web Caching Solutions. In
Proceedings of WCW'98, June 1998.

[8] A. Wolman, G. Voelker, N. Sharma, N. Carwell,
A. Karlin, and H. Levy. On the scale and performance
of cooperative Web proxy caching. In 17th Symposium

on Operating Systems Principles, December 1999.

