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Due to the bandwidth constraints in the networked control systems (NCSs), a deadband scheduling strategy is proposed to
reduce the data transmission rate of network nodes. A discrete-time model of NCSs is established with both deadband scheduling
and network-induced time-delay. By employing the Lyapunov functional and LMI approach, a state feedback H

∞
controller is

designed to ensure the closed-loop system asymptotically to be stable with H
∞

performance index. Simulation results show that
the introduced deadband scheduling strategy can ensure the control performance of the system and effectively reduce the node’s
data transmission rate.

1. Introduction

Networked control systems (NCSs) are control systems in
which the control loop is closed over a wired or wireless
communication network. They have received a great deal
of attention in the recent years owing to their successful
applications in a wide range of areas such as industrial
automation, aerospace, and nuclear power station [1, 2].
Compared with the traditional point-to-point communica-
tion, NCSs have advantages of low cost, easy installation and
maintenance, great reliability, and so forth. However, due
to the introduction of the communication networks, they
also incur some new issues such as network-induced delays,
packet dropouts, and limited bandwidth resources, which
make the analysis and design of NCSs becomemore complex
[3, 4].

Many results for NCSs have been reported to handle
network-induced delays, packet dropouts and communica-
tion constraints in the literature; see [5–12] and the references
therein. It should be pointed out that most of the available
results make use of time-driven sampling and communi-
cation scheme since it is relatively easy to implement, and
there is a well-established system theory for periodic signals.
However, time-driven communication scheme is not desir-
able in many control applications. For example, in the NCSs
with limited bandwidth resources, frequent data transmission

will increase the network collision probability when there are
many nodes on the network, thereby increasing the commu-
nication delay and data dropouts and leading to the poor
performance and instability of the systems [3]. On the other
hand, as is well-known, in the wireless networked control
systems (WNCSs), amain constraint of wireless devices is the
limited battery life, and wireless transmission consumes sig-
nificantly more energy than internal computation [13]; thus
reducing the data transmission rate is particularly important
in theWNCSs. For the above two cases, time-driven commu-
nication scheme is not suitable since its transmission rate is
generally high which results in inefficient utilization of the
limited resources, such as network bandwidth and energy.
Therefore, how to design a reasonable scheduling strategy
to reduce the use of constrained resources and ensure the
performance of NCSs becomes one of the research hotspots.

Not only deadband scheduling techniques (i.e., by setting
transmission deadband for the network node, the node will
not transmit a new message if the node signal or signal
change is within the deadband), which can effectively reduce
the use of network bandwidth and energy consumption, but
also the algorithms which are easy to realize have received
an increasing attention in the recent years [14–18]. Besides,
numerous other concepts have been proposed in the liter-
ature, such as send-on-delta sampling [19–21], event-based
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sampling [22–24], and event-triggered sampling [25, 26].
Despite the existence of many names, the basic principle is
the same. In [14], a deadbandmethodwas introduced into the
NCSs for the first time, in which the transmission deadbands
were set in the sensor and controller to reduce the data
transmission rate, and the deadband threshold optimization
problem was also discussed. In [15], the relationship between
the deadband threshold and the control performance was
analyzed by simulation. The paper [23] used the deviation
of two adjacent states beyond the deadband threshold to
drive the nodes’ data transmission and a dynamically selected
deadband threshold value in accordance with the round-trip
delay. In [16, 17], the stability of the system with deadband
scheduling was investigated, but the network delay was not
considered in [16] the nodes should be synchronized and the
network delay should be measurable in [17]. The paper [18]
proposed a signal difference-based transmission deadband
scheduling strategy, a continuous-time model of WNCSs
was established with both the probability distribution of
delay and parametric uncertainties, and the 𝐻

∞
controller

was designed. In [26], for a class of uncertain continuous-
time NCSs with quantizations, the codesign for controller
and event-triggering scheme was proposed by using a delay
system approach.

Until now, although some important pieces of work have
been reported on deadband scheduling schemes in NCSs,
which have a great significance on both theoretical develop-
ment and practical applications in NCSs, it is worth noting
that the obtained results on deadband scheduling in NCSs
mostly focus on the system simulation and performance
analysis; few papers have solved the problems of controller
design and synthesis, which are more useful and challenging
than the issue of performance analysis. In addition, to the best
of our knowledge, few related results have been established
for discrete-time NCSs with deadband scheduling, which
motivates the work of this paper.

In this paper, we propose a deadband scheduling scheme
to save the limited bandwidth resources while guarantee-
ing the desired 𝐻

∞
control performance. Considering the

influence of uncertain short time-delay, the NCSs with both
deadband scheduling and time-delay ismodeled as a discrete-
time system with parameter uncertainties. By the Lyapunov
functional and LMI approach, the 𝐻

∞
control problem is

investigated. Finally, a numerical example is given to show
the usefulness of the derived results.

The rest of this paper is organized as follows. Section 2
gives a discrete-time model of the closed-loop system. In
Section 3, a state feedback 𝐻

∞
controller is designed to

ensure the closed-loop system asymptotically to be stable
with 𝐻

∞
performance index. Section 4 demonstrates the

validness of the proposed method through a numerical
example. Conclusions are given in Section 5.

Notation.The notations used throughout this paper are fairly
standard. R𝑛 denotes the 𝑛-dimensional Euclidean space.
‖ ⋅ ‖
2
refers to the Euclidean vector norm. 𝑙

2
[0,∞) is the

space of square summable infinite sequence. 𝐼 and 0 represent
the identity matrix and zero matrix with appropriate dimen-
sions, respectively. diag{⋅ ⋅ ⋅ } stands for a diagonal matrix.
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Figure 1: Model of networked control system with deadband
scheduling.

The superscripts “𝑇” and “−1” represent matrix transpose
and inverse, and “∗” denotes the term that is induced by
symmetry.

2. Problem Description and Modeling

The networked control system with deadband scheduling in
this paper is shown in Figure 1, where deadband schedulers
(DS1, DS2) are set in the sensor and controller, respectively,
𝜏
sc
𝑘

is sensor-to-controller delay, and 𝜏
ca
𝑘

is controller-to-
actuator delay.

Consider the following continuous plant model:

𝑥̇ (𝑡) = 𝐴𝑥 (𝑡) + 𝐵
1
V (𝑡) + 𝐵

2
𝑤 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector of plant, V(𝑡) ∈ R𝑝 is
the input vector, 𝑦(𝑡) ∈ R𝑞 is the output vector, and 𝑤(𝑡) ∈

R𝑝 is the disturbance input. 𝐴, 𝐵
1
, 𝐵
2
, and 𝐶 are known real

constant matrices with appropriate dimensions.
Make the following assumptions for the system.

(1) In the smart sensor, the sampler is time-driven, with
a sampling period ℎ; both the controller and actuator
are event-driven.

(2) The total network-induced time-delay 𝜏
𝑘
= 𝜏

sc
𝑘

+ 𝜏
ca
𝑘

is time varying and nondeterministic, which satisfies
0 ≤ 𝜏
𝑘
≤ ℎ.

Thus, the discretized equation of plant can be described
as [27]

𝑥 (𝑘 + 1) = 𝐺𝑥 (𝑘) + 𝐻
0
(𝜏
𝑘
) V (𝑘)

+ 𝐻
1
(𝜏
𝑘
) V (𝑘 − 1) + 𝐻

𝑤
𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) ,

(2)
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where 𝐺 = 𝑒
𝐴ℎ, 𝐻
0
(𝜏
𝑘
) = ∫
ℎ−𝜏𝑘

0

𝑒
𝐴𝑡

𝑑𝑡𝐵
1
, 𝐻
1
(𝜏
𝑘
) = ∫
ℎ

ℎ−𝜏𝑘

𝑒
𝐴𝑡

𝑑𝑡

𝐵
1
, and 𝐻

𝑤
= ∫
ℎ

0

𝑒
𝐴𝑡

𝑑𝑡𝐵
2
. By mathematical transformation,

𝐻
0
(𝜏
𝑘
),𝐻
1
(𝜏
𝑘
) can be expressed as

𝐻
0
(𝜏
𝑘
) = 𝐻

0
+ 𝐷𝐹 (𝜏

󸀠

𝑘
) 𝐸,

𝐻
1
(𝜏
𝑘
) = 𝐻

1
− 𝐷𝐹 (𝜏

󸀠

𝑘
) 𝐸,

(3)

where

𝐻
0
= ∫

ℎ/2

0

𝑒
𝐴𝑠

𝑑𝑠 ⋅ 𝐵, 𝐻
1
= ∫

ℎ

ℎ/2

𝑒
𝐴𝑠

𝑑𝑠 ⋅ 𝐵,

𝛿 = max
𝜏
󸀠

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

−𝜏
󸀠

𝑘

0

𝑒
𝐴𝑠

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

ℎ/2

0

𝑒
𝐴𝑠

𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

,

𝐷 = 𝛿𝑒
𝐴(ℎ/2)

, 𝐸 = 𝐵, 𝜏
󸀠

𝑘
∈ [−

ℎ

2
,
ℎ

2
] ,

𝐹
𝑇

(𝜏
󸀠

𝑘
) 𝐹 (𝜏

󸀠

𝑘
) ≤ 𝐼.

(4)

Remark 1. Limited by space, the detailed discretization pro-
cess for system (1) with uncertain short time-delay is omitted
in this paper and can be found in [27]. From (2) and (3), we
know that the continuous plant with uncertain short time-
delay inNCSs can bemodeled as a discrete linear systemwith
parameter uncertainties.

2.1. Description of Deadband Schedulers. The signal will be
transmitted only when the difference between the current
signal and the previous transmission signal is greater than
the error threshold. According to this, the deadband sched-
ulers designed in this paper are the error threshold-based
deterministic schedulers. The working mechanism of the
deadband scheduler 1(DS1) in the sensor can be described as

𝑥
𝑖
(𝑘) = {

𝑥
𝑖
(𝑘) ,

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑘 − 1) − 𝑥
𝑖
(𝑘)

󵄨󵄨󵄨󵄨 > 𝛿
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑘)
󵄨󵄨󵄨󵄨 ,

𝑥
𝑖
(𝑘 − 1) ,

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑘 − 1) − 𝑥
𝑖
(𝑘)

󵄨󵄨󵄨󵄨 ≤ 𝛿
𝑖

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑘)
󵄨󵄨󵄨󵄨 ,

(5)

where 𝑖 = 1, 2, . . . , 𝑛; 𝛿
𝑖
∈ [0, 1], 𝑥

𝑖
(𝑘), and 𝑥

𝑖
(𝑘) are given

error threshold values, output signals, and input signals of
DS1, respectively.

Set Λ
1
= diag{𝛿

1
, 𝛿
2
, . . . , 𝛿

𝑛
}, 𝐹
1
(𝑘) = diag{𝑓

11
(𝑘), 𝑓
12
(𝑘),

. . . , 𝑓
1𝑛
(𝑘)}, 𝑓

1𝑖
(𝑘) ∈ [−1, 1], 𝑖 = 1, 2, . . . , 𝑛; then from (5), the

input-output relationship of DS1 can be converted to

𝑥 (𝑘) = 𝑥 (𝑘) + Λ
1
𝐹
1
(𝑘) 𝑥 (𝑘) , (6)

where 𝐹𝑇
1
(𝑘)𝐹
1
(𝑘) ≤ 𝐼.

Remark 2. In this paper, the effect of active packet dropouts
under the deadband scheduling scheme is modeled as a
bounded uncertain item of the transmission signal.Themain
advantages of this modeling method are as follows: (1) a
non-linear relationship between the input and output of the
deadband scheduler is converted to a linear relationship
with uncertain parameters; (2) due to the bounded ranges
of uncertain parameters related to the deadband threshold

values, it is easier to merge scheduling policy parameters into
the system model.

Similarly, the workingmechanism of deadband scheduler
2(DS2) in the controller can be described as:

V
𝑗
(𝑘) =

{

{

{

𝑢
𝑗
(𝑘) ,

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑘 − 1) − 𝑢

𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
> 𝜎
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
,

V
𝑗
(𝑘 − 1) ,

󵄨󵄨󵄨󵄨󵄨
V
𝑗
(𝑘 − 1) − 𝑢

𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
≤ 𝜎
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑘)

󵄨󵄨󵄨󵄨󵄨
,

(7)

where 𝑗 = 1, 2, . . . , 𝑝; 𝜎
𝑗
∈ [0, 1], V

𝑗
(𝑘) and 𝑢

𝑗
(𝑘) are given

error threshold values, output signals and input signals of
DS2, respectively.

Set Λ
2
= diag{𝜎

1
, 𝜎
2
, . . . 𝜎
𝑝
}, 𝐹
2
(𝑘) = diag{𝑓

21
(𝑘), 𝑓
22
(𝑘),

. . . , 𝑓
2𝑝
(𝑘)},𝑓

2𝑗
(𝑘) ∈ [−1, 1], 𝑗 = 1, 2, . . . , 𝑝, then from (7) the

input-output relationship of DS2 can be converted to:

V (𝑘) = 𝑢 (𝑘) + Λ
2
𝐹
2
(𝑘) 𝑢 (𝑘) , (8)

where 𝐹𝑇
2
(𝑘)𝐹
2
(𝑘) ≤ 𝐼.

From the above, we know that after the introduction of
deadband schedulers into NCSs, the signals do not need to
be transmitted at each sampling period so as to achieve the
purpose of reducing data transmission rate and the effect
of bandwidth constraints on the system. In addition, the
principles of the considered schedulers are simple, which do
not require a lot of computing and data storage.

2.2. TheModel of Closed-Loop System. Employ a memoryless
state feedback controller

𝑢 (𝑘) = 𝐾𝑥 (𝑘) , (9)

where 𝑥(𝑘) ∈ R𝑛, 𝑢(𝑘) ∈ R𝑝, and𝐾 is the state feedback gain
with appropriate dimensions.

Selecting the augmented vector 𝑧(𝑘) =

[𝑥
𝑇

(𝑘) V𝑇(𝑘 − 1)]
𝑇

and synthesizing (2), (3), (6), (8),
and (9), the closed-loop system can be described as

𝑧 (𝑘 + 1) = Φ
𝑘
𝑧 (𝑘) + 𝐻

𝑤
𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑧 (𝑘) ,

(10)

where
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Φ
𝑘
= [

𝐺 + (𝐻
0
+ 𝐷𝐹 (𝜏

󸀠

𝑘
) 𝐸) (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾 (𝐼 + Λ

1
𝐹
1
(𝑘)) 𝐻

1
− 𝐷𝐹 (𝜏

󸀠

𝑘
) 𝐸

(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾 (𝐼 + Λ

1
𝐹
1
(𝑘)) 0

]

= 𝐺 + 𝐻𝐾
1
𝐼 + 𝐷𝐹 (𝜏

󸀠

𝑘
) 𝐸𝐾
1
𝐼 + 𝐷𝐹 (𝜏

󸀠

𝑘
) 𝐸,

(11)

where

𝐺 = [
𝐺 𝐻
1

0 0
] , 𝐶 = [𝐶 0] ,

𝐻 = [
𝐻
0

𝐼
] , 𝐷 = [

𝐷

0
] ,

𝐼 = [𝐼 0] , 𝐸 = [0 −𝐸] ,

𝐻
𝑤
= [

𝐻
𝑤

0
] , 𝐾

1
= (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾 (𝐼 + Λ

1
𝐹
1
(𝑘)) .

(12)

3. Design of 𝐻
∞

Controller

In this section, we will investigate 𝐻
∞

control problem for
the closed-loop system (10). Throughout this paper, we will
use the following lemmas.

3.1. Related Lemmas

Lemma 3 (see [28]). For the given matrices 𝐴, 𝑄 = 𝑄
𝑇, and

𝑃 = 𝑃
𝑇

> 0, 𝐴𝑇𝑃𝐴 + 𝑄 < 0 hold if and only if

[
𝑄 𝐴

𝑇

𝐴 −𝑃
−1
] < 0, [

−𝑃
−1

𝐴

𝐴
𝑇

𝑄
] < 0. (13)

Lemma 4 (see [28]). Let 𝑊, 𝑀, 𝑁, 𝐹(𝑘) be real matrices of
appropriate dimensions with 𝐹

𝑇

(𝑘)𝐹(𝑘) ≤ 𝐼 and 𝑊 = 𝑊
𝑇;

then

𝑊 + 𝑀𝐹 (𝑘)𝑁 + 𝑁
𝑇

𝐹
𝑇

(𝑘)𝑀
𝑇

< 0 (14)

holds if and only if there exists a real scalar 𝜀 > 0, satisfying

𝑊 + 𝜀𝑀𝑀
𝑇

+ 𝜀
−1

𝑁
𝑇

𝑁 < 0. (15)

More especially, when 𝐹(𝑘) is a diagonal matrix, there also
exists the following lemma.

Lemma 5 (see [29]). Let 𝑊, 𝑀, 𝑁 be real matrices of
appropriate dimensions, let 𝐹(𝑘) be a diagonal matrix with
𝐹
𝑇

(𝑘)𝐹(𝑘) ≤ 𝐼 and𝑊 = 𝑊
𝑇; then the following two conditions

are equivalent:

(1) 𝑊 + 𝑀𝐹(𝑘)𝑁 + 𝑁
𝑇

𝐹
𝑇

(𝑘)𝑀
𝑇

< 0

(2) there exists a matrix 𝑆 = 𝑆
𝑇

> 0, satisfying 𝑊 +

𝑀𝑆𝑀
𝑇

+ 𝑁
𝑇

𝑆
−1

𝑁 < 0.

Remark 6. Due to the introduction of a symmetric positive-
definite matrix instead of a scalar in Lemma 5, problem

solving is expected to have a less conservatism comparedwith
Lemma 4.

We are now in a position to formulate 𝐻
∞

control
problem forNCSswith both deadband scheduling and uncer-
tain short time-delay. More specifically, given a disturbance
attenuation level 𝛾, we design a state feedback controller of the
form (9) such that the closed-loop system (10) with 𝑤(𝑘) = 0

is asymptotically stable and under zero initial condition; the
output 𝑦(𝑘) satisfies ‖𝑦‖

2
≤ 𝛾‖𝑤‖

2
for all nonzero 𝑤(𝑘) ∈

𝑙
2
[0,∞).

3.2. Main Results. Based on Lyapunov functional method
and 𝐻

∞
theory [28], the following conclusions can be

obtained.

Theorem 7. For a given scalar 𝛾 > 0, under the given
deadband scheduling schemes (5) and (7), the closed-loop
system (10) is asymptotically stable with 𝐻

∞
performance 𝛾

if there exist symmetric positive-definite matrices 𝑃, 𝑊
1
, 𝑊
2
,

feedback gain matrix 𝐾, and scalar 𝜀
1
> 0 such that

[
[
[
[
[
[
[
[

[

Π
11

𝐺 + 𝐻𝐾𝐼 𝐻
𝑤

Π
14

𝐻𝐾Λ
1

0

∗ Π
22

0 (𝐸𝐾𝐼 + 𝐸)
𝑇

0 (𝐾𝐼)
𝑇

∗ ∗ −𝛾
2

𝐼 0 0 0

∗ ∗ ∗ Π
44

𝐸𝐾Λ
1

0

∗ ∗ ∗ ∗ −𝑊
1

(𝐾Λ
1
)
𝑇

∗ ∗ ∗ ∗ ∗ −𝑊
2

]
]
]
]
]
]
]
]

]

< 0,

(16)
where

Π
11

= −𝑃
−1

+ 𝜀
1
𝐷𝐷
𝑇

+ (𝐻Λ
2
)𝑊
2
(𝐻Λ
2
)
𝑇

,

Π
14

= (𝐻Λ
2
)𝑊
2
(𝐸Λ
2
)
𝑇

,

Π
22

= −𝑃 + 𝐶
𝑇

𝐶 + 𝐼
𝑇

𝑊
1
𝐼,

Π
44

= −𝜀
1
𝐼 + (𝐸Λ

2
)𝑊
2
(𝐸Λ
2
)
𝑇

.

(17)

Proof . (i) We first show that system (10) with 𝑤(𝑘) = 0

is asymptotically stable. To the end, defining a Lyapunov
functional as 𝑉(𝑘) = 𝑧

𝑇

(𝑘)𝑃𝑧(𝑘), we have that
Δ𝑉 (𝑘) = 𝑉 (𝑘 + 1) − 𝑉 (𝑘)

= 𝑧
𝑇

(𝑘 + 1) 𝑃𝑧 (𝑘 + 1) − 𝑧
𝑇

(𝑘) 𝑃𝑧 (𝑘)

= 𝑧
𝑇

(𝑘)Φ
𝑇

𝑘
𝑃Φ
𝑘
𝑧 (𝑘) − 𝑧

𝑇

(𝑘) 𝑃𝑧 (𝑘)

= 𝑧
𝑇

(𝑘) (Φ
𝑇

𝑘
𝑃Φ
𝑘
− 𝑃) 𝑧 (𝑘) .

(18)
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Obviously, ifΦ𝑇
𝑘
𝑃Φ
𝑘
−𝑃 < 0, thenΔ𝑉(𝑘) < 0, and the closed-

loop system (10) is asymptotically stable.
(ii) Next, we prove that system (10) has𝐻

∞
performance

𝛾. Define

𝐽 =

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘)]

=

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) + Δ𝑉 (𝑘)]

− 𝑉 (∞) + 𝑉 (0) .

(19)

Under zero initial conditions, we have that 𝑉(0) = 0, but
𝑉(∞) ≥ 0; therefore,

𝐽 ≤

∞

∑

𝑘=0

[𝑦
𝑇

(𝑘) 𝑦 (𝑘) − 𝛾
2

𝑤
𝑇

(𝑘) 𝑤 (𝑘) + Δ𝑉 (𝑘)]

=

∞

∑

𝑘=0

[𝑧
𝑇

(𝑘) 𝑤
𝑇

(𝑘)]Π [
𝑧 (𝑘)

𝑤 (𝑘)
] ,

(20)

where

Π = [
Φ
𝑇

𝑘
𝑃Φ
𝑘
+ 𝐶
𝑇

𝐶 − 𝑃 Φ
𝑇

𝑘
𝑃𝐻
𝑤

∗ 𝐻
𝑇

𝑤
𝑃𝐻
𝑤
− 𝛾
2

𝐼

] . (21)

If Π < 0, thenΦ
𝑇

𝑘
𝑃Φ
𝑘
+𝐶
𝑇

𝐶−𝑃 < 0; therefore,Φ𝑇
𝑘
𝑃Φ
𝑘
−

𝑃 < −𝐶
𝑇

𝐶 < 0; the condition in (i) holds, and system
(10) with 𝑤(𝑘) = 0 is asymptotically stable. In addition, If

Π < 0, then 𝐽 < 0; therefore, ‖𝑦‖2
2

= ∑
∞

𝑘=0
𝑦
𝑇

(𝑘)𝑦(𝑘) <

𝛾
2

∑
∞

𝑘=0
𝑤
𝑇

(𝑘)𝑤(𝑘) = 𝛾
2

‖𝑤‖
2

2
.

According to Π < 0, substituting Φ
𝑘

= 𝐺 + 𝐻𝐾
1
𝐼 +

𝐷𝐹(𝜏
󸀠

𝑘
)𝐸𝐾
1
𝐼 + 𝐷𝐹(𝜏

󸀠

𝑘
)𝐸 into (21) and applying Lemma 3, we

have that

[
[

[

−𝑃
−1

𝐺 + 𝐻𝐾
1
𝐼 𝐻
𝑤

∗ −𝑃 + 𝐶
𝑇

𝐶 0

∗ ∗ −𝛾
2

𝐼

]
]

]

+ [

[

𝐷

0

0

]

]

𝐹 (𝜏
󸀠

𝑘
) [0 𝐸𝐾

1
𝐼 + 𝐸 0]

+ [0 𝐸𝐾
1
𝐼 + 𝐸 0]

𝑇

𝐹
𝑇

(𝜏
󸀠

𝑘
)[

[

𝐷

0

0

]

]

𝑇

< 0.

(22)

Due to 𝐹
𝑇

(𝜏
󸀠

𝑘
)𝐹(𝜏
󸀠

𝑘
) ≤ 𝐼 and by the use of Lemma 4, we can

get that

[
[

[

−𝑃
−1

𝐺 + 𝐻𝐾
1
𝐼 𝐻
𝑤

∗ −𝑃 + 𝐶
𝑇

𝐶 0

∗ ∗ −𝛾
2

𝐼

]
]

]

+ 𝜀
1

[

[

𝐷

0

0

]

]

[

[

𝐷

0

0

]

]

𝑇

+ 𝜀
−1

1
[0 𝐸𝐾

1
𝐼 + 𝐸 0]

𝑇

[0 𝐸𝐾
1
𝐼 + 𝐸 0] < 0.

(23)

According to Lemma 3, (23) is equivalent to

[
[
[
[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷
𝑇

𝐺 + 𝐻𝐾
1
𝐼 𝐻
𝑤

0

∗ −𝑃 + 𝐶
𝑇

𝐶 0 (𝐸𝐾
1
𝐼 + 𝐸)

𝑇

∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ −𝜀
1
𝐼

]
]
]
]

]

< 0.

(24)

Substituting𝐾
1
= (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾(𝐼 + Λ

1
𝐹
1
(𝑘)) into (24), we

have that

[
[
[
[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷
𝑇

𝐺 + 𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 𝐻

𝑤
0

∗ −𝑃 + 𝐶
𝑇

𝐶 0 (𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 + 𝐸)

𝑇

∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ −𝜀
1
𝐼

]
]
]
]

]

+

[
[
[

[

𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

0

0

𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

]
]
]

]

𝐹
1
(𝑘) [0 𝐼 0 0] + [0 𝐼 0 0]

𝑇

𝐹
𝑇

1
(𝑘)

[
[
[

[

𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

0

0

𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

]
]
]

]

𝑇

< 0.

(25)

Considering that 𝐹
1
(𝑘) is a diagonal matrix with

𝐹
𝑇

1
(𝑘)𝐹
1
(𝑘) ≤ 𝐼, and so employing Lemma 5, we can get that
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[
[
[
[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷
𝑇

𝐺 + 𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 𝐻

𝑤
0

∗ −𝑃 + 𝐶
𝑇

𝐶 0 (𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 + 𝐸)

𝑇

∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ −𝜀
1
𝐼

]
]
]
]

]

+

[
[
[

[

𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

0

0

𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

]
]
]

]

𝑊
−1

1

[
[
[

[

𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

0

0

𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾Λ

1

]
]
]

]

𝑇

+ [0 𝐼 0 0]
𝑇

𝑊
1
[0 𝐼 0 0] < 0.

(26)

According to Lemma 3, (26) is equivalent to

[
[
[
[
[
[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷
𝑇

𝐺 + 𝐻(𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 𝐻

𝑤
0 𝐻 (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾Λ

1

∗ −𝑃 + 𝐶
𝑇

𝐶 + 𝐼
𝑇

𝑊
1
𝐼
1

0 (𝐸 (𝐼 + Λ
2
𝐹
2
(𝑘))𝐾𝐼 + 𝐸)

𝑇

0

∗ ∗ −𝛾
2

𝐼 0 0

∗ ∗ ∗ −𝜀
1
𝐼 𝐸 (𝐼 + Λ

2
𝐹
2
(𝑘))𝐾Λ

1

∗ ∗ ∗ ∗ −𝑊
1

]
]
]
]
]
]

]

< 0. (27)

Similarly, we can eliminate𝐹
2
(𝑘). By use of Lemma 5, we have

that

[
[
[
[
[
[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷
𝑇

𝐺 + 𝐻𝐾𝐼 𝐻
𝑤

0 𝐻𝐾Λ
1

∗ −𝑃 + 𝐶
𝑇

𝐶 + 𝐼
𝑇

𝑊
1
𝐼
1

0 (𝐸𝐾𝐼 + 𝐸)
𝑇

0

∗ ∗ −𝛾
2

𝐼 0 0

∗ ∗ ∗ −𝜀
1
𝐼 𝐸𝐾Λ

1

∗ ∗ ∗ ∗ −𝑊
1

]
]
]
]
]
]

]

+

[
[
[
[
[

[

𝐻Λ
2

0

0

𝐸Λ
2

0

]
]
]
]
]

]

𝑊
2

[
[
[
[
[

[

𝐻Λ
2

0

0

𝐸Λ
2

0

]
]
]
]
]

]

𝑇

+ [0 𝐾𝐼 0 0 𝐾Λ
1
]
𝑇

𝑊
−1

2
[0 𝐾𝐼 0 0 𝐾Λ

1
] < 0.

(28)

Furthermore, applying Lemma 3, (28) can be converted to
(16).

The proof is completed.

Remark 8. Notice that the matrix inequality (16) in Theo-
rem 7 is a bilinear matrix inequality due to the existence of
𝑃
−1. Generally, it can be solved by the linear approach [30] or

the cone complementarity linearization (CCL) method [31].
By contrast, the CCL result is less conservative [32] and so is
employed in this paper.

Corollary 9. The bilinear matrix inequality (16) can be
transformed to the following objective function minimization
problems by the CCL method.

Find
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𝑃 > 0, 𝑋 > 0, 𝑊
1
> 0,

𝑊
2
> 0, 𝜀

1
> 0,𝐾

min Trace (𝑃𝑋)

s.t.

[
[
[
[
[
[
[
[

[

Π̂
11

𝐺 + 𝐻𝐾𝐼 𝐻
𝑤

Π
14

𝐻𝐾Λ
1

0

∗ Π
22

0 (𝐸𝐾𝐼 + 𝐸)
𝑇

0 (𝐾𝐼)
𝑇

∗ ∗ −𝛾
2

𝐼 0 0 0

∗ ∗ ∗ Π
44

𝐸𝐾Λ
1

0

∗ ∗ ∗ ∗ −𝑊
1

(𝐾Λ
1
)
𝑇

∗ ∗ ∗ ∗ ∗ −𝑊
2

]
]
]
]
]
]
]
]

]

< 0,

[
𝑃 𝐼

𝐼 𝑋
] ≥ 0,

(29)

where Π̂
11

= −𝑋 + 𝜀
1
𝐷𝐷
𝑇

+ (𝐻Λ
2
)𝑊
2
(𝐻Λ
2
)
𝑇.

Since Corollary 9 has turned the nonconvex feasibility
problem of Theorem 7 into a minimization problem of
nonlinear objective function with linear matrix inequalities
constraints, it can be solved by the following iterative algo-
rithm.

Algorithm 10.

Step 1. Find a set of feasible solutions Ξ
0

= {𝑃
0
, 𝑋
0
,𝑊
10
,

𝑊
20
, 𝜀
10
, 𝐾
0
}, which satisfyies (29), and set the iterative

number 𝑙 = 0.

Step 2.Use LMI toolbox ofmincx solver to solve the following
linear objective function minimization problem:

min Trace (𝑃
𝑙
𝑋 + 𝑃𝑋

𝑙
)

s.t. (29) .
(30)

The solutions are set Ξ∗ = {𝑃
∗

, 𝑋
∗

,𝑊
∗

1
,𝑊
∗

2
, 𝜀
∗

1
, 𝐾
∗

}.

Step 3. Substituting the solutions Ξ∗ into the matrix inequal-
ity (16) in Theorem 7 to check if (16) is satisfied, then 𝐾

∗

becomes the state feedback gain matrix and the iteration
terminates. Otherwise, enter into Step 4.

Step 4. If the iterative number satisfies 𝑙 ≤ 𝐿 (𝐿 is a
predetermined iterative number upper bound), set Ξ

𝑙+1
=

Ξ
∗

, 𝑙 = 𝑙 + 1, and return to Step 2 for the next iteration.
Otherwise, enter into Step 1 and reselect a set of feasible
solutions Ξ

0
to calculate.

Thus, a state feedback 𝐻
∞

controller can be obtained
for NCSs with both deadband scheduling and uncertain
short time-delay. More especially, if there are no deadband
schedulers in the NCSs shown in Figure 1, the closed-loop
system in (10) reads

𝑧 (𝑘 + 1) = Φ
𝑘
𝑧 (𝑘) + 𝐻

𝑤
𝑤 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑧 (𝑘) ,

(31)

where

Φ
𝑘
= [

𝐺 + (𝐻
0
+ 𝐷𝐹 (𝜏

󸀠

𝑘
) 𝐸)𝐾 𝐻

1
− 𝐷𝐹 (𝜏

󸀠

𝑘
) 𝐸

𝐾 0
]

= 𝐺 + 𝐻𝐾𝐼 + 𝐷𝐹 (𝜏
󸀠

𝑘
) 𝐸𝐾𝐼 + 𝐷𝐹 (𝜏

󸀠

𝑘
) 𝐸.

(32)

Then, we have the following corollary, which can be
proved along similar lines as in the proof of Theorem 7.

Corollary 11. Consider the NCSs in Figure 1, but without the
deadband schedulers. For a given scalar 𝛾 > 0, the closed-loop
system (31) is asymptotically stable with 𝐻

∞
performance 𝛾 if

there exist symmetric positive-definite matrix 𝑃, feedback gain
matrix 𝐾, and scalar 𝜀

1
> 0 such that

[
[
[
[

[

−𝑃
−1

+ 𝜀
1
𝐷𝐷
𝑇

𝐺 + 𝐻𝐾𝐼 𝐻
𝑤

0

∗ −𝑃 + 𝐶
𝑇

𝐶 0 (𝐸𝐾𝐼 + 𝐸)
𝑇

∗ ∗ −𝛾
2

𝐼 0

∗ ∗ ∗ −𝜀
1
𝐼

]
]
]
]

]

< 0.

(33)

Similarly, the bilinear matrix inequality (33) can be solved
by the above CCL method and the iterative algorithm in
Corollary 9 and is thus omitted.

4. Numerical Example

In this section, a numerical example is introduced to demon-
strate the effectiveness of the proposed method. Consider a
ball and beam system with [33]

𝑥̇ (𝑡) = [
0 1

0 0
] 𝑥 (𝑡) + [

0

1
] 𝑢 (𝑡) + [

0

1
]𝑤 (𝑡) ,

𝑦 (𝑡) = [1 0] 𝑥 (𝑡) .

(34)
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Table 1: The feedback gain matrix 𝐾 values for various Λ
1
, Λ
2
.

Case Λ
1

Λ
2

𝐾

1 Without scheduling Without scheduling 𝐾 = [−0.5462 − 1.0978]

2 [0.02 0; 0 0.02] 0.02 𝐾 = [−0.4942 − 1.0314]

3 [0.05 0; 0 0.05] 0.05 𝐾 = [−0.4393 − 0.9733]

4 [0.07 0; 0 0.07] 0.05 𝐾 = [−0.4185 − 0.9605]

5 [0.1 0; 0 0.1] 0.07 No solution

1 2 3
0

0.2

0.4

0.6

0.8

1

Series

TR

Case 1
Case 2

Case 3
Case 4

Figure 2: The performance of MTR.

In this example, we choose ℎ = 0.5𝑠, and 𝜏
𝑘
∈ [0, ℎ] is

time varying and nondeterministic. According to (2) and (3),
we have that

𝐺 = [
1 0.5

0 1
] , 𝐻

0
= [

0.0313

0.25
] ,

𝐻
1
= [

0.0938

0.25
] , 𝐷 = [

0.2661 0.0665

0 0.2661
] ,

𝐸 = [
0

1
] , 𝐻

𝑤
= [

0.125

0.5
] .

(35)

For a given disturbance attenuation level 𝛾 = 5, based
on the LMI toolbox, and applying Corollaries 9 and 11, the
feedback gain matrix 𝐾 values are given with different error
threshold values Λ

1
, Λ
2
in Table 1. It is obvious from Table 1

that for a given level 𝛾 we can find the feasible feedback gain
matrix𝐾 values when Λ

1
, Λ
2
are within certain ranges.

In addition, we choose the initial value 𝑥
0
= [2 −0.5]

𝑇,
the disturbance

𝑤 (𝑘) = {
0.1, 50 ≤ 𝑘 ≤ 60,

0, other,
(36)

and the total runtime 100 seconds. Define MTR = 𝑛sent/𝑛total
and IAE = ∑ ‖𝑒(𝑘)‖

2
⋅ ℎ, in which MTR denotes the mean

0

1

2

3

4

5

6

7

8

IA
E

1 2 3
Series

Case 1
Case 2

Case 3
Case 4

Figure 3: The performance of IAE.

data transmission rate (𝑛sent and 𝑛total denote the number
of data transmitted with and without deadband schedulers
in the runtime, respectively.) and IAE denotes the control
performance of the system. Under three different random
time-delay sequences, the performance of MTR and IAE is
shown for the system with the above four error threshold
values in Figures 2 and 3, respectively. It can be easily seen
that compared with the system without deadband schedulers
(case 1), although the control performance of the system by
using deadband scheduling scheme (case 2–case 4) is slightly
worse (in Figure 3), the mean data transmission rate of the
system is greatly reduced (in Figure 2).

Figures 4–6 show the simulation results for the system in
which the error threshold values take Λ

1
= diag{0.07, 0.07},

Λ
2
= 0.05, the feedback gain matrix𝐾 = [−0.4185 −0.9605]

according to Table 1, and the time-delay takes the first series.
It can be seen that the closed-loop system is asymptotically
stable (in Figure 4), and only part of the sampled data and
control signal are transmitted with the proposed deadband
scheduling scheme (in Figures 5 and 6, here the transmission
interval of 𝑥

2
(𝑘) is similar to 𝑥

1
(𝑘) in DS1 and is thus

omitted).
Furthermore, under zero initial conditions, we get that

‖𝑦‖
2

= 0.7310, ‖𝑤‖
2

= 0.3317, which yields 𝛾
∗

= 2.20.
It means that the practical disturbance attenuation level
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Figure 4: State response curves of the closed-loop system.
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t/s (with DS1)
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t/s (without DS)
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)

Figure 5: Comparisons of the transmission interval of 𝑥
1
(𝑘).

is smaller than the given level 𝛾 = 5, which shows the
effectiveness of the proposed𝐻

∞
controller design method.

5. Conclusions

In this paper, a discrete-time model for NCSs with both
deadband scheduling and time-delay has been established
and the𝐻

∞
control problem has been investigated. Based on

the LMI approach, a state feedback 𝐻
∞

controller has been
designed to ensure the closed-loop system asymptotically to
be stable with𝐻

∞
performance index. A numerical example

has been provided to show the validness of the derived results.
Since the principles and algorithms of deadband schedulers
in this paper are very simple, the smart sensor and controller
are easy to implement. In addition, simulation results show
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Figure 6: Comparisons of the transmission interval of V(𝑘).

that it can effectively reduce the node’s data transmission rate,
so it is very suitable for applying in the NCSs with limited
bandwidth resources.
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