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This paper further investigates the problem of finite-time state feedback stabilization for a class of stochastic nonholonomic systems
in chained form. Compared with the existing literature, the stochastic nonholonomic systems under investigation have more
uncertainties, such as the𝑥

0
-subsystem contains stochastic disturbance.This renders the existing finite-time controlmethods highly

difficult to the control problem of the systems or even inapplicable. In this paper, by extending adding a power integrator design
method to a stochastic system and by skillfully constructing 𝐶2 Lyapunov function, a novel switching control strategy is proposed,
which renders that the states of closed-loop system are almost surely regulated to zero in a finite time. A simulation example is
provided to demonstrate the effectiveness of the theoretical results.

1. Introduction

The nonholonomic systems, which can be used to model
many frequently met mechanical systems, such as wheeled
mobile robot, knife edge and rolling disk, have been an
active research field over the past decades. From Brockett’s
necessary condition [1], it is well known that the nonholo-
nomic systems cannot be stabilized to the origin by any static
continuous state feedback, so the classical smooth control
theory cannot be applied directly. In order to overcome this
obstruction, several novel approaches have been developed
for the problem, such as discontinuous time-invariant stabi-
lization [2, 3], smooth time-varying stabilization [4–6], and
hybrid stabilization [7]. Using these valid approaches, many
fruitful results have been developed [8–15]. Particularly, the
stochastic nonholonomic systems, which can be viewed as the
extension of the classical nonholonomic systems, have been
recently achieved investigations [16–18]. However, it should
be noted that those aforementioned papers consider the
feedback stabilizer that makes the trajectories of the systems
converge to the equilibrium as the time goes to infinity.

Compared to asymptotic stabilization, the closed-loop
system with finite-time convergence usually demonstrates
faster convergence rates, higher accuracies, better distur-
bance rejection properties, and robustness against uncertain-
ties [19]. Hence, it ismoremeaningful to investigate the finite-
time stabilization problem than the classical asymptotical
stability. For the deterministic case, in [20], a novel switching
finite-time control strategy was proposed to nonholonomic
systems in a chained form with uncertain parameters and
perturbed terms by the use of time rescaling and Lyapunov
based method. Later this result was essentially extended
under weaker constraints on drift terms in [21]. As a natural
extension, the finite-time stabilization for stochastic non-
holonomic systems is an interesting and challenging subject
of intensive study. However, it cannot be solved by simply
extending the methods for deterministic systems because of
the presence of stochastic disturbance. As pointed out by
Yin et al. [22], “the existence of a unique solution and the
non-satisfaction of local Lipschitz condition are two prereq-
uisites of discussing the finite-time stability for a stochastic
nonlinear system. That is, as a common assumption condition
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to guarantee the existence of a unique solution for stochastic
nonlinear system, local Lipschitz condition cannot be applied
to study stochastic finite-time stability.” Therefore, the finite-
time controller design for stochastic nonholonomic systems
should solve the following questions: under what conditions,
the stochastic nonholonomic systems exist possibly finite-time
stabilizer? Under these conditions, how can one design a finite-
time state feedback stabilizing controller?

To the best of the authors’ knowledge, only the authors in
[23] considered the aforementioned problems when the 𝑥

0
-

subsystem is ordinary differential equation. This paper con-
tinues the investigation in [23] and addresses the finite-
time stabilizing control design for stochastic nonholonomic
systems with more uncertainties than those in [16–18, 23],
which cannot be handled by general existing methods.
A constructive method in designing finite-time stabilizing
controller for such uncertain system is proposed. The contri-
bution of this paper is highlighted as follows. First, inspired
by the deterministic works in [24, 25], we generalize adding a
power integrator design method [26] to a stochastic system,
and a novel 𝐶2 Lyapunov function is constructed to deal with
stochastic disturbances. Second, based on a new switching
method, a systematic control design procedure is proposed
to solve the finite-time stabilization problem for all plants in
the considered class.

The remainder of this paper is organized as follows.
Section 2 presents some necessary notations, definitions,
and preliminary results. Section 3 describes the systems to
be studied and formulates the control problem. Section 4
presents the design scheme to the controller and the main
result. Section 5 gives a simulation example to illustrate the
theoretical finding of this paper. Finally, concluding remarks
are proposed in Section 6.

2. Notations and Preliminary Results

The following notations, definitions, and lemmas are to be
used throughout the paper. 𝑅+ denotes the set of all nonneg-
ative real numbers, and 𝑅𝑛 denotes the real 𝑛-dimensional
space. (𝑎, 𝑏)odd denotes the set {𝑥 | 𝑥 = 𝑝/𝑞 and 𝑥 ∈ (𝑎, 𝑏),
where 𝑝 and 𝑞 are odd integers}. (𝑎, 𝑏)even denotes the set {𝑥 |
𝑥 = 𝑝/𝑞 and 𝑥 ∈ (𝑎, 𝑏), where𝑝 is an even integer and 𝑞 is an
odd integer}. For a given vector or matrix 𝑋, 𝑋𝑇 denotes its
transpose, Tr{𝑋} denotes its trace when 𝑋 is square, and |𝑋|
is the Euclidean norm of a vector𝑋. 𝐶𝑖 denotes the set of all
functions with continuous 𝑖th partial derivatives. 𝐾 denotes
the set of all functions: 𝑅+ → 𝑅

+, which are continuous,
strictly increasing, and vanishing at zero; 𝐾

∞
denotes the

set of all functions which are of class 𝐾 and unbounded.
The arguments of the functions (or the functionals) will be
omitted or simplified, whenever no confusion can arise from
the context. For instance, we sometimes denote a function
𝑓(𝑥(𝑡)) by simply 𝑓(𝑥) or 𝑓.

We begin with some basic concepts and terminologies
related to the notion of stochastic finite-time stability. The
reader is referred to [22, 27, 28] as well as the references
therein for additional details.

Consider the stochastic nonlinear system
𝑑𝑥 = 𝑓 (𝑡, 𝑥) 𝑑𝑡 + 𝑔 (𝑡, 𝑥) 𝑑𝜔, (1)

where 𝑥 ∈ 𝑅
𝑛 is the system state with the initial condition

𝑥(0) = 𝑥
0
; 𝜔 is an m-dimensional independent standard

Wiener process defined on a complete probability space
(Ω,F, {F

𝑡
}
𝑡≥0
, 𝑃) with Ω being a sample space, F being a

𝜎-field, {F
𝑡
}
𝑡≥0

being a filtration, and 𝑃 being a probability
measure.The functions:𝑓 : 𝑅+ × 𝑅𝑛 → 𝑅

𝑛 and𝑔 : 𝑅+ × 𝑅𝑛 →
𝑅
𝑛×𝑚 are piecewise continuous and continuous with respect

to the first and second arguments, respectively, and satisfy
𝑓(𝑡, 0) ≡ 0 and𝑔(𝑡, 0) ≡ 0. Moreover, system (1) is assumed to
have a pathwise unique strong solution, denoted by 𝑥(𝑡, 𝑥

0
).

Definition 1. For system (1), define 𝑇
0
(𝑥
0
, 𝑤) = inf{𝑇 ≥ 0 :

𝑥(𝑡, 𝑥
0
) = 0, for all 𝑡 ≥ 𝑇}, which is called the stochas-

tic settling time function. Especially, 𝑇
0
(𝑥
0
, 𝑤) := +∞ if

𝑥(𝑡, 𝑥
0
) ̸= 0, for all 𝑡 ≥ 0.

Definition 2. The equilibrium 𝑥 ≡ 0 of the system (1) is said
to be a stochastic finite-time stable equilibrium if

(i) it is stable in probability: for every pair of 𝜀 ∈ (0, 1)

and 𝑟 > 0, there exists 𝛿 > 0 such that 𝑃{|𝑥(𝑡, 𝑥
0
)| <

𝑟, for all 𝑡 ≥ 0} ≥ 1 − 𝜀, whenever |𝑥| < 𝛿;
(ii) its stochastic settling-time function 𝑇

0
(𝑥
0
, 𝑤) exists

finitely with probability and 𝐸[𝑇
0
(𝑥
0
, 𝑤)] < ∞.

Next, we give two lemmas where the first one provides
sufficient conditions to ensure the existence of pathwise
unique strong solution to system (1), and the other one has
been used to determine the finite-time stability of stochastic
nonlinear systems.

Lemma 3 (see [23, 29]). Assume that 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are
continuous in 𝑥. Further, for any 0 < 𝛿 < 1, each𝑁 = 1, 2, . . . ,

and each 0 ≤ 𝑇 < ∞, if the following conditions hold:




𝑓 (𝑡, 𝑥)





≤ 𝑐 (𝑡) (1 + |𝑥|) ,





𝑔 (𝑡, 𝑥)






2
≤ 𝑐 (𝑡) (1 + |𝑥|

2
) ,





𝑓 (𝑡, 𝑥

1
) − 𝑓 (𝑡, 𝑥

2
)




≤ 𝑐
𝑁

𝑇
(𝑡)




𝑥
1
− 𝑥
2





,





𝑔 (𝑡, 𝑥

1
) − 𝑔 (𝑡, 𝑥

2
)




≤ 𝑐
𝑁

𝑇
(𝑡)




𝑥
1
− 𝑥
2





,

(2)

as 0 < 𝛿 ≤ |𝑥
𝑖
| ≤ 𝑁, 𝑖 = 1, 2, 𝑡 ∈ [0, 𝑇], where 𝑐(𝑡) and

𝑐
𝑁

𝑇
(𝑡) are nonnegative functions such that ∫𝑇

0
𝑐(𝑡)𝑑𝑡 < ∞ and

∫

𝑇

0
𝑐
𝑁

𝑇
(𝑡)𝑑𝑡 < ∞. Then for any given 𝑥

0
∈ 𝑅
𝑛, system (1) has a

pathwise unique strong solution.

Lemma 4 (see [30]). Consider the stochastic nonlinear system
described in (1). Suppose that there exist a 𝐶2 function 𝑉(𝑥),
class 𝐾

∞
functions 𝜇

1
and 𝜇

2
, real numbers 𝑐 > 0 and 0 <

𝛼 < 1, such that

𝜇
1 (|
𝑥|) ≤ 𝑉 (𝑥) ≤ 𝜇2 (|

𝑥|) ,

L𝑉 (𝑥) =

𝜕𝑉

𝜕𝑥

𝑓 +

1

2

Tr{𝑔𝑇 𝜕
2
𝑉

𝜕𝑥
2
𝑔} ≤ −𝑐𝑉

𝛼
(𝑥) .

(3)
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Then it is globally finite-time stable in probability, and the
stochastic settling time function 𝑇

0
(𝑥
0
, 𝑤) satisfies

𝐸 [𝑇
0
(𝑥
0
, 𝑤)] ≤

𝑉
1−𝛼

(𝑥
0
)

𝑐 (1 − 𝛼)

. (4)

Then we list two lemmas that serve as the basis of the key
tools for the adding a power integrator technique.

Lemma 5 (see [31]). For 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅, and 𝑝 ≥ 1 being a
constant, the following inequalities hold:





𝑥 + 𝑦






𝑝
≤ 2
𝑝−1 




𝑥
𝑝
+ 𝑦
𝑝



,

(|𝑥| +




𝑦




)
1/𝑝

≤ |𝑥|
1/𝑝

+




𝑦





1/𝑝

≤ 2
(𝑝−1)/𝑝

(|𝑥| +




𝑦




)
1/𝑝
.

(5)

If 𝑝 ≥ 1 is odd, then




𝑥 − 𝑦






𝑝
≤ 2
𝑝−1 




𝑥
𝑝
− 𝑦
𝑝



,






𝑥
1/𝑝

− 𝑦
1/𝑝



≤ 2
(𝑝−1)/𝑝

(




𝑥 − 𝑦





)
1/𝑝
.

(6)

Lemma 6 (see [32]). Let 𝑥, 𝑦 be real variables; then for any
positive real numbers 𝑎, 𝑚, and 𝑛, one has

𝑎|𝑥|
𝑚



𝑦





𝑛
≤ 𝑏|𝑥|

𝑚+𝑛
+

𝑛

𝑚 + 𝑛

(

𝑚 + 𝑛

𝑚

)

−𝑚/𝑛

× 𝑎
(𝑚+𝑛)/𝑛

𝑏
−𝑚/𝑛




𝑦





𝑚+𝑛
,

(7)

where 𝑏 > 0 is any real number.

3. Problem Formulation

Motivated by the statement in [18, 23] that many nonholo-
nomic mechanical systems, such as wheeled mobile robot,
subject to stochastic disturbances, can be transformed to a
kind of stochastic nonholonomic systems in the so-called
chained form, this paper considers the following class of
stochastic nonholonomic systems in chained form:

𝑑𝑥
0
= 𝑑
0 (
𝑡) 𝑢0

𝑑𝑡 + 𝑓
0
(𝑡, 𝑥
0
) 𝑑𝑡 + 𝑔

𝑇

0
(𝑡, 𝑥
0
) 𝑑𝑤,

𝑑𝑥
𝑖
= 𝑑
𝑖
(𝑡) 𝑥
𝑖+1
𝑢
0
𝑑𝑡 + 𝑓

𝑖
(𝑡, 𝑥
0
, 𝑥) 𝑑𝑡

+ 𝑔
𝑇

𝑖
(𝑡, 𝑥
0
, 𝑥) 𝑑𝑤, 𝑖 = 1, . . . , 𝑛 − 1,

𝑑𝑥
𝑛
= 𝑑
𝑛 (
𝑡) 𝑢1

𝑑𝑡 + 𝑓
𝑛
(𝑡, 𝑥
0
, 𝑥) 𝑑𝑡 + 𝑔

𝑇

𝑛
(𝑡, 𝑥
0
, 𝑥) 𝑑𝑤,

(8)

where 𝑥
0
∈ 𝑅 and 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇
∈ 𝑅
𝑛 are system states

and 𝑢
0
∈ 𝑅 and 𝑢

1
∈ 𝑅 are control inputs, respectively;

𝑑
𝑖
: 𝑅
+
→ 𝑅, 𝑖 = 0, . . . , 𝑛 are uncertain and continuous,

called the control coefficients. The nonlinear functions 𝑓
0
:

𝑅
+
× 𝑅 → 𝑅 and 𝑔

0
: 𝑅
+
× 𝑅 → 𝑅

𝑚, 𝑓
𝑖
: 𝑅
+
× 𝑅
𝑖+1

→ 𝑅

and 𝑔
𝑖
: 𝑅
+
× 𝑅
𝑖+1

→ 𝑅
𝑚, 𝑖 = 1, . . . , 𝑛 are assumed to

be 𝐶1 with their arguments with 𝑓
0
(𝑡, 0) = 0, 𝑔

0
(𝑡, 0) = 0,

𝑓
𝑖
(𝑡, 𝑥
0
, 0) = 0 and 𝑔

𝑖
(𝑡, 𝑥
0
, 0) = 0. and𝜔 is anm-dimensional

independent standardWiener process defined on a complete
probability space (Ω, 𝐹, 𝑃) with Ω being a sample space, 𝐹
being a filtration, and 𝑃 being a probability measure.

Remark 7. Obviously, the stochastic nonholonomic system
(8) contains more uncertainties in drift and diffusion terms
than those in the closely related papers [16–18, 23]. This,
especially the existence of stochastic disturbance in the 𝑥

0
-

subsystem, renders the procedure of control design in [23]
inapplicable to the finite-time control problem of the system.
Up to now, how to design a stabilizing controller to achieve
the finite-time stabilization of the system (8) is unsolved. It is
precisely our intention of this paper.

The following assumptions regarding system (8) are
imposed throughout the paper.

Assumption 8. For 𝑖 = 0, . . . , 𝑛, there are known positive
constants 𝑐

𝑖1
and 𝑐
𝑖2
such that

𝑐
𝑖1
≤ 𝑑
𝑖
(𝑡) ≤ 𝑐

𝑖2
. (9)

Assumption 9. For 𝑓
0
and 𝑔

0
, there are constants 𝑎 > 0 and

𝑟 ∈ (0, 1)odd such that




𝑓
0
(𝑡, 𝑥
0
) − 𝑓
0
(𝑡, 𝑥
0
)




≤ 𝑎





𝑥
0
− 𝑥
0






𝑟
,





𝑔
0
(𝑡, 𝑥
0
) − 𝑔
0
(𝑡, 𝑥
0
)




≤ 𝑎





𝑥
0
− 𝑥
0






(𝑟+1)/2
.

(10)

Assumption 10. For 𝑖 = 1, . . . , 𝑛, there is a constant 𝑏 > 0

such that for any 𝜏 ∈ (−2/(4𝑛 + 1), 0),




𝑓
𝑖
(𝑡, 𝑥
0
, 𝑥) − 𝑓

𝑖
(𝑡, 𝑥
0
, 𝑥)






≤ 𝑏 (




𝑥
1
− 𝑥
1






(𝑚𝑖+𝜏)/𝑚1
+ ⋅ ⋅ ⋅ +





𝑥
𝑖
− 𝑥
𝑖






(𝑚𝑖+𝜏)/𝑚𝑖
) ,





𝑔
𝑖
(𝑡, 𝑥
0
, 𝑥) − 𝑔

𝑖
(𝑡, 𝑥
0
, 𝑥)






≤ 𝑏 (




𝑥
1
− 𝑥
1






(2𝑚𝑖+𝜏)/2𝑚1
+ ⋅ ⋅ ⋅ +





𝑥
𝑖
− 𝑥
𝑖






(2𝑚𝑖+𝜏)/2𝑚𝑖
) ,

(11)

where𝑚
𝑖
= 1 + (𝑖 − 1)𝜏.

For simplicity, in this paper we assume that 𝜏 = −𝑝/𝑞

with 𝑝 being any even integer and 𝑞 being any odd integer,
under which and the definition of 𝑚

𝑖
in Assumption 10, we

know that𝑚
𝑖
is an odd number.

Remark 11. Noting that 𝑓
0
(𝑡, 0) = 0, 𝑔

0
(𝑡, 0) = 0, 𝑓

𝑖
(𝑡, 𝑥
0
, 0) =

0 and 𝑔
𝑖
(𝑡, 𝑥
0
, 0) = 0 are assumed, Assumptions 9 and 10

imply that




𝑓
0
(𝑡, 𝑥
0
)




≤ 𝑎





𝑥
0






𝑟
,





𝑔
0
(𝑡, 𝑥
0
)




≤ 𝑎





𝑥
0






(𝑟+1)/2
,





𝑓
𝑖
(𝑡, 𝑥
0
, 𝑥)





≤ 𝑏 (





𝑥
1






(𝑚𝑖+𝜏)/𝑚1
+ ⋅ ⋅ ⋅ +





𝑥
𝑖






(𝑚𝑖+𝜏)/𝑚𝑖
) ,





𝑔
𝑖
(𝑡, 𝑥
0
, 𝑥)





≤ 𝑏 (





𝑥
1






(2𝑚𝑖+𝜏)/2𝑚1
+ ⋅ ⋅ ⋅ +





𝑥
𝑖






(2𝑚𝑖+𝜏)/2𝑚𝑖
) .

(12)

It is noteworthy that Assumption 10 is a generalization of
the homogeneous growth condition introduced in [33] where
𝑥 = 0 and 𝜏 ≥ 0. Assumptions 9 and 10 are necessary, which
play an essential role in ensuring the existence of finite-time
stabilizer for stochastic nonholonomic system (8).
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4. Finite-Time Control Design

In this section, we give a constructive procedure for the finite-
time stabilizer of system (8). The design of finite-time state
feedback controller is divided into two steps.

Step 𝐴. We first stabilize the 𝑥-subsystem in a finite time
almost surely.

For the 𝑥
0
-subsystem, we choose the control 𝑢

0
as

𝑢
0
≡ 𝑢
∗

0
, (13)

where 𝑢∗
0
is a positive constant. In this case, the 𝑥

0
-subsystem

becomes

𝑑𝑥
0
= (𝑑
0
𝑢
∗

0
+ 𝑓
0
) 𝑑𝑡 + 𝑔

𝑇

0
𝑑𝑤. (14)

With the help of Assumptions 8 and 9 and Lemma 3, it
easy to obtain that system (14) has a unique solution on [0, 𝑇],
for any given finite time 𝑇 > 0. Hence, 𝑥

0
is well defined on

[0, 𝑇]. Next, we stabilize the 𝑥-subsystem

𝑑𝑥
𝑖
= 𝑑
𝑖
(𝑡) 𝑢
∗

0
𝑥
𝑖+1
𝑑𝑡 + 𝑓

𝑖
(𝑡, 𝑥
0
, 𝑥) 𝑑𝑡

+ 𝑔
𝑇

𝑖
(𝑡, 𝑥
0
, 𝑥) 𝑑𝑤, 𝑖 = 1, . . . , 𝑛 − 1,

𝑑𝑥
𝑛
= 𝑑
𝑛
(𝑡) 𝑢
1
𝑑𝑡 + 𝑓

𝑛
(𝑡, 𝑥
0
, 𝑥) 𝑑𝑡 + 𝑔

𝑇

𝑛
(𝑡, 𝑥
0
, 𝑥) 𝑑𝑤,

(15)

within a finite time. The control law 𝑢
1
can be recursively

constructed by applying the method of adding a power
integrator.

Step 1. Let 𝜉
1
= 𝑥
𝜎

1
, where 𝜎 ∈ (2,∞)odd is a constant. Choos-

ing the Lyapunov function 𝑉
1
= 𝑥
(4𝑙𝜎−𝜏)

1
/(4𝑙𝜎 − 𝜏), where 𝑙 is

a constant satisfying 4𝑙 ∈ (0,∞)even and (4𝑙 − 2)𝜎 ≥ 1. With
the help of Remark 11 and Lemma 4, it can be verified that

L𝑉
1
≤ 𝑑
1
𝑢
∗

0
𝑥
4𝑙𝜎−𝜏−1

1
(𝑥
2
− 𝑥
∗

2
) + 𝑑
1
𝑢
∗

0
𝑥
4𝑙𝜎−𝜏−1

1
𝑥
∗

2

+ 𝑏𝑥
4𝑙𝜎

1
+

1

2

(4𝜎 − 𝜏 − 1) 𝑏
2
𝑥
4𝑙𝜎

1
.

(16)

Obviously, the first virtual controller

𝑥
∗

2
= −

1

𝑐
11
𝑢
∗

0

[𝑀 + 𝑛 − 1 + 𝑏 +

1

2

(4𝜎 − 𝜏 − 1) 𝑏
2
] 𝑥
1+𝜏

1

:= −𝛽
𝑚2/𝜎

1
𝜉
𝑚2/𝜎

1
,

(17)

with design constant𝑀 > 0, results in

L𝑉
1
≤ − (𝑀 + 𝑛 − 1) 𝜉

4𝑙

1
+ 𝑑
1
𝑢
∗

0
𝜉
(4𝑙𝜎−𝜏−1)/𝜎

1
(𝑥
2
− 𝑥
∗

2
) .

(18)

Inductive Step. Suppose at step 𝑘−1, there are a𝐶2, proper and
positive definite Lyapunov function 𝑉

𝑘−1
, and a set of virtual

controllers 𝑥∗
1
, . . . , 𝑥

∗

𝑘
defined by

𝑥
∗

1
= 0, 𝜉

1
= 𝑥
𝜎/𝑚1

1
− 𝑥
∗𝜎/𝑚1

1
,

𝑥
∗

2
= −𝛽

𝑚2/𝜎

1
𝜉
𝑚2/𝜎

1
, 𝜉
2
= 𝑥
𝜎/𝑚2

2
− 𝑥
∗𝜎/𝑚2

2
,

...
...

𝑥
∗

𝑘
= −𝛽

𝑚𝑘/𝜎

𝑘−1
𝜉
𝑚𝑘/𝜎

𝑘−1
, 𝜉
𝑘
= 𝑥
𝜎/𝑚𝑘

𝑘
− 𝑥
∗𝜎/𝑚𝑘

𝑘
,

(19)

with constants 𝛽
1
> 0, . . ., 𝛽

𝑘−1
> 0, such that

L𝑉
𝑘−1

≤ − (𝑀 + 𝑛 − 𝑘 + 1) (𝜉
4𝑙

1
+ ⋅ ⋅ ⋅ + 𝜉

4𝑙

𝑘−1
)

+ 𝑑
𝑘−1
𝑢
∗

0
𝜉
(4𝑙𝜎−𝜏−𝑚𝑘−1)/𝜎

𝑘−1
(𝑥
𝑘
− 𝑥
∗

𝑘
) .

(20)

To complete the induction, at the 𝑘th step, we choose the
following Lyapunov function:

𝑉
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) = 𝑉
𝑘−1

(𝑥
1
, . . . , 𝑥

𝑘−1
) + 𝑊

𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) ,

(21)

where

𝑊
𝑘
(𝑥
1
, . . . , 𝑥

𝑘
) = ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑚𝑘

− 𝑥
∗𝜎/𝑚𝑘

𝑘
)

(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎

𝑑𝑠. (22)

Noting that

𝑥
∗𝜎/𝑚𝑘

𝑘
= −𝛽
𝑘−1
𝜉
𝑘−1
,

𝜉
𝑘
= 𝑥
𝜎/𝑚𝑘

𝑘
− 𝛽
𝑘−1
𝑥
𝜎/𝑚𝑘−1

𝑘−1
+ ⋅ ⋅ ⋅ + (−1)

𝑘−1

× 𝛽
𝑘−1

⋅ ⋅ ⋅ 𝛽
1
𝑥
𝜎/𝑚1

1
,

(23)

with the help of the fact 𝜎/𝑚
𝑖
> 2, the function 𝑉

𝑘
can be

shown to be 𝐶2, proper and positive definite using a similar
method as in [34]. Moreover, we can obtain

𝜕𝑊
𝑘

𝜕𝑥
𝑘

= 𝜉
(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎

𝑘
,

𝜕
2
𝑊
𝑘

𝜕𝑥
2

𝑘

=

4𝑙𝜎 − 𝜏 − 𝑚
𝑘

𝑚
𝑘

𝜉
((4𝑙−1)𝜎−𝜏−𝑚𝑘)/𝜎

𝑘
𝑥
(𝜎−𝑚𝑘)/𝑚𝑘

𝑘
,

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑘
𝜕𝑥
𝑖

=

𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑘

=

4𝑙𝜎 − 𝜏 − 𝑚
𝑘

𝜎

× 𝜉
((4𝑙−1)𝜎−𝜏−𝑚𝑘)/𝜎

𝑘

𝜕𝑥
∗𝜎/𝑚𝑘

𝑘

𝜕𝑥
𝑖

,

𝜕𝑊
𝑘

𝜕𝑥
𝑖

= −

4𝑙𝜎 − 𝜏 − 𝑚
𝑘

𝜎

𝜕𝑥
∗𝜎/𝑚𝑘

𝑘

𝜕𝑥
𝑖

×∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑚𝑘

− 𝑥
∗𝜎/𝑚𝑘

𝑘
)

((4𝑙−1)𝜎−𝜏−𝑚𝑘)/𝜎

𝑑𝑠,

𝜕
2
𝑊
𝑘

𝜕𝑥
2

𝑖

=

4𝑙𝜎 − 𝜏 − 𝑚
𝑘

𝜎

(4𝑙 − 1) 𝜎 − 𝜏 − 𝑚𝑘

𝜎

(

𝜕𝑥
∗𝜎/𝑚𝑘

𝑘

𝜕𝑥
𝑖

)

2

× ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑚𝑘

− 𝑥
∗𝜎/𝑚𝑘

𝑘
)

((4𝑙−2)𝜎−𝜏−𝑚𝑘)/𝜎

𝑑𝑠

−

4𝜎 − 𝜏 − 𝑚
𝑘

𝜎

𝜕
2
𝑥
∗𝜎/𝑚𝑘

𝑘

𝜕𝑥
2

𝑖

× ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑚𝑘

− 𝑥
∗𝜎/𝑚𝑘

𝑘
)

((4𝑙−1)𝜎−𝜏−𝑚𝑘)/𝜎

𝑑𝑠,
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𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

=

4𝑙𝜎 − 𝜏 − 𝑚
𝑘

𝜎

⋅

(4𝑙 − 1) 𝜎 − 𝜏 − 𝑚
𝑘

𝜎

𝜕𝑥
∗𝜎/𝑚𝑘

𝑘

𝜕𝑥
𝑖

𝜕𝑥
∗𝜎/𝑚𝑘

𝑘

𝜕𝑥
𝑗

× ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑚𝑘

− 𝑥
∗𝜎/𝑚𝑘

𝑘
)

((4𝑙−2)𝜎−𝜏−𝑚𝑘)/𝜎

𝑑𝑠,

(24)

where 𝑖, 𝑗 = 1, . . . , 𝑘 − 1, 𝑖 ̸= 𝑗.
Using (20)–(22) and (4), it follows that

L𝑉
𝑘
≤ − (𝑀 + 𝑛 − 𝑘 + 1) (𝜉

4𝑙

1
+ ⋅ ⋅ ⋅ + 𝜉

4𝑙

𝑘−1
)

+ 𝑑
𝑘
𝑢
∗

0
𝜉
(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎

𝑘
𝑥
𝑘+1

+ 𝑑
𝑘−1
𝑢
∗

0
𝜉
(4𝑙𝜎−𝜏−𝑚𝑘−1)/𝜎

𝑘−1
(𝑥
𝑘
− 𝑥
∗

𝑘
)

+ 𝜉
(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎

𝑘
𝑓
𝑘
+

𝑘−1

∑

𝑖=1

𝜕𝑊
𝑘

𝜕𝑥
𝑖

(𝑑
𝑖
𝑢
∗

0
𝑥
𝑖+1

+ 𝑓
𝑖
)

+

1

2

𝑘−1

∑

𝑖,𝑗=1, 𝑖 ̸= 𝑗












𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

















𝑔
𝑇

𝑖












𝑔
𝑇

𝑗







+

1

2

𝑘−1

∑

𝑖=1











𝜕
2
𝑊
𝑘

𝜕𝑥
2

𝑖
















𝑔
𝑇

𝑖







2

+

1

2

𝑘−1

∑

𝑖=1











𝜕
2
𝑊
𝑘

𝜕𝑥
𝑘
𝜕𝑥
𝑖
















𝑔
𝑇

𝑘












𝑔
𝑇

𝑖






+

1

2











𝜕
2
𝑊
𝑘

𝜕𝑥
2

𝑘
















𝑔
𝑇

𝑘







2

.

(25)

Based on Lemmas 5 and 6, the following proposition is
given to estimate the last seven terms on the right-hand side
of (25).

Proposition 12. There exists a positive constant 𝑙
𝑘
such that

𝑑
𝑘−1
𝑢
∗

0
𝜉
(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎

𝑘−1
(𝑥
𝑘
− 𝑥
∗

𝑘
)

+ 𝜉
(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎

𝑘
𝑓
𝑘
+

𝑘−1

∑

𝑖=1

𝜕𝑊
𝑘

𝜕𝑥
𝑖

(𝑑
𝑖
𝑢
∗

0
𝑥
𝑖+1

+ 𝑓
𝑖
)

+

1

2

𝑘−1

∑

𝑖,𝑗=1, 𝑖 ̸= 𝑗












𝜕
2
𝑊
𝑘

𝜕𝑥
𝑖
𝜕𝑥
𝑗

















𝑔
𝑇

𝑖












𝑔
𝑇

𝑗







+

1

2

𝑘−1

∑

𝑖=1











𝜕
2
𝑊
𝑘

𝜕𝑥
2

𝑖
















𝑔
𝑇

𝑖







2

+

1

2

𝑘−1

∑

𝑖=1











𝜕
2
𝑊
𝑘

𝜕𝑥
𝑘
𝜕𝑥
𝑖
















𝑔
𝑇

𝑘












𝑔
𝑇

𝑖






+

1

2











𝜕
2
𝑊
𝑘

𝜕𝑥
2

𝑘
















𝑔
𝑇

𝑘







2

≤ 𝜉
4𝑙

1
+ ⋅ ⋅ ⋅ + 𝜉

4𝑙

𝑘−1
+ 𝑙
𝑘
𝜉
4𝑙

𝑘
.

(26)

Proof. The similar proof can be found in [23] and thus it is
omitted here.

Substituting (26) into (25), we obtain

L𝑉
𝑘
≤ − (𝑀 + 𝑛 − 𝑘) (𝜉

4𝑙

1
+ ⋅ ⋅ ⋅ + 𝜉

4𝑙

𝑘−1
)

+ 𝑑
𝑘
𝑢
∗

0
𝜉
(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎

𝑘
𝑥
𝑘+1

+ 𝑙
𝑘
𝜉
4𝑙

𝑘
.

(27)

Clearly, the 𝐶0 virtual controller

𝑥
∗

𝑘+1
= −

1

𝑐
𝑘1
𝑢
∗

0

𝜉
(𝑚𝑘+𝜏)/𝜎

𝑘
(𝑀 + 𝑛 − 𝑘 + 𝑙

𝑘
) := −𝛽

𝑚𝑘+1/𝜎

𝑘
𝜉
𝑚𝑘+1/𝜎

𝑘
,

(28)

with 𝛽
𝑘
> 0 being constant, results in

L𝑉
𝑘
≤ − (𝑀 + 𝑛 − 𝑘) (𝜉

4𝑙

1
+ ⋅ ⋅ ⋅ + 𝜉

4𝑙

𝑘
)

+ 𝑑
𝑘
𝑢
∗

0
𝜉
(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎

𝑘
(𝑥
𝑘+1

− 𝑥
∗

𝑘+1
) .

(29)

This completes the proof of the inductive step.

Using the previous inductive argument, one concludes
that at the 𝑛th step, there exists a non-Lipschitz continuous
state feedback control law of the form

𝑢 = 𝑥
∗

𝑛+1
= −𝛽
𝑚𝑛+1/𝜎

𝑛
𝜉
𝑚𝑛+1/𝜎

𝑛
, (30)

with 𝛽
𝑛
> 0 being constant and a 𝐶2 positive definite and

proper Lyapunov function𝑉
𝑛
of the form (21)-(22), such that

L𝑉
𝑛
≤ −𝑀(𝜉

4𝑙

1
+ ⋅ ⋅ ⋅ + 𝜉

4𝑙

𝑛
) . (31)

So the following result is obtained.

Lemma 13. If Assumptions 8 and 10 hold for the stochastic
nonlinear system (15), then the solution of the closed-loop
system consisting of (15) and (30) is finite-time stable in
probability.

Proof. From (23) and (30), it is not hard to verify that all
conditions in Lemma 3 are satisfied, which means that the
closed-loop system admits a unique solution. Next we prove
that the closed-loop system is globally finite-time stable in
probability.

First of all, by using Lemma 5, it is easy to see that

𝑊
𝑘
= ∫

𝑥𝑘

𝑥
∗

𝑘

(𝑠
𝜎/𝑚𝑘

− 𝑥
∗𝜎/𝑚𝑘

𝑘
)

(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎

𝑑𝑠

≤




𝜉
𝑘






(4𝑙𝜎−𝜏−𝑚𝑘)/𝜎 


𝑥
𝑘
− 𝑥
∗

𝑘






≤ 2
(𝜎−𝑚𝑘)/𝜎



𝜉
𝑘






(4𝑙𝜎−𝜏)/𝜎
.

(32)

So we have the following estimate

𝑉
𝑛
=

1

(4𝑙𝜎 − 𝜏)

𝑥
4𝑙𝜎−𝜏

1
+

𝑛

∑

𝑘=2

𝑊
𝑘

≤

1

(4𝑙𝜎 − 𝜏)

𝜉
(4𝑙𝜎−𝜏)/𝜎

1
+

𝑛

∑

𝑘=2

2
(𝜎−𝑚𝑘)/𝜎



𝜉
𝑘






(4𝑙𝜎−𝜏)/𝜎

≤ 2

𝑛

∑

𝑘=1

𝜉
(4𝑙𝜎−𝜏)/𝜎

𝑘
.

(33)
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Figure 1: States of the closed-loop system.

Let 𝛼 = 4𝑙𝜎/(4𝑙𝜎 − 𝜏). With (33) and (31) in mind, by
Lemma 5, it is not difficult to obtain that

L𝑉
𝑛
≤ −

𝑀𝑉
𝛼

𝑛

2
𝛼
. (34)

Therefore, by Lemma 4, the uncertain system (15) with
the controller (30) is globally finite-time stable in probability
and its stochastic settling time 𝑇

1
(𝑥(0), 𝑤) satisfies

𝐸 [𝑇
1
(𝑥 (0) , 𝑤)] ≤

2
𝛼
𝑉
1−𝛼

𝑛
(𝑥 (0))

𝑀 (1 − 𝛼)

. (35)

Step 𝐵. Then we design a state feedback controller such that
the 𝑥
0
-subsystem is finite-time stable in probability.

FromStep𝐴, we know that𝑥(𝑡) ≡ 0when 𝑡 ≥ 𝑇
1
(𝑥(0), 𝑤).

Therefore, we just need to stabilize the 𝑥
0
-subsystem in

a finite time almost surely. When 𝑡 ≥ 𝑇
1
(𝑥(0), 𝑤), for the

𝑥
0
-subsystem, we can take the following control law:

𝑢
0
(𝑥
0
) = −

1

𝑐
01

(𝑘
0
+ 𝑎 +

3

2

𝑎
2
)𝑥
𝑟

0
, (36)

where 𝑘
0
is a positive constant.

Taking the Lyapunov function 𝑉
0
= 𝑥
4

0
/4, a simple com-

putation gives

L𝑉
0
≤ −𝑘
0
𝑥
3+𝑟

0
. (37)

Thus by Lemma 4, 𝑥
0
stochastically tends to 0 within a

settling time denoted by 𝑇
2
(𝑥
0
(0), 𝑤) and

𝐸 [𝑇
2
(𝑥
0
(0) , 𝑤)] ≤

2𝑉
(1−𝑟)/4

0
(𝑥
0 (
0))

𝑘
0
(1 − 𝑟)

. (38)
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Figure 2: Control inputs of the closed-loop system.

Up to now, we have finished the finite-time stabilizing
controller design of the system (8). Consequently, the follow-
ing theorem can be obtained to summarize the main result of
the paper.

Theorem 14. Under Assumptions 8–10, if the proposed control
design procedure together with the previous switching control
strategy is applied to system (8), then, for any initial conditions
in the state space (𝑥

0
, 𝑥) ∈ 𝑅

𝑛+1, the closed-loop system is
globally finite time regulated at origin in probability.

Remark 15. The settling time of the closed-loop system
depends on design parameters 𝑘

0
, 𝑀 and initial conditions,

that is, when the initial conditions are known, the settling-
time can be arbitrarily adjusted by the choice of appropriate
design parameters 𝑘

0
and𝑀.

5. Simulation Example

To verify our proposed controller, we consider the following
low-dimensional system:

𝑑𝑥
0
= (1.5 + 0.5 cos 𝑡) 𝑢

0
𝑑𝑡 +

1

4

𝑥
4/5

0
𝑑𝑤,

𝑑𝑥
1
= 𝑥
2
𝑑𝑡 +

1

4

𝑥
9/11

1
𝑑𝑡 +

1

8

sin𝑥
1
𝑑𝑤,

𝑑𝑥
2
= 𝑢𝑑𝑡 +

1

4

𝑥
7/11

1
𝑑𝑡 +

1

8

cos 2𝑥
2
𝑑𝑤.

(39)

We choose 𝜏 = −2/11, which together with 𝑚
1
= 1

implies that 𝑚
2
= 9/11. By Lemma 5, it is verified that

Assumptions 9-10 are satisfied with 𝑎 = 𝑏 = 1/2.
Assumption 8 holds with 1 ≤ 1.5 + 0.5 cos 𝑡 ≤ 2; hence the
controller proposed in this paper is applicable.

When (𝑥
0
(0), 𝑥
1
(0), 𝑥
2
(0)) = (1, −1, 1), by choosing𝜎 = 3

and 𝑙 = 2/3, according to the design procedure proposed

in Section 4, a state feedback stabilizing controller can be
explicitly given. UsingMATLAB, Figures 1 and 2 are obtained
to exhibit the trajectories of the closed-loop system. From
these figures, we can see that the states of the closed-loop
system are finite time regulated to zero almost surely.

6. Conclusion

In this paper, the finite-time state feedback stabilization
problem has been investigated for a class of nonholonomic
systems with more general stochastic disturbances. With the
help of adding a power integrator technique, a systematic
control design procedure is developed in the stochastic
setting. It should be noted that the proposed controller can
only work well when the whole state vector is measurable.
Therefore, a natural and more interesting problem is how to
design output feedback stabilizing controller for the system
studied in the paper if only partial state vector is measurable,
which is now under our further investigation.

Acknowledgments

This work has been supported in part by National Nature
Science Foundation of China under Grants 61073065 and
61273091 and the Key Program of Science Technology
Research of Education Department of Henan Province under
Grant 13A120016. The authors thank the editor and the
anonymous reviewers for their constructive comments and
suggestions for improving the quality of the paper.

References

[1] R.W.Brockett, “Asymptotic stability andfeed back stabilization,”
in Differential Geometric Control Theory, R. W. Brockett, R. S.
Millman, and H. J. Sussmann, Eds., pp. 2961–2963, 1983.



8 Abstract and Applied Analysis

[2] A. Astolfi, “Discontinuous control of nonholonomic systems,”
Systems & Control Letters, vol. 27, no. 1, pp. 37–45, 1996.

[3] W. L. Xu andW. Huo, “Variable structure exponential stabiliza-
tion of chained systems based on the extended nonholonomic
integrator,” Systems&Control Letters, vol. 41, no. 4, pp. 225–235,
2000.

[4] R. M. Murray and S. S. Sastry, “Nonholonomic motion plan-
ning: steering using sinusoids,” IEEE Transactions on Automatic
Control, vol. 38, no. 5, pp. 700–716, 1993.

[5] Z. P. Jiang, “Iterative design of time-varying stabilizers for
multi-input systems in chained form,” Systems&Control Letters,
vol. 28, no. 5, pp. 255–262, 1996.

[6] Y. P. Tian and S. Li, “Exponential stabilization of nonholonomic
dynamic systems by smooth time-varying control,”Automatica,
vol. 38, no. 8, pp. 1139–1146, 2002.

[7] I. Kolmanovsky andN. H.McClamroch, “Hybrid feedback laws
for a class of cascade nonlinear control systems,” IEEE Transac-
tions on Automatic Control, vol. 41, no. 9, pp. 1271–1282, 1996.

[8] Z. P. Jiang, “Robust exponential regulation of nonholonomic
systems with uncertainties,” Automatica, vol. 36, no. 2, pp. 189–
209, 2000.

[9] Z. Xi, G. Feng, Z. P. Jiang, and D. Cheng, “A switching algo-
rithm for global exponential stabilization of uncertain chained
systems,” IEEE Transactions on Automatic Control, vol. 48, no.
10, pp. 1793–1798, 2003.

[10] S. S. Ge, Z. Wang, and T. H. Lee, “Adaptive stabilization of un-
certain nonholonomic systems by state and output feedback,”
Automatica, vol. 39, no. 8, pp. 1451–1460, 2003.

[11] Y. G. Liu and J. F. Zhang, “Output-feedback adaptive stabiliza-
tion control design for non-holonomic systems with strong
non-linear drifts,” International Journal of Control, vol. 78, no.
7, pp. 474–490, 2005.

[12] Z. Xi, G. Feng, Z. P. Jiang, and D. Cheng, “Output feedback ex-
ponential stabilization of uncertain chained systems,” Journal of
the Franklin Institute, vol. 344, no. 1, pp. 36–57, 2007.

[13] X. Zheng and Y.Wu, “Adaptive output feedback stabilization for
nonholonomic systems with strong nonlinear drifts,”Nonlinear
Analysis, vol. 70, no. 2, pp. 904–920, 2009.

[14] F. Gao, F. Yuan, and H. Yao, “Robust adaptive control for
nonholonomic systems with nonlinear parameterization,”Non-
linear Analysis, vol. 11, no. 4, pp. 3242–3250, 2010.

[15] Z. Y. Liang and C. L. Wang, “Robust stabilization of nonholo-
nomic chained form systemswith uncertainties,”ActaAutomat-
ica Sinica, vol. 37, no. 2, pp. 129–142, 2011.

[16] J. Wang, H. Gao, and H. Li, “Adaptive robust control of
nonholonomic systems with stochastic disturbances,” Science in
China F, vol. 49, no. 2, pp. 189–207, 2006.

[17] Y. L. Liu and Y. Q. Wu, “Output feedback control for stochastic
nonholonomic systems with growth rate restriction,” Asian
Journal of Control, vol. 13, no. 1, pp. 177–185, 2011.

[18] Y. Zhao, J. Yu, andY.Wu, “State-feedback stabilization for a class
of more general high order stochastic nonholonomic systems,”
International Journal of Adaptive Control and Signal Processing,
vol. 25, no. 8, pp. 687–706, 2011.

[19] S. P. Bhat andD. S. Bernstein, “Continuous finite-time stabiliza-
tion of the translational and rotational double integrators,” IEEE
Transactions on Automatic Control, vol. 43, no. 5, pp. 678–682,
1998.

[20] Y. Hong, J. Wang, and Z. Xi, “Stabilization of uncertain chained
form systems within finite settling time,” IEEE Transactions on
Automatic Control, vol. 50, no. 9, pp. 1379–1384, 2005.

[21] J. Wang, G. Zhang, and H. Li, “Adaptive control of uncertain
nonholonomic systems in finite time,” Kybernetika, vol. 45, no.
5, pp. 809–824, 2009.

[22] J. Yin, S. Khoo, Z. Man, and X. Yu, “Finite-time stability and
instability of stochastic nonlinear systems,” Automatica, vol. 47,
no. 12, pp. 2671–2677, 2011.

[23] F. Gao and F. Yuan, “Finite-time stabilization of stochastic
nonholonomic systems and its application to mobile robot,”
Abstract and Applied Analysis, Article ID 361269, 18 pages, 2012.

[24] X. Huang, W. Lin, and B. Yang, “Global finite-time stabilization
of a class of uncertain nonlinear systems,” Automatica, vol. 41,
no. 5, pp. 881–888, 2005.

[25] J. Li, C. Qian, and S. Ding, “Global finite-time stabilisation by
output feedback for a class of uncertain nonlinear systems,”
International Journal of Control, vol. 83, no. 11, pp. 2241–2252,
2010.

[26] C. Qian andW. Lin, “A continuous feedback approach to global
strong stabilization of nonlinear systems,” IEEE Transactions on
Automatic Control, vol. 46, no. 7, pp. 1061–1079, 2001.

[27] W. Chen and L. C. Jiao, “Finite-time stability theorem of
stochastic nonlinear systems,” Automatica, vol. 46, no. 12, pp.
2105–2108, 2010.

[28] W. Chen and L. C. Jiao, “Authors’ reply to comments on “Finite-
time stability theorem of stochastic nonlinear systems” [Auto-
matica 46 (2010) 2105–2108],” Automatica, vol. 47, no. 7, pp.
1544–1545, 2011.

[29] R. Situ, Thoery of Stochastic Differential Equations with Jumps
and Applications: Mathematical and Analysis Techniques with
Applications to Engineering, Springer,NewYork,NY,USA, 2005.

[30] H. J. Liu and X. W. Mu, “A converse lyapunov theorem for
stochastic finite-time stability,” in Proceedings of the 30th Chi-
nese Control Conference, pp. 1419–1423, 2011.

[31] J. Polendo and C. Qian, “A generalized homogeneous domina-
tion approach for global stabilization of inherently nonlinear
systems via output feedback,” International Journal of Robust
and Nonlinear Control, vol. 17, no. 7, pp. 605–629, 2007.

[32] B. Yang andW. Lin, “Nonsmooth output feedback design with a
dynamic gain for uncertain systemswith strong nonlinearity,” in
Proceedings of the 46th IEEEConference onDecision and Control
(CDC ’07), pp. 3495–3500, New Orieans, La, USA, December
2007.

[33] W. Li, X. J. Xie, and S. Zhang, “Output-feedback stabilization of
stochastic high-order nonlinear systems under weaker condi-
tions,” SIAM Journal on Control and Optimization, vol. 49, no.
3, pp. 1262–1282, 2011.

[34] C. Qian and W. Lin, “Non-Lipschitz continuous stabilizers for
nonlinear systems with uncontrollable unstable linearization,”
Systems & Control Letters, vol. 42, no. 3, pp. 185–200, 2001.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


