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Kernel sliced inverse regression (KSIR) is a natural framework for nonlinear dimension reduction using the mapping induced by
kernels. However, there are numeric, algorithmic, and conceptual subtleties in making the method robust and consistent. We apply
two types of regularization in this framework to address computational stability and generalization performance. We also provide
an interpretation of the algorithm and prove consistency. The utility of this approach is illustrated on simulated and real data.

1. Introduction

The goal of dimension reduction in the standard regression/
classification setting is to summarize the information in the
𝑝-dimensional predictor variable𝑋 relevant to predicting the
univariate response variable 𝑌. The summary 𝑆(𝑋) should
have 𝑑 ≪ 𝑝 variates and ideally should satisfy the following
conditional independence property:

𝑌:𝑋 | 𝑆 (𝑋) . (1)
Thus, any inference of 𝑌 involves only the summary statistic
𝑆(𝑋)which is ofmuch lower dimension than the original data
𝑋.

Linear methods for dimension reduction focus on linear
summaries of the data, 𝑆(𝑋) = (𝛽

𝑇

1
𝑋, . . . , 𝛽

𝑇

𝑑
𝑋). The 𝑑-

dimensional subspace, S = span(𝛽
1
, . . . , 𝛽

𝑑
), is defined as

the effective dimension reduction (e.d.r.) space in [1], sinceS
summarizes all the predictive information on 𝑌. A key result
in [1] is that under somemild conditions, the e.d.r. directions
{𝛽
𝑗
}
𝑑

𝑗=1
correspond to the eigenvectors of the matrix:

𝑇 = [cov (𝑋)]−1 cov [E (𝑋 | 𝑌)] . (2)
Thus, the e.d.r. directions or subspace can be estimated via an
eigenanalysis of the matrix 𝑇, which is the foundation of the

sliced inverse regression (SIR) algorithm proposed in [1, 2].
Further developments include sliced average variance estima-
tion (SAVE) [3] and Principal Hessian directions (PHDs) [4].
The aforementioned algorithms cannot be applied in high-
dimensional settings, where the number of covariates 𝑝 is
greater than the number of observations 𝑛, since the sample
covariance matrix is singular. Recently, an extension of SIR
has been proposed in [5], which can handle the case for 𝑝 > 𝑛
based on the idea of partial least squares.

A common premise held in high-dimensional data anal-
ysis is that the intrinsic structure of data is in fact low
dimensional, for example, the data is concentrated on a
manifold. Linearmethods such as SIR often fail to capture this
nonlinear low-dimensional structure. However, there may
exist a nonlinear embedding of the data into a Hilbert space,
where a linear method can capture the low-dimensional
structure. The basic idea in applying kernel methods is the
application of a linear algorithm to the data mapped into a
feature space induced by a kernel function. If projections onto
this low-dimensional structure can be computed by inner
products in this Hilbert space, the so-called kernel trick [6, 7]
can be used to obtain simple and efficient algorithms. Since
the embedding is nonlinear, linear directions in the feature
space correspond to nonlinear directions in the original data
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space. Nonlinear extensions of some classical linear dimen-
sional reduction methods using this approach include kernel
principle component analysis [6], kernel Fisher discriminant
analysis [8], and kernel independent correlation analysis [9].
This idea was applied to SIR in [10, 11] resulting in the kernel
sliced inverse regression (KSIR) method which allows for the
estimation of nonlinear e.d.r. directions.

There are numeric, algorithmic, and conceptual subtleties
to a direct application of this kernel idea to SIR, although it
looks quite natural at first glance. In KSIR, the 𝑝-dimensional
data are projected into a Hilbert space H through a feature
map: 𝜙 : 𝑋 → H and the nonlinear features are supposed to
be recovered by the eigenfunctions of the following operator

𝑇 = [cov(𝜙(𝑋))]−1 cov [E (𝜙 (𝑋) | 𝑌)] . (3)

However, this operator 𝑇 is actually not well defined in gen-
eral, especially when H is infinite dimensional and the
covariance operator cov(𝜙(𝑋)) is not invertible. In addition,
the key utility of representation theorems in kernel meth-
ods is that optimization in a possibly infinite dimensional
Hilbert space H reduces to solving a finite dimensional
optimization problem. In the KSIR algorithm developed in
[10, 11], the representer theorem has been implicitly used and
seems to work well in empirical studies. However, it is not
theoretically justifiable since 𝑇 is estimated empirically via
observed data. Moreover, the computation of eigenfunctions
of an empirical estimate of 𝑇 from observations is often
ill-conditioned and results in computational instability. In
[11], a low rank approximation of the kernel matrix is used
to overcome this instability and to reduce computational
complexity. In this paper, our aim is to clarify the theoretical
subtleties in KSIR and tomotivate two types of regularization
schemes to overcome the computational difficulties arising in
KSIR. The consistency is proven and practical advantages of
regularization are demonstrated via empirical experiments.

2. Mercer Kernels and
Nonlinear e.d.r. Directions

The extension of SIR to use kernels is based on properties of
reproducing kernel Hilbert spaces (RKHSs) and in particular
Mercer kernels [12].

Given predictor variables 𝑋 ∈ X ⊆ R𝑝, a Mercer kernel
is a continuous, positive, and semidefinite function 𝑘(⋅, ⋅) :
X ×X → R with the following spectral decomposition:

𝑘 (𝑥, 𝑧) = ∑

𝑗

𝜆
𝑗
𝜙
𝑗 (𝑥) 𝜙𝑗 (𝑧) , (4)

where {𝜙
𝑗
} are the eigenfunctions and {𝜆

𝑗
} are the corres-

ponding nonnegative, nonincreasing eigenvalues. An impor-
tant property of Mercer kernels is that each kernel 𝑘 uniquely
corresponds to an RKHS as follows:

H =
{

{

{

𝑓 | 𝑓 (𝑥) = ∑

𝑗∈Λ

𝑎
𝑗
𝜙
𝑗 (𝑥) with ∑

𝑗∈Λ

𝑎
2

𝑗

𝜆
𝑗

< ∞
}

}

}

, (5)

where the cardinality of Λ := {𝑗 : 𝜆
𝑗
> 0} is the dimension of

the RKHS which may be infinite [12, 13].
Given a Mercer kernel, there exists a unique map or

embedding 𝜙 from X to a Hilbert space defined by the
eigenvalues and eigenfunctions of the kernel. The map takes
the following form:

𝜙 (𝑥) = (√𝜆1𝜙1 (𝑥) , √𝜆2𝜙2 (𝑥) , . . . , √𝜆|Λ|𝜙|Λ| (𝑥)) . (6)

The Hilbert space induced by this map with the standard
inner product 𝑘(𝑥, 𝑧) = ⟨𝜙(𝑥), 𝜙(𝑧)⟩ is isomorphic to the
RKHS (5), and we will denote both Hilbert spaces asH [13].
In the case where 𝑘 is infinite dimensional, 𝜙 : X → ℓ

2
.

The random variable 𝑋 ∈ X induces a random element
𝜙(𝑋) in the RKHS.Throughout this paper, we will useHilbert
space valued random variables; so we now recall some basic
facts. Let𝑍 be a randomelement inHwithE‖𝑍‖ < ∞, where
‖ ⋅ ‖ denotes the norm in H induced by its inner product
⟨⋅, ⋅⟩. The expectation E(𝑍) is defined to be an element inH,
satisfying ⟨𝑎,E(𝑍)⟩ = E⟨𝑎, 𝑍⟩, for all 𝑎 ∈ H. If E‖𝑍‖2 ≤ ∞,
then the covariance operator of 𝑍 is defined as E[(𝑍 − E𝑍) ⊗
(𝑍 − E𝑍)], where

(𝑎 ⊗ 𝑏) 𝑓 = ⟨𝑏, 𝑓⟩ 𝑎, for any 𝑓 ∈H. (7)

Let P denote the measure for random variable 𝑋.
Throughout, we assume the following conditions.

Assumption 1.

(1) For all 𝑥 ∈ X, 𝑘(𝑥, ⋅) isP-measurable.
(2) There exists𝑀 > 0 such that 𝑥 ∈ X, 𝑘(𝑋,𝑋) ≤ 𝑀

(a.s.) with respect toP.

Under Assumption 1, the random element 𝜙(𝑋) has a
well-defined mean and a covariance operator because
‖𝜙(𝑥)‖

2
= 𝑘(𝑥, 𝑥) is bounded (a.s.).Without loss of generality,

we assume E𝜙(𝑋) = 0, where 0 is the zero element in H.
The boundedness also implies that the covariance operator
Σ = E[𝜙(𝑋)⊗𝜙(𝑋)] is compact and has the following spectral
decomposition:

Σ =

∞

∑

𝑖=1

𝑤
𝑖
𝑒
𝑖
⊗ 𝑒
𝑖
, (8)

where 𝑤
𝑖
and 𝑒
𝑖
∈H are the eigenvalues and eigenfunctions,

respectively.
We assume the following model for the relationship bet-

ween 𝑌 and𝑋:

𝑌 = 𝐹 (⟨𝛽
1
, 𝜙 (𝑋)⟩ , . . . , ⟨𝛽𝑑, 𝜙 (𝑋)⟩ , 𝜀) , (9)

with 𝛽
𝑗
∈ H and the distribution of 𝜀 is independent of 𝑋.

This model implies that the response variable 𝑌 depends on
𝑋 only through a 𝑑-dimensional summary statistic

𝑆 (𝑋) = (⟨𝛽1, 𝜙 (𝑋)⟩ , . . . , ⟨𝛽𝑑, 𝜙 (𝑋)⟩) . (10)

Although 𝑆(𝑋) is a linear summary statistic inH, it extracts
nonlinear features in the space of the original predictor
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variables𝑋.We call {𝛽
𝑗
}
𝑑

𝑗=1
the nonlinear e.d.r. directions, and

S = span(𝛽
1
, . . . , 𝛽

𝑑
) the nonlinear e.d.r. space.The following

proposition [10] extends the theoretical foundation of SIR to
this nonlinear setting.

Proposition 2. Assume the following linear design condition
for H that for any 𝑓 ∈ H, there exists a vector 𝑏 ∈ R𝑑 such
that

E [⟨𝑓, 𝜙 (𝑋)⟩ | 𝑆 (𝑋)] = 𝑏
𝑇
𝑆 (𝑋) ,

with 𝑆 (𝑋) = (⟨𝛽1, 𝜙 (𝑋)⟩ , . . . , ⟨𝛽𝑑, 𝜙 (𝑋)⟩)
𝑇
.

(11)

Then, for the model specified in (9), the inverse regression curve
E[𝜙(𝑋) | 𝑌] is contained in the span of (Σ𝛽

1
, . . . , Σ𝛽

𝑑
), where

Σ is the covariance operator of 𝜙(𝑋).

Proposition 2 is a straightforward extension of the multi-
variate case in [1] to a Hilbert space or a direct application of
the functional SIR setting in [14]. Although the linear design
condition (11) may be difficult to check in practice, it has been
shown that such a condition usually holds approximately in a
high-dimensional space [15]. This conforms to the argument
in [11] that the linearity in a reproducing kernel Hilbert
space is less strict than the linearity in the Euclidean space.
Moreover, it is pointed out in [1, 10] that even if the linear
design condition is violated, the bias of SIR variate is usually
not large.

An immediate consequence of Proposition 2 is that
nonlinear e.d.r. directions are the eigenvectors corresponding
to the largest eigenvalues of the following generalized eigen-
decomposition problem:

Γ𝛽 = 𝜆Σ𝛽,

where Σ = cov [𝜙 (𝑋)] , Γ = cov [E (𝜙 (𝑋) | 𝑌)] ,
(12)

or equivalently from an eigenanalysis of the operator 𝑇 =

Σ
−1
Γ. In the infinite dimensional case, a technical difficulty

arises since the operator

Σ
−1
=

∞

∑

𝑖=1

𝑤
−1

𝑖
𝑒
𝑖
⊗ 𝑒
𝑖 (13)

is not defined on the entire Hilbert space H. So for the
operator 𝑇 to be well defined, we need to show that the
range of Γ is indeed in the range of Σ. A similar issue also
arose in the analysis of dimension reduction and canonical
analysis for functional data [16, 17]. In these analyses, extra
conditions are needed for operators like 𝑇 to be well defined.
In KSIR, this issue is resolved automatically by the linear
design condition and extra conditions are not required as
stated by the following Theorem; see Appendix A for the
proof.

Theorem 3. Under Assumption 1 and the linear design condi-
tion (11), the following hold:

(i) the operator Γ is of finite rank 𝑑
Γ
≤ 𝑑. Consequently,

it is compact and has the following spectral decomposi-
tion:

Γ =

𝑑Γ

∑

𝑖=1

𝜏
𝑖
𝑢
𝑖
⊗ 𝑢
𝑖
, (14)

where 𝜏
𝑖
and 𝑢

𝑖
are the eigenvalues and eigenvectors,

respectively. Moreover, 𝑢
𝑖
∈ range(Σ) for all 𝑖 = 1, . . . ,

𝑑
Γ
;

(ii) the eigendecomposition problem (12) is equivalent to
the eigenanalysis of the operator 𝑇, which takes the
following form

𝑇 =

𝑑Γ

∑

𝑖=1

𝜏
𝑖
𝑢
𝑖
⊗ Σ
−1
(𝑢
𝑖
) . (15)

3. Regularized Kernel Sliced
Inverse Regression

Thediscussion in Section 2 implies that nonlinear e.d.r. direc-
tions can be retrieved by applying the original SIR algorithm
in the feature space induced by the Mercer kernel. There are
some computational challenges to this idea such as estimating
an infinite dimensional covariance operator and the fact that
the feature map is often difficult or impossible to compute for
many kernels. We address these issues by working with inner
products of the feature map and adding a regularization term
to kernel SIR.

3.1. Estimating the Nonlinear e.d.r. Directions. Given 𝑛 obser-
vations {(𝑥

1
, 𝑦
1
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)}, our objective is to obtain

an estimate of the e.d.r. directions (𝛽
1
, . . . , 𝛽

𝑑
). We first

formulate a procedure almost identical to the standard SIR
procedure except that it operates in the feature spaceH. This
highlights the immediate relation between the SIR and KSIR
procedures.

(1) Without loss of generality, we assume that themapped
predictor variables aremean zero, that is,∑𝑛

𝑖=1
𝜙(𝑥
𝑖
) =

0, for otherwise we can subtract 𝜙 = (1/𝑛)∑𝑛
𝑖=1
𝜙(𝑥
𝑖
)

from 𝜙(𝑥
𝑖
). The sample covariance is estimated by

Σ̂ =
1

𝑛

𝑛

∑

𝑖=1

𝜙 (𝑥
𝑖
) ⊗ 𝜙 (𝑥

𝑖
) . (16)

(2) Bin the𝑌 variables into𝐻 slices𝐺
1
, . . . , 𝐺

𝐻
and com-

pute mean vectors of the corresponding mapped pre-
dictor variables for each slice

𝜓
ℎ
=
1

𝑛
ℎ

∑

𝑖∈𝐺ℎ

𝜙 (𝑥
𝑖
) , ℎ = 1, . . . , 𝐻. (17)

Compute the sample between-group covariance mat-
rix

Γ̂ =

𝐻

∑

ℎ=1

𝑛
ℎ

𝑛
𝜓
ℎ
⊗ 𝜓
ℎ
. (18)
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(3) Estimate the SIR directions 𝛽
𝑗
by solving the general-

ized eigendecomposition problem:

Γ̂𝛽 = 𝜆Σ̂𝛽. (19)

This procedure is computationally impossible if the
RKHS is infinite dimensional or the feature map cannot be
computed (which is the usual case). However, the model
given in (9) requires not the e.d.r. directions but the projec-
tion onto these directions, that is, the 𝑑 summary statistics

V
1
= ⟨𝛽
1
, 𝜙 (𝑥)⟩ , . . . , V𝑑 = ⟨𝛽𝑑, 𝜙 (𝑥)⟩ , (20)

which we call the KSIR variates. Like other kernel algorithms,
the kernel trick enables KSIR variates to be efficiently com-
puted from only the kernel 𝑘, not the map 𝜙.

The key quantity in this alternative formulation is the
centred Grammatrix𝐾 defined by the kernel function 𝑘(⋅, ⋅),
where

𝐾
𝑖𝑗
= ⟨𝜙 (𝑥

𝑖
) , 𝜙 (𝑥

𝑗
)⟩ = 𝑘 (𝑥

𝑖
, 𝑥
𝑗
) . (21)

Note that the rank of𝐾 is less than 𝑛; so𝐾 is always singular.
Given the centered Gram matrix 𝐾, the following gener-

alized eigendecomposition problem can be used to compute
the KSIR variates:

𝐾𝐽𝐾𝑐 = 𝜆𝐾
2
𝑐, (22)

where 𝑐 denotes the 𝑛-dimensional generalized eigenvector
and 𝐽 denotes an 𝑛 × 𝑛 matrix with 𝐽

𝑖𝑗
= 1/𝑛

𝑚
if 𝑖, 𝑗

are in the 𝑚th group consisting of 𝑛
𝑚

observations and
zero otherwise. The following proposition establishes the
equivalence between two eigendecomposition problems, (22)
and (19), in the recovery of KSIR variates (V

1
, . . . , V

𝑑
).

Proposition 4. Given the observations {(𝑥
1
, 𝑦
1
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)},

let (𝛽
1
, . . . , 𝛽

𝑑
) and (𝑐

1
, . . . , 𝑐

𝑑
) denote the generalized eigenvec-

tors of (22) and (19), respectively. Then, for any 𝑥 ∈ X and
𝑗 = 1, . . . , 𝑑, the following holds:

V
𝑗
= ⟨𝛽
𝑗
, 𝜙 (𝑥)⟩ = 𝑐

𝑇

𝑗
𝐾
𝑥
,

𝐾
𝑥
= (𝑘 (𝑥, 𝑥

1
) , . . . , 𝑘 (𝑥, 𝑥

𝑛
))
𝑇
,

(23)

provided that Σ̂ is invertible. When Σ̂ is not invertible, the
conclusion holds modulo the null space of Σ̂.

This result was proven in [10], in which the algorithmwas
further reduced to solving

𝐽𝐾𝑐 = 𝜆𝐾𝑐 (24)

by canceling 𝐾 from both sides of (22).

Remark 5. It is important to remark that when Σ̂ is not invert-
ible, Proposition 4 states that the equivalence between (19)
and (22) holds modulo the null space of Σ̂ that is a requi-
rement of the representer theorem, that is, 𝛽

𝑗
are linear com-

binations of 𝜙(𝑥
𝑖
). Without this mandated condition, we will

see that each eigenvector of (22) produces an eigenvector of
(19), while the eigenvector of (19) is not necessarily recovered
by (22).

Remark 6. It is necessary to clarify the difference between (12)
and (19). In (12), it is natural to assume that 𝛽 is orthogonal
to the null space of Σ. To see this, let 𝛽 = 𝛽0 + 𝛽⋆ with 𝛽0
belonging to the null space and 𝛽⋆ orthogonal to the null
space. Then,

E [⟨𝛽, 𝜙 (𝑥)⟩
2
] = ⟨𝛽, Σ𝛽⟩ = ⟨𝛽

⋆
, Σ𝛽
⋆
⟩ = E [⟨𝛽

⋆
, 𝜙 (𝑥)⟩

2
] ,

(25)

that is, ⟨𝛽, 𝜙(𝑥)⟩ = ⟨𝛽⋆, 𝜙(𝑥)⟩ (a.s.). It means that 𝛽
0
does

not contribute to the KSIR variates and thus could be set
as 0. However, in (19), if 𝛽 is an eigenvector and 𝛽⋆ is its
orthogonal component relative to the null space of Σ̂, the
identity ⟨𝛽, 𝜙(𝑥)⟩ = ⟨𝛽⋆, 𝜙(𝑥)⟩ is in general not true for a
new point 𝑥 which is different from the observations. Thus,
from a theoretical perspective, it is not as natural to assume
the representer theorem, although it works well in practice.
In this sense, the KSIR algorithm based on (22) or (24) does
not have a thorough mathematical foundation.

3.2. Regularization and Stability. Except for the theoretical
subtleties, in applications with relatively small samples, the
eigendecomposition in (22) is often ill-conditioned resulting
in overfitting as well as numerically unstable estimates of
the e.d.r. space. This can be addressed by either thresholding
eigenvalues of the estimated covariancematrix Σ̂ or by adding
a regularization term to (22) or (24).

We motivate two types of regularization schemes. The
first one is the traditional ridge regularization. It is used in
both linear SIR and functional SIR [18–20], which solves the
eigendecomposition problem

Γ̂𝛽 = 𝜆 (Σ̂ + 𝑠𝐼) 𝛽. (26)

Here, and in the sequel, 𝐼 denotes the identity operator and 𝑠
is a tuning parameter. Assuming the representer theorem, its
kernel form is given as

𝐽𝐾𝑐 = 𝜆 (𝐾 + 𝑛𝑠𝐼) 𝑐. (27)

Another type of regularization is to regularize (22) dire-
ctly:

𝐾𝐽𝐾𝑐 = 𝜆 (𝐾
2
+ 𝑛
2
𝑠𝐼) 𝑐. (28)

The following proposition, whose proof is in Appendix B,
states that solving the generalized eigendecomposition prob-
lem (28) is equivalent to finding the eigenvectors of

(Σ̂
2
+ 𝑠𝐼)
−1

Σ̂Γ̂. (29)

Proposition 7. Let 𝑐
𝑗
be the eigenvectors of (28), and let 𝛽

𝑗

be the eigenvectors of (29). Then, the following holds for the
regularized KSIR variates:

V̂
𝑗
= 𝑐
𝑇

𝑗
[𝑘 (𝑥, 𝑥

1
) , . . . , 𝑘 (𝑥, 𝑥

𝑛
)] = ⟨𝛽

𝑗
, 𝜙 (𝑥)⟩ . (30)
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This algorithm is termed as the Tikhonov regularization.
For linear SIR, it is shown in [21] that the Tikhonov regular-
ization is more efficient than the ridge regularization.

Except for the computational stability, regularization also
makes the matrix forms of KSIR, (27) and (28), interpretable
by justifiable representer theorem.

Proposition 8. For both ridge and the Tikhonov regulariza-
tion scheme of KSIR, the eigenfunctions 𝛽

𝑗
are linear combina-

tions of 𝜙(𝑥
𝑖
), 𝑖 = 1, . . . , 𝑛.

The conclusion follows from the observation that 𝛽
𝑗
=

(1/𝜆
𝑗
)(Γ̂𝛽
𝑗
− Σ̂𝛽
𝑗
) for the ridge regularization and 𝛽

𝑗
=

(1/𝜆
𝑗
)(Σ̂Γ̂𝛽

𝑗
− Σ̂
2
𝛽
𝑗
) for the Tikhonov regularization.

To close, we remark that KSIR is computationally advan-
tageous even for the case of linear models when 𝑝 ≫ 𝑛 due
to the fact that the eigendecomposition problem is for 𝑛 × 𝑛
matrices rather than the 𝑝 × 𝑝 matrices in the standard SIR
formulation.

3.3. Consistency of Regularized KSIR. In this subsection, we
prove the asymptotic consistency of the e.d.r. directions
estimated by regularized KSIR and provide conditions under
which the rate of convergence is 𝑂

𝑝
(𝑛
−1/4
). An important

observation from the proof is that the rate of convergence of
the e.d.r. directions depends on the contribution of the small
principal components. The rate can be arbitrarily slow if the
e.d.r. space depends heavily on eigenvectors corresponding to
small eigenvalues of the covariance operator.

Note that various consistency results are available for
linear SIR [22–24]. These results hold only for the finite
dimensional setting and cannot be adapted to KSIR where
the RKHS is often infinite dimensional. Consistency of func-
tional SIR has also been studied before. In [14], a thresholding
method is considered, which selects a finite number of
eigenvectors and uses results fromfinite rank operators.Their
proof of consistency requires stronger and more complicated
conditions than ours.The consistency for functional SIR with
ridge regularization is proven in [19], but it is of aweaker form
than our result. We remark that the consistency results for
functional SIR can be improved using a similar argument in
this paper.

In the following, we state the consistency results for the
Tikhonov regularization. A similar result can be proved for
the ridge regularization while the details are omitted.

Theorem 9. Assume E𝑘(𝑋,𝑋)2 < ∞, lim
𝑛→∞

𝑠(𝑛) = 0 and
lim
𝑛→∞

𝑠√𝑛 = ∞; then


⟨𝛽
𝑗
, 𝜙 (⋅)⟩ − ⟨𝛽𝑗, 𝜙 (⋅)⟩


= 𝑜
𝑝 (1) , 𝑗 = 1, . . . , 𝑑

Γ
, (31)

where 𝑑
Γ
is the rank of Γ, ⟨𝛽

𝑗
, 𝜙(⋅)⟩ is the projection onto the

𝑗th e.d.r., and ⟨𝛽
𝑗
, 𝜙(⋅)⟩ is the projection onto the 𝑗th e.d.r. as

estimated by regularized KSIR.
If the e.d.r. directions {𝛽

𝑗
}
𝑑Γ

𝑗=1
depend only on a finite

number of eigenvectors of the covariance operator Σ, the rate
of convergence is 𝑂(𝑛−1/4).

This theorem is a direct corollary of the following theorem
which is proven in Appendix C.

Theorem 10. Define the projection operator and its comple-
ment for each𝑁 ≥ 1

Π
𝑁
=

𝑁

∑

𝑖=1

𝑒
𝑖
⊗ 𝑒
𝑖
, Π

⊥

𝑁
= 𝐼 − Π

𝑁
=

∞

∑

𝑖=𝑁+1

𝑒
𝑖
⊗ 𝑒
𝑖
, (32)

where {𝑒
𝑖
}
∞

𝑖=1
are the eigenvectors of the covariance operator Σ

as defined in (8), with the corresponding eigenvalues denoted
by 𝑤
𝑖
.

Assume E𝑘(𝑋,𝑋)2 < ∞. For each 𝑁 ≥ 1, the following
holds:

(Σ̂
2
+ 𝑠𝐼)
−1
Σ̂Γ̂ − 𝑇

𝐻𝑆

= 𝑂
𝑝
(
1

𝑠√𝑛
) +

𝑑Γ

∑

𝑗=1

(
𝑠

𝑤2
𝑁


Π
𝑁
(�̃�
𝑗
)

+

Π
⊥

𝑁
(�̃�
𝑗
)

) ,

(33)

where �̃�
𝑗
= Σ
−1
𝑢
𝑗
and {𝑢

𝑗
}
𝑑Γ

𝑖=1
are the eigenvectors of Γ as

defined in (14) and ‖ ⋅ ‖
𝐻𝑆

denotes the Hilbert-Schmidt norm
of a linear operator.

If 𝑠 = 𝑠(𝑛) satisfy 𝑠 → 0 and 𝑠√𝑛 → ∞ as 𝑛 → ∞, then

(Σ̂
2
+ 𝑠𝐼)
−1
Σ̂Γ̂ − 𝑇

𝐻𝑆
= 𝑜
𝑝 (1) . (34)

4. Application to Simulated and Real Data

In this section, we compare regularized kernel sliced inverse
regression (RKSIR) with several other SIR-related dimension
reductionmethods.The comparisons are used to address two
questions: (1) does regularization improve the performance
of kernel sliced inverse regression, and (2)does the nonlinear-
ity of kernel sliced inverse regression improve the prediction
accuracy?

We would like to remark that the assessment of nonlinear
dimension reduction methods could be more difficult than
that of linear ones. When the feature mapping 𝜙 for an RKHS
is not available, we do not know the true e.d.r. directions or
subspace. So in that case, we will use the prediction accuracy
to evaluate the goodness of RKSIR.

4.1. Importance of Nonlinearity and Regularization. Our first
example illustrates that both the nonlinearity and regulariza-
tion of RKSIR can significantly improve prediction accuracy.

The regression model has ten predictor variables 𝑋 =

(𝑋
1
, . . . , 𝑋

10
) with each one following a normal distribution

𝑋
𝑖
∼ 𝑁(0, 1). A univariate response is given as

𝑌 = (sin (𝑋
1
) + sin (𝑋

2
)) (1 + sin (𝑋

3
)) + 𝜀 (35)

with noise 𝜀 ∼ 𝑁(0, 0.1
2
). We compare the effectiveness

of the linear dimension reduction methods SIR, SAVE, and
PHD with RKSIR, by examining the predictive accuracy of a
nonlinear kernel regression model on the reduced space. We
generate 100 training samples and apply the abovemethods to
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Figure 1: Dimension reduction for model (35): (a) mean square error for RKSIR with different regularization parameters; (b) mean square
error for various dimension reduction methods. The blue line represents the mean square error without using dimension reduction. (c)-(d)
RKSIR variates versus nonlinear factors.

compute the e.d.r. directions. In RKSIR, we used an additive
Gaussian kernel as follows:

𝑘 (𝑥, 𝑧) =

𝑑

∑

𝑗=1

exp(−
(𝑥
𝑗
− 𝑧
𝑗
)
2

2𝜎2
) , (36)

where 𝜎 = 2. After projecting the training samples on the
estimated e.d.r. directions, we train a Gaussian kernel regres-
sion model based on the new variates.Then, the mean square
error is computed on 1000 independent test samples. This
experiment is repeated 100 times with all parameters set by
cross-validation. The results are summarized in Figure 1.

Figure 1(a) displays the accuracy for RKSIR as a function
of the regularization parameter, illustrating the importance of

selecting regularization parameters. KSIRwithout regulariza-
tion performs much worse than the RKSIR. Figure 1(b) dis-
plays the prediction accuracy of various dimension reduction
methods.

RKSIR outperforms all the linear dimension reduction
methods, which illustrates the power of nonlinearity intro-
duced in RKSIR. It also suggests that there are essentially two
nonlinear e.d.r. directions. This observation seems to agree
with the model in (35). Indeed, Figures 1(c) and 1(d) show
that the first two e.d.r. directions from RKSIR estimate the
two nonlinear factors well.

4.2. Effect of Regularization. This example illustrates the
effect of regularization on the performance of KSIR as a
function of the anisotropy of the predictors.
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The regression model has ten predictor variables 𝑋 =

(𝑋
1
, . . . , 𝑋

10
) and a univariate response specified by

𝑌 = 𝑋
1
+ 𝑋
2

2
+ 𝜀, 𝜀 ∼ 𝑁 (0, 0.1

2
) , (37)

where 𝑋 ∼ 𝑁(0, Σ
𝑋
) and Σ

𝑋
= 𝑄Δ𝑄 with 𝑄 a randomly

chosen orthogonal matrix and Δ = diag(1𝜃, 2𝜃, . . . , 10𝜃). We
will see that increasing the parameter 𝜃 ∈ [0,∞) increases
the anisotropy of the data that increases the difficulty of
identifying the correct e.d.r. directions.

For thismodel, it is known that SIRwillmiss the direction
along the second variable𝑋

2
. So we focus on the comparison

of KSIR and RKSIR in this example.
If we use a second-order polynomial kernel 𝑘(𝑥, 𝑧) =

(1 + 𝑥
𝑇
𝑧)
2 that corresponds to the feature space

Φ (𝑋) = {1,𝑋𝑖, (𝑋𝑖𝑋𝑗)
𝑖≤𝑗
} , 𝑖, 𝑗 = 1, . . . , 10, (38)

then 𝑋
1
+ 𝑋
2

2
can be captured in one e.d.r. direction. Ideally

the first KSIR variate V = ⟨𝛽
1
, 𝜙(𝑋)⟩ should be equivalent to

𝑋
1
+ 𝑋
2

2
modulo shift and scale

V − EV ∝ 𝑋
1
+ 𝑋
2

2
− E (𝑋

1
+ 𝑋
2

2
) . (39)

So for this example given estimates of KSIR variates at the 𝑛
data points {V̂

𝑖
}
𝑛

𝑖=1
= {⟨𝛽
1
, 𝜙(𝑥
𝑖
)⟩}
𝑛

𝑖=1
, the error of the first e.d.r.

direction can bemeasured by the least squares fitting of Vwith
respect to (𝑋

1
+ 𝑋
2

2
)

error = min
𝑎,𝑏∈R

1

𝑛

𝑛

∑

𝑖=1

(V̂
𝑖
− (𝑎 (𝑥

𝑖,1
+ 𝑥
2

𝑖,2
) + 𝑏))

2

. (40)

We drew 200 observations from the model specified
in (37), and then we applied the two dimension reduction
methods KSIR and RKSIR. The mean and standard errors
of 100 repetitions of this procedure are reported in Figure 2.
The result shows that KSIR becomes more andmore unstable
as 𝜃 increases and the regularization helps to reduce this
instability.

4.3. Importance of Nonlinearity and Regularization in Real
Data. When SIR is applied to classification problems, it is
equivalent to a Fisher discriminant analysis. For the case of
multiclass classification, it is natural to use SIR and consider
each class as a slice. Kernel forms of Fisher discriminant
analysis (KFDA) [8] have been used to construct nonlinear
discriminant surfaces and the regularization has improved
performance of KFDA [25]. In this example, we show that
this idea of adding a nonlinearity and a regularization term
improves predictive accuracy in a realmulticlass classification
data set, the classification of handwritten digits.

The MNIST data set (Y. LeCun, http://yann.lecun.com/
exdb/mnist/) contains 60, 000 images of handwritten digits
{0, 1, 2, . . . , 9} as training data and 10, 000 images as test data.
Each image consists of 𝑝 = 28 × 28 = 784 gray-scale
pixel intensities. It is commonly believed that there is clear
nonlinear structure in this 784-dimensional space.
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Figure 2: Error in e.d.r. as a function of 𝜃.

We compared regularized SIR (RSIR) as in (26), KSIR,
and RKSIR, on this data to examine the effect of regulariza-
tion and nonlinearity. Each draw of the training set consisted
of 100 observations of each digit. We then computed the
top 10 e.d.r. directions using these 1000 observations and
10 slices, one for each digit. We projected the 10, 000 test
observations onto the e.d.r. directions and used a k-nearest
neighbor (kNN) classifier with 𝑘 = 5 to classify the test data.
The accuracy of the kNN classifier without dimension
reduction was used as a baseline. For KSIR and RKSIR we
used a Gaussian kernel with the bandwith parameter set
as the median pairwise distance between observations. The
regularization parameter was set by cross-validation.

The mean and standard deviation of the classification
accuracy over 100 iterations of this procedure are reported
in Table 1. The first interesting observation is that the lin-
ear dimension reduction does not capture discriminative
information, as the classification accuracywithout dimension
reduction is better. Nonlinearity does increase classifica-
tion accuracy and coupling regularization with nonlinearity
increases accuracymore.This improvement is dramatic for 2,
3, 5, and 8.

5. Discussion

The interest in manifold learning and nonlinear dimension
reduction in both statistics and machine learning has led to
a variety of statistical models and algorithms. However, most
of these methods are developed in the unsupervised learning
framework. Therefore, the estimated dimensions may not
be optimal for the regression models. Our work incorpo-
rates nonlinearity and regularization to inverse regression
approaches and results in a robust response driven nonlinear
dimension reduction method.

RKHS has also been introduced into supervised dimen-
sion reduction in [26], where the conditional covariance
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Table 1: Mean and standard deviations for error rates in classification of digits.

Digit RKSIR KSIR RSIR kNN
0 0.0273 (0.0089) 0.0472 (0.0191) 0.0487 (0.0128) 0.0291 (0.0071)
1 0.0150 (0.0049) 0.0177 (0.0051) 0.0292 (0.0113) 0.0052 (0.0012)
2 0.1039 (0.0207) 0.1475 (0.0497) 0.1921 (0.0238) 0.2008 (0.0186)
3 0.0845 (0.0208) 0.1279 (0.0494) 0.1723 (0.0283) 0.1092 (0.0130)
4 0.0784 (0.0240) 0.1044 (0.0461) 0.1327 (0.0327) 0.1617 (0.0213)
5 0.0877 (0.0209) 0.1327 (0.0540) 0.2146 (0.0294) 0.1419 (0.0193)
6 0.0472 (0.0108) 0.0804 (0.0383) 0.0816 (0.0172) 0.0446 (0.0081)
7 0.0887 (0.0169) 0.1119 (0.0357) 0.1354 (0.0172) 0.1140 (0.0125)
8 0.0981 (0.0259) 0.1490 (0.0699) 0.1981 (0.0286) 0.1140 (0.0156)
9 0.0774 (0.0251) 0.1095 (0.0398) 0.1533 (0.0212) 0.2006 (0.0153)
Average 0.0708 (0.0105) 0.1016 (0.0190) 0.1358 (0.0093) 0.1177 (0.0039)

operators on such kernel spaces are used to characterize the
conditional independence between linear projections and the
response variable. Therefore, their method estimates linear
e.d.r. subspaces, while in [10, 11] and in this paper, RKHS is
used to model the e.d.r. subspace, which leads to nonlinear
dimension reduction.

There are several open issues in regularized kernel SIR
method, such as the selection of kernels, regularization
parameters, and number of dimensions. A direct assessment
of the nonlinear e.d.r directions is expected to reduce the
computational burden in procedures based on cross valida-
tion. While these are well established in linear dimension
reduction, however, little is known for nonlinear dimension
reduction. We would like to leave them for future research.

There are some interesting connections between KSIR
and functional SIR, which are developed by Ferré and his
coauthors in a series of papers [14, 17, 19]. In functional SIR,
the observable data are functions and the goal is to find linear
e.d.r. directions for functional data analysis. In KSIR, the
observable data are typically not functions but mapped into a
function space in order to characterize nonlinear structures.
This suggests that computations involved in functional SIR
can be simplified by a parametrization with respect to an
RKHS or using a linear kernel in the parametrized function
space. On the other hand, from a theoretical point of view,
KSIR can be viewed as a special case of functional SIR,
although our current theoretical results on KSIR are different
from the ones for functional SIR.

Appendices

A. Proof of Theorem 3

Under the assumption of Proposition 2, for each 𝑌 = 𝑦,

E [𝜙 (𝑋) | 𝑌 = 𝑦] ∈ span {Σ𝛽𝑖, 𝑖 = 1, . . . , 𝑑} . (A.1)

Since Γ = cov[E(𝜙(𝑋) | 𝑌)], the rank of Γ (i.e., the
dimension of the image of Γ) is less than 𝑑, which implies
that Γ is compact. With the fact that it is symmetric and
semipositive, there exist 𝑑

Γ
positive eigenvalues {𝜏

𝑖
}
𝑑Γ

𝑖=1
and

eigenvectors {𝑢
𝑖
}
𝑑Γ

𝑖=1
, such that Γ = ∑𝑑Γ

𝑖=1
𝜏
𝑖
𝑢
𝑖
⊗ 𝑢
𝑖
.

Recall that for any 𝑓 ∈H,

Γ𝑓 = E ⟨E [𝜙 (𝑋) | 𝑌] , 𝑓⟩E [𝜙 (𝑋) | 𝑌] (A.2)

also belongs to

span {Σ𝛽
𝑖
, 𝑖 = 1, . . . , 𝑑} ⊂ range (Σ) (A.3)

because of (A.1); so

𝑢
𝑖
=
1

𝜏
𝑖

Γ𝑢
𝑖
∈ range (Σ) . (A.4)

This proves (i).
Since for each 𝑓 ∈ H, Γ𝑓 ∈ range (Σ−1), the operator

𝑇 = Σ
−1
Γ is well defined over the whole space. Moreover,

𝑇𝑓 = Σ
−1
(

𝑑Γ

∑

𝑖=1

⟨𝑢
𝑖
, 𝑓⟩ 𝑢
𝑖
)

=

𝑑Γ

∑

𝑖=1

⟨𝑢
𝑖
, 𝑓⟩ Σ

−1
(𝑢
𝑖
) = (

𝑑Γ

∑

𝑖=1

Σ
−1
(𝑢
𝑖
) ⊗ 𝑢
𝑖
)𝑓.

(A.5)

This proves (ii).

B. Proof of Proposition 7

We first prove the proposition for matrices to simplify then
notation; we then extend the result to the operators, where
𝑑
𝐾
is infinite and a matrix form does not make sense.
Let Φ = [𝜙(𝑥

1
), . . . , 𝜙(𝑥

𝑛
)]. It has the following SVD

decomposition:

Φ = 𝑈𝐷𝑉
𝑇

= [𝑢
1
⋅ ⋅ ⋅ 𝑢
𝑑𝐾
] [

𝐷
𝑑×𝑑

0
𝑑×(𝑛−𝑑)

0
(𝑑𝐾−𝑑)×𝑑

0
(𝑑𝐾−𝑑)×(𝑛−𝑑)

]
[
[

[

V𝑇
1

...
V𝑇
𝑛

]
]

]

= 𝑈𝐷𝑉
𝑇

,

(B.1)

where 𝑈 = [𝑢
1
, . . . , 𝑢

𝑑
], 𝑉 = [V

1
, . . . , V

𝑑
] and 𝐷 = 𝐷

𝑑×𝑑
is a

diagonal matrix of dimension 𝑑 ≤ 𝑛.
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We need to show the KSIR variates

V̂
𝑗
= 𝑐
𝑇

𝑗
[𝑘 (𝑥, 𝑥

1
) , . . . , 𝑘 (𝑥, 𝑥

𝑛
)]

= 𝑐
𝑇

𝑗
Φ
𝑇
Φ (𝑥) = ⟨Φ𝑐𝑗, 𝜙 (𝑥)⟩ = ⟨𝛽𝑗, 𝜙 (𝑥)⟩ .

(B.2)

It suffices to prove that if (𝜆, 𝑐) is a solution to (28), then (𝜆, 𝛽)
is also a pair of eigenvalue and eigenvector of (Σ̂2 + 𝛾𝐼)−1Σ̂Γ̂
and vice versa, where 𝑐 and 𝛽 are related by

𝛽 = Φ𝑐, 𝑐 = 𝑉𝐷𝑈
𝑇

𝛽. (B.3)

Noting that facts Σ̂ = (1/𝑛)ΦΦ𝑇, Γ̂ = (1/𝑛)Φ𝐽Φ𝑇, and 𝐾 =
Φ
𝑇
Φ = 𝑉𝐷

2

𝑉
𝑇, the argument may be made as follows:

Σ̂Γ̂𝛽 = 𝜆 (Σ̂
2
+ 𝛾𝐼) 𝛽

⇐⇒ ΦΦ
𝑇
Φ𝐽Φ
𝑇
Φ𝑐 = 𝜆 (ΦΦ

𝑇
ΦΦ
𝑇
Φ𝑐 + 𝑛

2
𝛾Φ𝑐)

⇐⇒ Φ𝐾𝐽𝐾𝑐 = 𝜆Φ (𝐾
2
+ 𝑛
2
𝛾) 𝑐

(⇐⇒ 𝑉𝑉
𝑇

𝐾𝐽𝐾𝑐 = 𝜆𝑉𝑉
𝑇

(𝐾
2
+ 𝑛
2
𝛾𝐼) 𝑐)

⇐⇒ 𝐾𝐽𝐾𝑐 = 𝜆 (𝐾
2
+ 𝑛
2
𝛾𝐼) 𝑐.

(B.4)

Note that the implication in the third step is necessary only in
the⇒ direction which is obtained by multiplying both sides
𝑉𝐷
−1

𝑈
𝑇 and using the facts𝑈𝑇𝑈 = 𝐼

𝑑
. For the last step, since

𝑉
𝑇

𝑉 = 𝐼
𝑑
, we use the following facts:

𝑉𝑉
𝑇

𝐾 = 𝑉𝑉
𝑇

𝑉𝐷
2

𝑉
𝑇

= 𝑉𝐷
2

𝑉
𝑇

= 𝐾,

𝑉𝑉
𝑇

𝑐 = 𝑉𝑉
𝑇

𝑉𝐷
−1

𝑈
𝑇

𝛽 = 𝑉𝐷
−1

𝑈
𝑇

𝛽 = 𝑐.

(B.5)

In order for this result to hold rigorously when the RKHS
is infinite dimensional, we need to formally define Φ, Φ𝑇,
and the SVD of Φ when 𝑑

𝐾
is infinite. For the infinite

dimensional case, Φ is an operator from R𝑛 to H
𝐾
defined

by ΦV = ∑𝑛
𝑖=1

V
𝑖
𝜙(𝑥
𝑖
) for V = (V

1
, . . . , V

𝑛
)
𝑇
∈ R𝑛 and Φ𝑇

is its adjoint, an operator from H
𝐾
to R𝑛 such that Φ𝑇𝑓 =

(⟨𝜙(𝑥
1
), 𝑓⟩
𝐾
, . . . , ⟨𝜙(𝑥

1
), 𝑓⟩
𝐾
)
𝑇 for 𝑓 ∈ H

𝐾
. The notions 𝑈

and 𝑈𝑇 are similarly defined.
The above formulation ofΦ andΦ𝑇 coincides the defini-

tion of Σ̂ as a covariance operator. Since the rank of Σ̂ is less
than 𝑛, it is compact and has the following representation:

Σ̂ =

𝑑𝐾

∑

𝑖=1

�̂�
𝑖
𝑢
𝑖
⊗ 𝑢
𝑖
=

𝑑

∑

𝑖=1

𝜎
𝑖
𝑢
𝑖
⊗ 𝑢
𝑖
, (B.6)

where 𝑑 ≤ 𝑛 is the rank and 𝜎
1
≥ 𝜎
2
≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑑
> 𝜎
𝑑+1
=

⋅ ⋅ ⋅ = 0. This implies that each 𝜙(𝑥
𝑖
) lies in span(𝑢

1
, . . . , 𝑢

𝑑
)

and hence we can write 𝜙(𝑥
𝑖
) = 𝑈𝜏

𝑖
, where 𝑈 = (𝑢

1
, . . . , 𝑢

𝑑
)

should be considered as an operator fromR𝑑 toH
𝐾
and 𝜏
𝑖
∈

R𝑑. Denote Υ = (𝜏
1
, . . . , 𝜏

𝑛
)
𝑇
∈ R𝑛×𝑑. It is easy to check that

Υ
𝑇
Υ = diag(𝑛𝜎

1
, . . . , 𝑛𝜎

𝑑
). Let𝐷

𝑑×𝑑
= diag(√𝑛𝜎1, . . . , √𝑛𝜎𝑑)

and𝑉 = Υ𝐷−1.Then, we obtain the SVD forΦ asΦ = 𝑈𝐷𝑉𝑇

which is well defined.

C. Proof of Consistency

C.1. Preliminaries. In order to prove Theorems 9 and 10,
we use the properties of the Hilbert-Schmidt operators,
covariance operators for the Hilbert space valued random
variables, and the perturbation theory for linear operators. In
this subsection we provide a brief introduction to them. For
details, see [27–29] and references therein.

Given a separable Hilbert space H of dimension 𝑝H,
a linear operator 𝐿 on H is said to belong to the Hilbert-
Schmidt class if

‖𝐿‖
2

HS =

𝑝H

∑

𝑖=1

𝐿𝑒𝑖

2

H
< ∞, (C.1)

where {𝑒
𝑖
} is an orthonormal basis.TheHilbert-Schmidt class

forms a new Hilbert space with norm ‖ ⋅ ‖HS.
Given a bounded operator 𝑆 onH, the operators 𝑆𝐿 and

𝐿𝑆 both belong to theHilbert-Schmidt class and the following
holds:

‖𝑆𝐿‖HS ≤ ‖𝑆‖ ‖𝐿‖HS, ‖𝐿𝑆‖HS ≤ ‖𝐿‖HS ‖𝑆‖ , (C.2)

where ‖ ⋅ ‖ denotes the default operator norm

‖𝐿‖
2
= sup
𝑓∈H

𝐿𝑓

2

𝑓

2
. (C.3)

Let 𝑍 be a random vector taking values in H satisfying
E‖𝑍‖
2
< ∞. The covariance operator

Σ = E [(𝑍 − E𝑍) ⊗ (𝑍 − E𝑍)] , (C.4)

is self-adjoint, positive, compact, and belongs to the Hilbert-
Schmidt class.

A well-known result from perturbation theory for linear
operators states that if a set of linear operators 𝑇

𝑛
converges

to 𝑇 in the Hilbert-Schmidt norm and the eigenvalues of 𝑇
are nondegenerate, then the eigenvalues and eigenvectors of
𝑇
𝑛
converge to those of 𝑇 with same rate or convergence as

the convergence of the operators.

C.2. Proof of Theorem 10. We will use the following result
from [14]:


Σ̂ − Σ

HS = 𝑂𝑝 (
1

√𝑛
) ,


Γ̂ − Γ

HS = 𝑂𝑝 (
1

√𝑛
) .

(C.5)

To simplify the notion, we denote �̂�
𝑠
= (Σ̂
2
+ 𝑠𝐼)
−1

Σ̂Γ̂. Also,
define

𝑇
1
= (Σ̂
2
+ 𝑠𝐼)
−1

ΣΓ, 𝑇
2
= (Σ
2
+ 𝑠𝐼)
−1

ΣΓ. (C.6)

Then,

�̂�
𝑠
− 𝑇
HS

≤

�̂�
𝑠
− 𝑇
1

HS +
𝑇1 − 𝑇2

HS +
𝑇2 − 𝑇

HS.

(C.7)
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For the first term, observe that

�̂�
𝑠
− 𝑇
1

HS
≤

(Σ̂
2
+ 𝑠𝐼)
−1


Σ̂Γ̂ − ΣΓ

HS
= 𝑂
𝑝
(
1

𝑠√𝑛
) .

(C.8)
For the second term, note that

𝑇
1
=

𝑑Γ

∑

𝑗=1

𝜏
𝑗
((Σ̂
2
+ 𝑠𝐼)
−1

Σ𝑢
𝑗
) ⊗ 𝑢
𝑗
,

𝑇
2
=

𝑑Γ

∑

𝑗=1

𝜏
𝑗
((Σ
2
+ 𝑠𝐼)
−1

𝑢
𝑗
) ⊗ 𝑢
𝑗
.

(C.9)

Therefore,

𝑇1 − 𝑇2
HS =

𝑑Γ

∑

𝑗=1

𝜏
𝑗


((Σ̂
2
+ 𝑠𝐼)
−1

− (Σ
2
+ 𝑠𝐼)
−1

) Σ𝑢
𝑗


.

(C.10)
Since 𝑢

𝑗
∈ range(Σ), there exists �̃�

𝑗
such that 𝑢

𝑗
= Σ�̃�
𝑗
. Then,

((Σ
2
+ 𝑠𝐼)
−1

− (Σ̂
2
+ 𝑠𝐼)
−1

) Σ𝑢
𝑗

= (Σ̂
2
+ 𝑠𝐼)
−1

(Σ̂
2
− Σ
2
) (Σ
2
+ 𝑠𝐼)
−1

Σ
2
�̃�
𝑗
,

(C.11)

which implies

𝑇1 − 𝑇2
 ≤

𝑑Γ

∑

𝑗=1

𝜏
𝑗


(Σ̂
2
+ 𝑠𝐼)
−1


Σ̂
2
− Σ
2HS

×

(Σ̂
2
+ 𝑠𝐼)
−1

Σ
2



�̃�
𝑗



= 𝑂
𝑝
(
1

𝑠√𝑛
) .

(C.12)

For the third term, the following holds:

𝑇2 − 𝑇

2

HS =

𝑑Γ

∑

𝑗=1

𝜏
𝑗


((Σ
2
+ 𝑠𝐼)
−1

Σ − Σ
−1
) 𝑢
𝑗



2

, (C.13)

and for each 𝑗 = 1, . . . , 𝑑
Γ
,


(Σ
2
+ 𝑠𝐼)
−1

Σ𝑢
𝑗
− Σ
−1
𝑢
𝑗



≤

(Σ
2
+ 𝑠𝐼)
−1

Σ
2
�̃�
𝑗
− �̃�
𝑗



=



∞

∑

𝑖=1

(
𝑤
2

𝑗

𝑠 + 𝑤2
𝑗

− 1)⟨�̃�
𝑗
, 𝑒
𝑖
⟩ 𝑒
𝑖



= (

∞

∑

𝑖=1

𝑠
2

(𝑠 + 𝑤2
𝑖
)
2
⟨�̃�
𝑗
, 𝑒
𝑖
⟩
2

)

1/2

≤
𝑠

𝑤
𝑁

(

𝑁

∑

𝑖=1

⟨�̃�
𝑗
, 𝑒
𝑖
⟩
2

)

1/2

+ (

∞

∑

𝑖=𝑁+1

⟨�̃�
𝑗
, 𝑒
𝑖
⟩
2

)

1/2

=
𝑠

𝑤2
𝑁


Π
𝑁
(�̃�
𝑗
)

+

Π
⊥

𝑁
(�̃�
𝑗
)

.

(C.14)

Combining these terms results in (33).

Since ‖Π⊥
𝑁
(�̃�
𝑗
)‖ → 0 as𝑁 → ∞, consequently, we have


�̂�
𝑠
− 𝑇
HS
= 𝑜
𝑝 (1) (C.15)

if 𝑠 → 0 and 𝑠√𝑛 → ∞.
If all the e.d.r. directions 𝛽

𝑖
depend only on a finite

number of eigenvectors of the covariance operator, then there
exist some 𝑁 > 1 such that S∗ = span{Σ𝑒

𝑖
, 𝑖 = 1, . . . , 𝑁}.

This implies that

�̃�
𝑗
= Σ
−1
𝑢
𝑗
∈ Σ
−1
(S
∗
) ⊂ span {𝑒

𝑖
, 𝑖 = 1, . . . , 𝑁} . (C.16)

Therefore, ‖Π⊥
𝑁
(�̃�
𝑗
)‖ = 0. Let 𝑠 = 𝑂(𝑛−1/4); the rate is𝑂(𝑛1/4).
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