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Total cloud fraction over the Arctic (north of 60◦N) has been evaluated and intercompared based on 16 Arctic cloud climatologies
from different satellite and surface observations and reanalyses. The Arctic annual-mean total cloud fraction is about 0.70 ± 0.03
according to different observational data. It is greater over the ocean (0.74 ± 0.04) and less over land (0.67 ± 0.03). Different
observations for total cloud fraction are in a better agreement in summer than in winter and over the ocean than over land.
An interannual variability is higher in winter than in summer according to all observations. The Arctic total cloud fraction has a
prominent annual cycle according to most of the observations. The time of its maximum concurs with the time of the sea ice extent
minimum (early summer–late autumn) and vice versa (late spring). The main reason for the discrepancies among observations
is the difference in the cloud-detection algorithms, especially when clouds are detected over the ice/snow surface (during the
whole year) or over the regions with the presence of strong low-tropospheric temperature inversions (mostly in winter). Generally,
reanalyses are not in a close agreement with satellite and surface observations of cloudiness in the Arctic.

1. Introduction

The Arctic is a very sensitive region to the global climate
change [1–4]. As pointed out in the Intergovernmental Panel
on Climate Change Fourth Assessment Report [2], surface
air temperature in the Arctic increased in the beginning of
the 21st century by 1.0–1.5 K compared to 1970s. This rate
is approximately twice that of the entire Earth. According
to the estimations with the global climate models (GCMs),
the Arctic surface temperature may increase by 4–7 K to the
end of the 21st century compared with the end of the 20th
century [1, 2]. An increase of air temperature is accompanied
by changes in other climate variables [1, 4, 5], particularly, a
decrease of the Arctic sea ice extent [1, 6, 7] and cloud cover
changes [8–10].

Clouds play the key role in the Earth’s climate system
by regulating the radiation budget of the planet through
reflecting shortwave radiation coming from the sun and
redistributing longwave radiation coming from the Earth

surface [11, 12]. Clouds of different layers have different
influence on the radiation budget. High- and mid-level
cloudiness tend to warm the atmosphere by strengthening
and greenhouse effect, and low-level cloudiness tends to cool
atmosphere by the increase of the albedo. Additionally, cloud
radiative forcing (the difference between radiation fluxes in
clear sky and cloudy conditions, CRF) strongly depends on
season and the time of day. Generally, in the extratropical
latitudes, CRF is positive in winter (at night) and negative
in summer (during the daytime). The regional magnitude of
CRF can reach 100 W/m2 [13–15]. As a whole, cloudiness has
a global cooling effect [11], but in the Arctic region, clouds
slightly enhance surface cooling only for a few weeks in the
midsummer and have a warming effect in the rest of the year
[14, 16–18].

The sensitivity of CRF is about 1 W/m2 per 1% of
cloud cover in the Arctic [18]. Thus, relatively a small
percentage of changes in cloud cover or cloud properties
could result in an anomalous climate forcing of several
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W/m2. By using model simulations, Vavrus [19] showed that
the positive cloud feedback may enhance the Arctic warming
up to 40% under CO2 doubling. This result is partially
corroborated by the observations [20]. Cloud amount has
increased in the Arctic during spring, summer, and autumn
in the last decades according to satellite [8, 9] and surface
[10, 21] observations, which can be indicated on a small
positive feedback. However, satellite and surface observations
disagree on winter cloudiness trends. According to model
simulations, cloudiness will increase in high latitudes in the
21st century [22, 23].

Considering the importance of clouds in the Arctic, it
is crucial to know exactly when and where clouds exist.
However, the detection of clouds in the Arctic is intrinsically
difficult. Clouds in the Arctic are mostly optically thin and
low-lying [10, 16], and they have a little thermal and visible
contrast with the underlying surface, which makes them hard
to be observed from satellite mostly in winter [7, 24, 25].
The main obstacle to reliable surface observations in the
Arctic is a very sparse network of ground-based observations
especially over Greenland and over the Arctic Ocean [26].
In addition, visual observations are more reliable during
daytime than during nighttime [27]. Several studies on an
intercomparison of cloud climatologies indicate the polar
regions as the regions with the largest discrepancies among
observational data [28–33]. Similar conclusions were done
for reanalyses and GCMs simulations [15, 34–39].

Major research programs such as Atmospheric Radiation
Measurement program (ARM) [40], yearlong Surface Heat
Budget of the Arctic (SHEBA) program, and, associated with
it, First International Satellite Cloud Climatology Program
(ISCCP) Regional Experiment (FIRE) [41–43] aimed to
improve our knowledge about the Arctic atmosphere and
climate and to help optimize satellite retrievals for the Arctic.
Particularly, comparisons between data from these programs
and satellite-derived or reanalyses data were performed in a
number of studies (e.g., [15, 44, 45]). Additionally, satellites
with active sensors like lidar on CALIPSO and ICESat
[46, 47] and radar on CLOUDSAT and EarthCARE [48]
have been launched in the recent years. Data provided with
these satellites (or merged products like GeoPROF [49])
can improve our understanding of cloud vertical structure.
However, these data are limited by 82◦N and still too short
(especially compared to an extremely narrow swath) for
obtaining an adequate cloud climatology in the Arctic.

Here, we intercompare 16 cloud climatologies based on
up-to-date satellite and surface observations and modern
reanalyses in the Arctic region north of 60◦N. Description
of datasets is given in the Section 2. We present the results of
a comparative analysis in Section 3 and discuss these results
in Section 4.

2. Data

In this study, we used cloud information from up-to-date
satellite and surface observations and global reanalyses data.
These data are described in Sections 2.1, 2.2, and 2.3,
respectively. Brief information on data is given in Table 1.

2.1. Satellite Observations

2.1.1. APP-x. The Advanced Very High Resolution Radiome-
ter (AVHRR) Polar Pathfinder product (APP) was performed
specially for polar regions [50, 51]. Cloudiness is derived
from the Cloud And Surface Parameter Retrieval (CASPR)
system [52] based on twice-a-day measurements in 5 spectral
channels (with the central wavelengths of 0.63, 0.86, 3.75,
10.8, and 12 µm) by the AVHRR sensors which are flown
on-board NOAA polar-orbiting (Low Earth Orbit) satellites
(LEO). The combination of spectral and temporal unifor-
mity tests is used in cloud mask algorithm [52]. According
to several studies [44, 51], APP data has a good agreement
with data from the SHEBA and FIRE field experiments. The
extended version of APP (APP-x) was used in this study. Data
provide information on polar cloudiness from January 1982
to December 2004 at a 25 km spatial resolution.

2.1.2. CERES. The main aim of the Clouds and Earth’s
Radiant Energy System (CERES) is an examination of
the role of the cloud-radiation feedbacks in the climate
system [53] by providing the simultaneous retrievals of
cloud properties and broadband radiative fluxes from the
instruments on two LEOs, Terra and Aqua, from the Earth
Observing System. Terra satellite was launched in December
1999 and has a 10:30/22:30 local time (LT) equatorial
crossing. Aqua satellite provides information from early
summer 2002 and crosses the equator at 01:30/13:30 LT.
Cloud properties are determined using measurements by the
Moderate Resolution Imaging Spectroradiometer (MODIS).
MODIS provides measurements in 36 spectral channels [54].
Five of them (with the central wavelengths of 0.64, 1.6
(Terra) or 2.1 (Aqua), 3.7, 11, and 12 µm) are used in the
CERES cloud mask [55]. Series of the spectral threshold
tests (different between night and day) are used to determine
cloudiness. In this study, the Single Scanner Footprint (SSF)
product edition 2.5 was used. Data span the period from
February 2000 (July 2002) to February 2010 for Terra (Aqua)
satellite and come gridded on a regular 1-degree grid.

2.1.3. ISCCP. The International Satellite Cloud Climatology
Project (ISCCP) was established in 1982 to collect and to
analyze satellite radiance measurements for inferring spatial
and temporal structure of clouds [56]. ISCCP involves
measurements from weather geostationary satellites (GEO)
(like GMS, GOES East, GOES West, Meteosat, MTSAT, and
INSAT) and NOAA LEO satellites. Radiance data from a
visible (0.8 µm) and infrared (11 µm) channels were obtained
every 3 hours and then performed by the ISCCP Global
Processing Center [57]. Data are intercalibrated between
GEO and LEO satellites. Information on cloudiness charac-
teristics is derived by using the spectral threshold test and
a combination of the spatial and temporal uniformity tests
[57]. We used the D2 product in this study [58]. Data are
presented on a regular 2.5-degree grid and available from July
1983 to June 2008.

2.1.4. MODIS. A complete description of the MODIS cloud
mask algorithm is given by Ackerman et al. [59]. Instead of
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Table 1: Cloudiness data information.

Dataset
Time period Data resolution

Short name Full name

Satellite observations

APP-x
Extended Advanced very high-resolution radiometer
(AVHRR) Polar Pathfinder Product

01/1982–12/2004 25 km

CERES Terra
CERES Aqua

Clouds and the Earth’s Radiant Energy System SSF Product
Edition 2.5 (board on Terra and Aqua)

02/2000–02/2010
1◦

07/2002–02/2010

ISCCP
International Satellite Cloud Climatology Project D2
Product

07/1983–06/2008 2.5◦

MODIS Terra
MODIS Aqua

Moderate-Resolution Imaging Spectroradiometer series 5
product (board on Terra and Aqua)

02/2000–12/2009
1◦

07/2002–12/2009

PATMOS-x AVHRR Pathfinder Atmosphere extended (version 5) 01/1982–12/2009 1◦

Surface observations

EECRA Extended Edited Cloud Report Archive 01/1971–12/1996 5◦

Reanalyses data

ERA-40 European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalyses

01/1979–08/2002 2.5◦

ERA-Interim 01/1989–12/2009 1.5◦

JRA-25 Japan Meteorological Agency Reanalysis 01/1979–12/2009 2.5◦

NASA-MERRA
National Aeronautics and Space Administration (NASA)
Modern Era Reanalysis for Research and Applications

01/1979–03/2009 0.5◦

NCEP-CFSR
National Centers for Environmental Prediction (NCEP)
Climate Forecast System Reanalysis

01/1979–12/2009 0.5◦

NCEP/DOE NCEP/Department of Energy 01/1979–01/2008
∼1.9◦

(Gaussian)

NCEP/NCAR NCEP/National Center for Atmospheric Research 01/1979–12/2008
∼1.9◦

(Gaussian)

NOAA-CIRES 20CR

National Oceanic and Atmospheric
Administration-Cooperative Institute for Research in
Environmental Sciences (NOAA-CIRES) 20th Century
Reanalysis

01/1979–12/2008
∼1.9◦

(Gaussian)

the CERES algorithm, 14 of 36 spectral channels of MODIS
instruments are used to derive cloudiness characteristics
(2 visible, 4 near infrared, and 8 infrared channels). The
MODIS cloud mask algorithm includes series of the spectral
threshold tests and a combination of the spatial and temporal
uniformity tests. Additional tests are applied specially for the
polar regions [25]. Cloud data from the collection 5 [60]
were used in this study. These data are in a good agreement
with active lidar and radar observations [61]. Data span the
period from February 2000 (July 2002) to December 2009 for
Terra (Aqua) satellite and come gridded on a regular 1-degree
grid.

2.1.5. PATMOS-x. The Pathfinder Atmosphere extended
(PATMOS-x) cloudiness dataset is the longest one that
based on satellite measurements (AVHRR sensors on NOAA
LEO). We used the PATMOS-x version 5 in this study
[62]. Data are presented on a regular 1-degree grid and
available from January 1982 to December 2009. The Naı̈ve
Bayesian methodology has been applied in the PATMOS-
x version 5. Under this methodology, the cloud mask tests
were reformulated as the Bayesian classifiers. An analysis of
collocated LEO NOAA-18 and CALIPSO observations [47]

was used to automatically and globally derive 6 Bayesian
classifiers. They are computed separately for 7 surface types
used in the final algorithm. These classifiers come from
the clouds from AVHRR extended (CLAVR-x) cloud mask
algorithm [63] based on series of spectral threshold tests. A
complete description of these data is given by Heidinger et al.
[62].

Table 2 presents summarized information on the satellite
observations and the cloud mask algorithms.

2.2. Surface Observations

2.2.1. EECRA. The Extended Edited Cloud Report Archive
(EECRA) is a global cloud climatology derived from surface
synoptic weather reports based on visual observations from
ships and land meteorological stations [64]. Cloudiness
observations are made visually by human observers every
three or six hours. In this study, we used data from EECRA
E-series, which are presented on a regular 5-degree grid [26]
and cover the period from January 1972 to December 1996.
These data include only weather reports which passed a series
of quality-control checks, like the “moonlight criterion” [26,
65], the data homogeneity, and so forth.
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Table 2: Satellite-based datasets information.

Dataset Satellite
Spectral channels(visible
(VIS), near infrared (NIR),
infrared (IR))

Time of
observations (local
time)

Instrument
resolution / swath
(km)

Cloud detection algorithm

APP-x LEO (NOAA) 1 VIS + 1 NIR + 3 IR ∼14:00, 2:00 1−4 /∼3000

A combination of the spectral and
temporal uniformity tests which are
tuned specially for the polar regions
[52].

CERES
LEO (Terra,
Aqua)

1 VIS + 1 NIR + 3 IR

10:30, 22:30
(Terra)
01:30, 13:30
(Aqua)

0,25−1 /2330
Series of the spectral threshold tests
(different between night and day) [55].

ISCCP
GEO + LEO
(NOAA)

1 VIS + 1 IR every 3 hour 4−7 /—
The spectral threshold test and a
combination of the spatial and
temporal uniformity tests [57].

MODIS
LEO (Terra,
Aqua)

1 VIS + 1 NIR + 3 IR

10:30, 22:30
(Terra)
01:30, 13:30
(Aqua)

0,25−1 /2330

Series of the spectral threshold tests
and a combination of the spatial and
temporal uniformity tests. Special tests
for the polar regions [59, 60].

PATMOS-x LEO (NOAA) 1 VIS + 1 NIR + 3 IR 14:00, 2:00 1−4 /∼3000
CLAVR-x (series of the spectral
threshold tests) + Naı̈ve Bayesian
methodology [62].

2.3. Reanalyses Data. Reanalyses are a synthesis of the obser-
vations and model physics. Reanalyses assimilate different
observations of the key atmospheric variables and provide
historical gridded fields for the whole atmosphere state at any
given time (usually every 6 hours). We used information on
cloudiness from 8 global reanalyses in our intercomparison
(Tables 1 and 3). The following observations are assimilated
in the majority of reanalyses: surface pressure from weather
stations reports; surface pressure, temperature, humidity and
wind from ship and buoys; upper-air wind, temperature
and humidity from radiosondes, dropsondes, and balloons;
temperature- and humidity-sensitive radiance from satellite-
borne instruments; wind and temperature from aircrafts;
cloud-tracked winds from geostationary satellites [66, 67].
New reanalyses (like NASA-MERRA, NCEP-CFSR, and ERA-
Interim) assimilate additional satellite-derived information
like ozone profiles or oceanic wave height [68, 69], whilst the
NOAA-CIRES 20CR reanalysis is based only on pressure data
[70].

Different reanalyses have different cloud prediction
schemes. In particular, a diagnostic scheme where clouds
are parameterized based on an empirical relationship with
relative humidity is used in NCEP/NCAR and NCEP/DOE
reanalyses. Convective cloudiness is derived from the con-
vective precipitation rate [66, 71, 72]. In JRA-25 reanalysis,
cloud fraction is estimated diagnostically from total water
mixing ratio and liquid water potential temperature [73, 74].
In NCEP-CFSR, NASA-MERRA, and NOAA-CIRES 20CR
reanalyses, cloud cover is derived from cloud condensate
which is a prognostic variable with a simple cloud micro-
physics [69, 70, 75, 76]. A fully prognostic approach for
cloud fraction due to the mass balance equations for cloud
water/ice and cloud air is applied only in the European
reanalyses [15, 67, 68, 77]. The method of the cloud
overlap assumption is an additional factor that contributes

to differences in the cloud representations in different reanal-
yses [15]. For instance, the random cloud overlap is used
in NCEP/NCAR reanalysis, while the maximum/random
overlap is used in NCEP-CFSR reanalysis [69]. It should have
noted that none of the reanalyses assimilate cloud fraction
directly from observations.

Table 3 presents summarized information about reanaly-
ses data.

Here, we analyzed monthly means of total cloud fraction
with annual and seasonal averaging. All individual climatolo-
gies were obtained by averaging for time periods that are
pointed out in Table 1.

3. Results

3.1. Annual and Seasonal Means Total Cloud Fraction.
Annual and seasonal means total cloud fraction (TCF) from
different data over the Arctic is shown in Figure 1. According
to observations, the annual-mean TCF (Figure 1(a)) varies
between 0.67±0.01 for CERES Aqua and 0.73±0.03 for APP-
x data. According to all observations, the annual mean TCF is
greater over the ocean (between 0.70± 0.02 for CERES Terra
and 0.78 ± 0.03 for PATMOS-x) than over land (between
0.64 ± 0.01 for CERES Aqua and 0.70 ± 0.03 for APP-x
data). According to reanalyses, the annual mean TCF varies
in wider range from 0.48 ± 0.01 for NCEP/NCAR to 0.88 ±
0.01 for 20CR. NASA-MERRA reanalysis has the best fit to
observations with annual mean TCF equal to 0.71 ± 0.01.
In general, reanalyses have lower value of the interannual
standard deviation of TCF than observations, which indicate
to lower interannual variability in reanalyses compared to
observations.

In winter (Figure 1(b)), observations demonstrate worse
agreement among each other. Winter mean TCF varies from
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Figure 1: Annual (a), December-January-February (b), and June-July-August (c) mean of TCF over the Arctic (north of 60◦N) from different
data. The error bars correspond to the standard deviation (in the interannual variability) of each data (separately for land and the ocean).
The abscissa corresponds to TCF over the ocean, and the ordinate corresponds to TCF over land. The inclined long-dashed lines correspond
to TCF over land and the ocean (their slope is equal to the land-ocean ratio in the Arctic).
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Table 3: Reanalyses information.

Dataset
Atmospheric model and its resolution/data assimilation
method/reanalysis features

Predictors for cloud fraction

ERA-40 [67] ECMWF cy13r4 T159 (80 km) L60 6 hr/3D VAR

Cloud fraction is fully prognostic (due to the mass
balance equations for cloud water/ice and cloud air)
[77]

ERA-Interim [68]
ECMWF cy29r1 T255 (50 km) L60 6 hr/4D
VAR/weather station observations and new satellite
data are assimilated

The same as for ERA-40 with several important
modifications [68]

JRA-25 [74] JMA/CRIEPI T160 (120 km) L40 6 hr/3D VAR
Water mixing ratio and the liquid water potential
temperature [73]

NASA-MERRA
[76]

GEOS-5 50 km L72 6 hr/3D VAR/new satellite data are
assimilated

Prognostic cloud and a single-phase condensate with
two species of condensate: “anvil” (originating from
detraining convection) and large scale [78]

NCEP-CFSR [69]
NCEP GSI T382 (32 km) L64 6 hr/3D
VAR/atmospheric model is coupled with the ocean,
land, and sea ice analysis

Prognostic cloud condensate, water mixing ratio, and
the liquid water potential temperature [73, 78]

NCEP/DOE [72]
NCEP/NCAR [66]

NCEP T62 (210 km) L28 6hr / 3D VAR
Relative humidity (empirical relationship), prognostic
convective precipitation rate [71]

NOAA-CIRES
20CR [70]

NCEP GFS T62 (210 km) L28 6 hr/ensemble Kalman
filter/only surface pressure is assimilated

Prognostic cloud condensate, water mixing ratio, and
the liquid water potential temperature [73, 78]

0.55±0.02 for CERES Aqua to 0.71±0.07 for APP-x. MODIS
Aqua is only the one dataset that shows more TCF over land
than over the ocean. In general, TCF over land is between
0.52 ± 0.02 (for CERES Aqua) and 0.68 ± 0.06 (for APP-
x), and TCF over the ocean is between 0.58 ± 0.04 (for
CERES Aqua) and 0.76 ± 0.06 (for PATMOS-x). According
to JRA-25 reanalysis, TCF fits this range. It is less (about
0.5) according to NCEP/NCAR and NCEP/DOE and greater
according to other reanalyses (up to 0.93 ± 0.01 for NOAA-
CIRES 20CR). The reverse is true for summer (Figure 1(c))
when reanalyses show less TCF than observations (or equal
to them). Observations are in a better agreement in summer
than in winter, especially over the ocean where TCF is close to
0.8 except for ISCCP (0.7 ± 0.02). Over land, summer mean
TCF varies from 0.64 ± 0.02 (for PATMOS-x) to 0.82 ± 0.02
(for EECRA). Over the entire Arctic, summer mean TCF is
between 0.68± 0.01 (for ISCCP) and 0.76± 0.01 (for CERES
Terra).

Interannual variability is higher in winter (its standard
deviation is up to 0.07 over land and up to 0.08 over the
ocean) than in summer (its interannual standard deviation
does not exceed 0.3) according to all observation-derived
data. However, the interannual variability almost does not
depend on season according to reanalyses, which may
indicate that high winter variability of observation-derived
TCF is partly associated with uncertainties in observations
[8, 79].

3.2. Annual Cycle of Total Cloud Fraction. Figure 2 shows
annual cycle of TCF over the Arctic. The maximum of TCF
is noted at the end of polar day (August-September), and its
time concurs with the time of the minimum of the sea ice
extent in the Arctic [45, 51]. The minimum of TCF is noted
at the end of polar night (February–April) (Figure 2(a)).

According to the most of observations, the Arctic land-mean
TCF has a prominent annual cycle (Figure 2(b)) with the
maximum in August–October (0.64–0.78) and the minimum
in December–March (0.50–0.68). According to CERES Aqua,
land-mean TCF has the highest amplitude of annual cycle
(close to 0.3). Annual cycle of cloudiness over the ocean
(Figure 2(c)) is also prominent. High values of ocean-mean
TCF are noted from May to October (about 0.8 excluding
ISCCP). Low values are noted from November to April
(0.55–0.75). However, months with the maximum (or the
minimum) varied between different data. For instance, it is
June for APP-x, July for CERES Terra, August for MODIS
(Terra and Aqua), and September for EECRA (Figure 2(c)).
According to Curry et al. [16], the summer maximum is
associated with low-level stratiform cloudiness, while in
winter cyclones-induced upper-level clouds dominate (see
also [10]).

Meanwhile, the annual cycle of TCF according to
PATMOS-x and ISCCP data is not revealed clearly. According
to PATMOS-x, it has two maximums (in May and in
September) and two minimums (in July and in December-
March). Presumably, this may be associated with an over-
estimation of stratiform clouds (as shown in [10], these
clouds also have the annual distribution with two minimums
and two maximums) and an underestimation of the other
cloud types. According to ISCCP, land-mean TCF is 0.66,
and ocean-mean TCF is 0.71 during the whole year. As
pointed out by Schweiger et al. [80], ISCCP is in a better
agreement with surface observations in summer (with 10–
20% underestimation) and in a worse agreement in winter
mostly because of a systematic positive bias in surface
temperature retrieval.
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Figure 2: The annual cycle of TCF averaging over the entire Arctic (a), only over land (b), and over the ocean (c).

According to reanalyses, the annual cycle of TCF does
not match well with the observational one. Closer agree-
ment between most of reanalyses and observations in TCF
values is noted during the sunlit part of the year (see
also Figure 1(c)). NCEP/NCAR, NCEP/DOE, and JRA-25
reanalyses show lower values of TCF during the whole year.
In general, according to reanalyses, the annual cycle of
TCF is shifted by 1-2 months compared to observations.
It has the minimum in early summer (June-July) and
reaches the maximum in late autumn-early winter (from

October to January). NOAA-CIRES 20CR reanalysis (which
is based on pressure data only [70]) shows the worst
agreement with observations.

3.3. Intercomparison of Total Cloud Fraction Spatial Distri-
bution. Spatial distribution of the annual mean TCF (not
shown) is associated with the spatial distribution of the
annual mean surface skin temperature. According to all
observations, the annual mean TCF minimum occurs over
the northeastern part of Greenland (it varies from 0.4 for
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Figure 3: Normalized pattern statistics showing differences among different observational and reanalyses TCF spatial distribution (the
reference data is surface-derived data EECRA) over the entire Arctic (a, d, g, j), only land (b, e, h, k), and only the ocean (c, f, i, l) for annual
means (a, b, c), December-January-February (DJF) means (d, e, f), June-July-August (JJA) means (g, h, i), and seasonal differences (JJA-DJF)
(j, k, l). The radial distances from the origin are proportional to the spatial standard deviation (SSTD) of each data (normalized to EECRA
SSTD). The spatial correlation between EECRA and other data is given by the azimuthal position. Acronyms are the same as for Figure 1.
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Figure 4: The same as Figure 3 but with satellite-derived APP-x as the reference data.
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MODIS Terra to 0.6 for APP-x) and collocates with the
skin surface temperature minimum (it is down to −30◦C
[51]). Reanalyses also show the minimum of TCF over
Greenland (it varies from 0.2 for NCEP/NCAR to 0.8 for
NOAA CIRES 20CR). The highest value of the annual mean
TCF is over the warmest part of the Arctic (The Norwegian
and Barents Sea). It is from 0.8–0.85 for EECRA and ISCCP
to 0.9–1.0 according to other data. This high value of
TCF is somewhat captured in reanalyses. They produce low
values of the annual mean TCF over northern Eurasia, the
Canadian Arctic archipelago, Alaska, and the Canadian part
of the Arctic Ocean (particularly, over the Beaufort Sea)
and high values over northern Europe, the Baffin Sea, and
the central part of the Arctic Ocean. ERA-40, ERA-Interim,
NASA-MERRA, and NOAA-CIRES 20CR reanalyses show
the highest values of TCF over the central part of the Arctic
Ocean but not over the Norwegian and Barents Sea as
observations do.

To make a simultaneous intercomparison of the TCF
spatial distribution from all data, we apply an approach
that was introduced by Taylor [81]. All data were bilinearly
interpolated to the uniform grid (EECRA grid with 5-
degree resolution was chosen). In this approach, different
data are spatially correlated with the particular data that are
presupposed to be the reference data. EECRA (Figure 3) and
APP-x (Figure 4) data were chosen as the reference data for
this analysis which was performed separately for annual and
seasonal means, for the entire Arctic, only for the ocean, and
only for land.

In general, satellite data show a closer agreement with
each other than with surface observations. Coefficient of
spatial correlation (R) between EECRA data and others (RE)
varies from 0.5 to 0.7 for the annual mean TCF. RE is higher
over the ocean (0.5–0.8) than over land (0.3–0.7) and nearly
the same for different seasons. The coefficient of spatial
correlation between APP-x data and others (RA) varies from
0.7 to 0.9. RA for the annual mean TCF is higher over the
ocean than over land (as well as RE). Over the ocean, RA
is 0.6 for EECRA and 0.85–0.95 for satellite-derived data. It
is from 0.5 to 0.8 over land. Besides, RA for TCF over the
ocean is higher in winter, and RA for TCF over land is higher
in summer. This is presumably due to a mosaic structure
of the underneath surface which depends on the season in
an opposite manner for land and for the ocean. The ocean
is covered by the ice during winter and is partially open
in summer. In contrast, land is free from snow in summer
(excluding Greenland) and is partially covered by snow in
winter.

ISCCP has the worst agreement with other observations.
Particularly RE for ISCCP is negative for seasonal difference
over land and over the ocean. RA for ISCCP is negative
over the ocean and close to zero over land. However, ISCCP
shows nearly the same values of spatial standard deviation
(SSTD) of TCF as EECRA and APP-x. In general, short-
period datasets like CERES and MODIS show higher SSTD
than long-period datasets.

Reanalyses reproduce SSTD of TCF comparable to
observations during summer over the entire Arctic. However,
reanalyses show lower values of SSTD of ocean-mean TCF

than observations during the winter. The values of RE and
RA for reanalyses are between 0.2 and 0.4 over land. This
range is wider over the ocean (from 0 to 0.6). The European
reanalyses and NOAA-CIRES 20CR have negative values of
RA and RE over the ocean. During winter, RE and RA
are also negative for NASA-MERRA reanalysis. Generally,
reanalyses and observations are in closer agreement on the
spatial distribution of TCF in summer than in winter. JRA-
25 reanalysis shows the best agreement with observations on
the spatial distribution of TCF among all reanalyses.

3.4. Reasons for Data Discrepancies. Differences among var-
ious observations may be due to several reasons. First of all,
these are differences in instruments and in cloud detection
algorithms. Especially these differences are crucial under
harsh arctic conditions where the snow/ice surface and the
presence of low-troposphere inversions lead to very low ther-
mal and radiance contrasts between clouds and underneath
surface. Liu et al. [79] compared arctic cloudiness from
MODIS and GeoPROF data (based on simultaneous lidar
and radar observations from A-Train satellites CALIPSO and
CloudSat) and found out that passive satellite observations
can underestimate cloudiness by 10–20% over the snow/ice
surface under nighttime conditions. Thus, a decrease of the
sea ice extent could lead to an appearance of an instrumental
cloudiness trend in long-term datasets. Alongside with real
cloudiness trends, it also can contribute to differences
obtained in our analysis because of the different averaging
period chosen for different data (Table 1). Due to diurnal
cycle of cloudiness, different time of observations may also
influence data discrepancies [33, 82]. According to [82], the
differences between only-noon observations and four-times-
a-day observations can reach 10% in tropics and do not
exceed 5% in the Arctic. Differences in reanalyses mostly
depend on different cloud prediction schemes, and methods
of cloud overlap assumption [15].

To elucidate the main reason for data discrepancies, it is
crucial to single out the regions with poor agreement among
data. To reveal these regions, we interpolated all observations
to the uniform grid (the robust EECRA grid was chosen).
Annual and seasonal means of TCF were calculated for each
observation-derived data and after that inter-data means
and inter-data standard deviations of these individual means
were obtained in each grid cell. Reanalyses were excluded
from this analysis. Resulting values of the inter-data standard
deviation (ISTD) in each grid cell are depicted in Figure 5.

We found the highest annual mean ISTD over Greenland
and over the Arctic Ocean (particularly over the Canadian
part) (Figure 5(a)). Meanwhile, over northern Eurasia and
North America, ISTD is low, which indicates a good agree-
ment among different data. In addition, ISTD is, respectively,
low in regions with the dramatic sea ice extent loss such as
the Beaufort Sea and Baffin Sea and the western part of the
Greenland Sea [7].

For wintertime and for seasonal difference (Figures 5(b)
and 5(d)), the highest values of ISTD are over the Canadian
part of the Arctic Ocean and northeastern Eurasia (up to
0.2). According to Liu et al. [83] and Devasthale et al. [84],



Advances in Meteorology 11

0 180

90E

90W

Annual

(a)

0 180

90E

90W

DJF

(b)

0 180

90E

90W

JJA

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(c)

0 180

90E

90 W

JJA-DJF

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

(d)

Figure 5: Distribution of inter-data standard deviation of TCF (reanalyses are excluded) for annual mean (a), December-January-February
mean (DJF) (b), June-July-August mean (JJA) (c), and differences between JJA and DJF (d).

the strongest low-tropospheric temperature inversions occur
in these regions. Relatively high ISTD over the Arctic Ocean
in winter is mostly associated with ISCCP data, whose algo-
rithm erroneously detects clear-sky ice crystal precipitation
as cloudiness [16] and has a systematic positive bias in the

surface temperature retrieval [80]. In general, other satellite-
derived datasets also have lower cloud detection capabilities
during nighttime than daytime and over surfaces covered
with the sea ice [79]. Ship observations from EECRA data
also cannot provide suitable information over the central
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part of the Arctic Ocean in winter due to a small number of
observations [26]. In summer (Figure 5(c)), ISTD is smaller
than in winter. The highest values of ISTD are noted over
the ice surface of Greenland. Thus, we speculate that the
main reason for observations discrepancies is differences in
the cloud-detection algorithms, especially when clouds are
detected over the ice/snow surface (during the whole year) or
over regions with the presence of the strong low-tropospheric
temperature inversions (mostly in winter).

4. Discussion and Conclusions

The Arctic annual mean TCF is 0.70 ± 0.03 according to
different observations. It is greater over the ocean (0.74 ±
0.04) than over land (0.67 ± 0.03). Different observations
are in a better agreement in summer than in winter and
over the ocean than over land for the Arctic mean TCF as
well as for the spatial distribution of TCF. The interannual
variability is higher in winter than in summer according
to all observation-derived data, which may be associated
with uncertainties in observations that are greater in winter
than in summer. Total cloud fraction in the Arctic has the
prominent annual cycle according to all observations exclud-
ing PATMOS-x and ISCCP. The time of TCF maximum
corresponds with the time of the sea ice extent minimum
(early summer–late autumn) and vice versa (late spring)
(see also [16]). This correspondence is also found in an
interannual variability. Eastman and Warren [10] and Palm
et al. [85] showed that TCF is greater during the years with
the low sea ice extent and vice versa according to satellite data
[85] and surface observations [10]. In general, reanalyses
do not capture this feature of TCF annual cycle. According
to most of the reanalyses, the maximum of TCF is shifted
to October-November. NCEP/NCAR, NCEP/DOE, and JRA-
25 reanalyses show less TCF than observations during the
whole year. Other reanalyses are in a close agreement with
observations during summer, while in wintertime, they show
noticeably higher values of TCF than observations.

Spatial distribution of the annual mean TCF collocates
with the spatial distribution of the annual mean surface skin
temperature. The annual mean TCF minimum occurs over
the northeastern part of Greenland and collocates with the
minimum of the skin surface temperature, whilst the annual
mean TCF maximum is noted over the warmest part of the
Arctic (the Norwegian and Barents Sea). Reanalyses capture
the position of the TCF minimum correctly, but some of
them erroneously show the highest values of TCF over the
central part of the Arctic Ocean but not over the Norwegian
and Barents Sea as observations do. In addition, reanalyses
show higher spatial correlation of TCF with observations
in summer than in winter and over the ocean than over
land. The spatial distributions of TCF from different satellite
observations are in a closer agreement over the ocean in
winter and over land in summer. The presumable reason
for this peculiarity is the mosaic structure of the underneath
surface which depends on season in an opposite manner for
land and for the ocean. This feature is not revealed when

satellite data are compared with surface observations which
do not depend on surface characteristics.

For the whole year, the greatest disagreement among
observations was revealed in regions with the ice/snow
surface. Furthermore, we found that agreement in winter is
poor in regions with the presence of strong low-tropospheric
temperature inversions. This can indicate the difference in
the cloud-detection algorithms as the main reason for data
discrepancies. Nonetheless, other reasons should also be
taken into account (diurnal cycle, differences in averaging
period). We should emphasize that we do not estimate here
the quantitative input from different reasons into resulting
discrepancies.

It is worth noting that surface and satellite observations
and reanalyses define clouds slightly different. Particularly,
human observers detect bases of the clouds, while satellite
sensors observe tops of the clouds. Clouds are water conden-
sates (water or ice) that are visible for human observers on
surface or detectable for passive sensors on satellites. Thus,
human observers as well as passive sensors can miss some
small or semitransparent clouds, which are undetectable for
them. Contrastingly, reanalyses define clouds independently
for each model level and do not have a threshold on minimal
amount of condensate that can be considered as cloud.
These qualitative differences among different observational
approaches should also be taken into account.

To determine real values of TCF over the Arctic in differ-
ent seasons more evaluations are needed. Active sensors like
radar and lidar have a potentially great capability to improve
our knowledge about Arctic cloudiness especially during the
cold portion of the year. However, these observations are still
too short. Additionally, lidar could erroneously detect a thick
Arctic haze layer as a cloud [79] and radar-derived cloudiness
strongly depends on the applied thresholds [86].

At present, it is hard to distinguish the best observational
dataset for the Arctic cloudiness. Further analyses should be
carried out for the specific regions with the greatest disagree-
ment among cloudiness datasets, particularly Greenland, the
Canadian Arctic Archipelago, and the northern part of East
Siberia.

Acknowledgments

The authors thank three anonymous reviewers for their
helpful comments. They acknowledge the mission
scientists and principal investigators who provided
the data used in this research. APP-x and PATMOS-x
data were obtained from the Cooperative Institute for
Meteorological Satellite Studies, University of Wisconsin
websites (http://stratus.ssec.wisc.edu/projects/app/app.html
and http://cimss.ssec.wisc.edu/patmosx/). CERES data
were obtained from the NASA Langley Research Center,
Atmospheric Science Data Center. The ISCCP DX data
are from the International Satellite Cloud Climatology
Project data archives at NOAA/NESDIS/NCDC Satellite
Services Group. MODIS data were obtained from Level 1
and Atmospheric Archive and Distribution System. EECRA
data were obtained from Carbon Dioxide Information



Advances in Meteorology 13

Analysis Center website (http://cdiac.ornl.gov/). ERA-40
and ERA-Interim data have been provided by ECMWF.
JRA-25 data have been provided by JMA. MERRA data have
been provided by NASA through Goddard Earth Sciences
Data Information Services Center. The NCEP/NCAR,
NCEP/DOE, NCEP-CFSR, and 20CR data are from the
Research Data Archive (RDA), which is maintained by
CISL at NCAR. Support for this research was provided by
The Research Council of Norway under the YGGDRASIL
mobility programme, the Russian Foundation for Basic
Research under Grants 11-05-01139 and 11-05-00579,
by the Grant of the RF President SS-3301.2010.5, by
Russian Ministry of Education and Science under contracts
14.740.11.1043 and 11.519.11.5004, and by programs of The
Russian Academy of Sciences.

References

[1] Arctic Climate Impact Assessment, Cambridge University Press,
Cambridge, UK, 2005.

[2] S. Solomon, D. Qin, M. Manning et al., Climate Change 2007a:
The Physical Science Basis. Contribution of Working Group I to
the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change, Cambridge University Press, Cambridge, UK,
2007.

[3] M. L. Parry, O. F. Canziani, J. P. Palutikof et al., Climate Change
2007b: Impacts, Adaptation and Vulnerability. Contribution
of Working Group II to the Fourth Assessment Report of
the Intergovernmental Panel on Climate Change, Cambridge
University Press, Cambridge, UK, 2007.

[4] V. P. Meleshko and S. M. Semenov, “Russian Assessment
Report on climate change and its impact on the Russian
territory,” Technical summary, 2008.

[5] M. C. Serreze, J. E. Walsh, F. S. Chapin et al., “Observational
evidence of recent change in the northern high-latitude
environment,” Climatic Change, vol. 46, no. 1-2, pp. 159–207,
2000.

[6] J. Stroeve, M. M. Holland, W. Meier, T. Scambos, and
M. Serreze, “Arctic sea ice decline: faster than forecast,”
Geophysical Research Letters, vol. 34, no. 9, Article ID L09501,
2007.

[7] Y. Liu, J. R. Key, and X. Wang, “Influence of changes in sea
ice concentration and cloud cover on recent Arctic surface
temperature trends,” Geophysical Research Letters, vol. 36, no.
20, Article ID L20710, 2009.

[8] X. Wang and J. R. Key, “Arctic surface, cloud, and radiation
properties based on the AVHRR polar pathfinder dataset. Part
II: recent trends,” Journal of Climate, vol. 18, no. 14, pp. 2575–
2593, 2005.

[9] Y. Liu, J. R. Key, J. A. Francis, and X. Wang, “Possible causes
of decreasing cloud cover in the Arctic winter, 1982-2000,”
Geophysical Research Letters, vol. 34, no. 14, Article ID L14705,
2007.

[10] R. Eastman and S. G. Warren, “Interannual variations of arctic
cloud types in relation to sea ice,” Journal of Climate, vol. 23,
no. 15, pp. 4216–4232, 2010.

[11] V. Ramanathan, R. D. Cess, E. F. Harrison et al., “Cloud-
radiative forcing and climate: results from the earth radiation
budget experiment,” Science, vol. 243, no. 4887, pp. 57–63,
1989.

[12] B. A. Wielicki, R. D. Cess, M. D. King, D. A. Randall, and
E. F. Harrison, “Mission to Planet Earth: role of clouds
and radiation in climate,” Bulletin of American Meteorological
Society, vol. 76, no. 11, pp. 2125–2154, 1995.

[13] E. F. Harrison, P. Minnis, B. R. Barkstrom, V. Ramanathan,
R. D. Cess, and G. G. Gibson, “Seasonal variation of cloud
radiative forcing derived from the Earth Radiation Budget
Experiment,” Journal of Geophysical Research, vol. 95, no. 11,
pp. 18687–18703, 1990.

[14] J. M. Intrieri, C. W. Fairall, M. D. Shupe et al., “An annual
cycle of Arctic surface cloud forcing at SHEBA,” Journal of
Geophysical Research C, vol. 107, no. 10, pp. 1–14, 2002.

[15] J. E. Walsh, W. L. Chapman, and D. H. Portis, “Arctic
cloud fraction and radiative fluxes in atmospheric reanalyses,”
Journal of Climate, vol. 22, no. 9, pp. 2316–2334, 2009.

[16] J. A. Curry, W. B. Rossow, D. Randall, and J. L. Schramm,
“Overview of arctic cloud and radiation characteristics,”
Journal of Climate, vol. 9, no. 8, pp. 1731–1764, 1996.

[17] X. Wang and J. R. Key, “Recent trends in arctic surface, cloud,
and radiation properties from space,” Science, vol. 299, no.
5613, pp. 1725–1728, 2003.

[18] M. D. Shupe and J. M. Intrieri, “Cloud radiative forcing of
the Arctic surface: the influence of cloud properties, surface
albedo, and solar zenith angle,” Journal of Climate, vol. 17, no.
3, pp. 616–628, 2004.

[19] S. Vavrus, “The impact of cloud feedbacks on Arctic climate
under Greenhouse forcing,” Journal of Climate, vol. 17, no. 3,
pp. 603–615, 2004.

[20] Y. Liu, J. R. Key, and X. Wang, “The influence of changes
in cloud cover on recent surface temperature trends in the
Arctic,” Journal of Climate, vol. 21, no. 4, pp. 705–715, 2008.

[21] A. V. Chernokulsky, O. N. Bulygina, and I. I. Mokhov, “Recent
variations of cloudiness over Russia from surface daytime
observations,” Environmental Research Letters, vol. 6, no. 3,
Article ID 035202, 2011.

[22] S. Vavrus, D. Waliser, A. Schweiger, and J. Francis, “Simula-
tions of 20th and 21st century Arctic cloud amount in the
global climate models assessed in the IPCC AR4,” Climate
Dynamics, vol. 33, no. 7-8, pp. 1099–1115, 2009.

[23] I. I. Mokhov, A. V. Chernokul’Skii, M. G. Akperov, J. L.
Dufresne, and H. Le Treut, “Variations in the characteristics
of cyclonic activity and cloudiness in the atmosphere of
extratropical latitudes of the Northern Hemisphere based
from model calculations compared with the data of the
reanalysis and satellite data,” Doklady Earth Sciences, vol. 424,
no. 1, pp. 147–150, 2009.

[24] D. Lubin and E. Morrow, “Evaluation of an AVHRR cloud
detection and classification method over the central arctic
ocean,” Journal of Applied Meteorology, vol. 37, no. 2, pp. 166–
177, 1998.

[25] Y. Liu, J. R. Key, R. A. Frey, S. A. Ackerman, and W. P.
Menzel, “Nighttime polar cloud detection with MODIS,”
Remote Sensing of Environment, vol. 92, no. 2, pp. 181–194,
2004.

[26] C. J. Hahn and S. G. Warren, A Gridded Climatology of
Clouds over Land (1971–96) and Ocean (1954–97) from
Surface Observations Worldwide (NDP–026E), Carbon Dioxide
Information Analysis Center, Oak Ridge, Tenn, USA, 2007.

[27] S. G. Warren, R. M. Eastman, and C. J. Hahn, “A survey of
changes in cloud cover and cloud types over land from surface
observations, 1971–96,” Journal of Climate, vol. 20, no. 4, pp.
717–738, 2007.



14 Advances in Meteorology

[28] N. A. Hughes, “Global cloud climatologies: a historical
review,” Journal of Climate & Applied Meteorology, vol. 23, no.
5, pp. 724–751, 1984.

[29] I. I. Mokhov and M. E. Schlesinger, “Analysis of global cloudi-
ness: 1. Comparison of Meteor, Nimbus 7, and International
Satellite Cloud Climatology Project (ISCCP) satellite data,”
Journal of Geophysical Research, vol. 98, no. 7, pp. 12849–
12868, 1993.

[30] I. I. Mokhov and M. E. Schlesinger, “Analysis of global
cloudiness 2. Comparison of ground-based and satellite-based
cloud climatologies,” Journal of Geophysical Research, vol. 99,
no. 8, pp. 17045–17065, 1994.

[31] C. J. Hahn, W. B. Rossow, and S. G. Warren, “ISCCP cloud
properties associated with standard cloud types identified in
individual surface observations,” Journal of Climate, vol. 14,
no. 1, pp. 11–28, 2001.

[32] S. M. Thomas, A. K. Heidinger, and M. J. Pavolonis, “Compar-
ison of NOAA’s operational AVHRR-derived cloud amount to
other satellite-derived cloud climatologies,” Journal of Climate,
vol. 17, no. 24, pp. 4805–4822, 2004.

[33] A. V. Chernokulsky and I. I. Mokhov, “Intercomparison of
global and zonal cloudiness characteristics from different
satellite and ground-based data,” Earth’s Research from Space,
vol. 3, pp. 12–29, 2010.

[34] B. C. Weare, “Evaluation of total cloudiness and its variability
in the atmospheric model intercomparison project,” Journal of
Climate, vol. 8, no. 9, pp. 2224–2238, 1995.

[35] A. V. Eliseev, H. Le Treut, I. I. Mokhov, M. Doutriaux-Boucher,
and A. V. Chernokulsky, “Validation of TOA radiation and
clouds simulated by different versions of the LMD general
circulation model in comparison to satellite and ground-based
data,” Izvestiya, Atmospheric and Ocean Physics, vol. 39, pp.
S15–S26, 2003.

[36] M. H. Zhang, W. Y. Lin, S. A. Klein et al., “Comparing
clouds and their seasonal variations in 10 atmospheric general
circulation models with satellite measurements,” Journal of
Geophysical Research D, vol. 110, no. 15, pp. 1–18, 2005.

[37] J. A. Griggs and J. L. Bamber, “Assessment of cloud cover
characteristics in satelite datasets and reanalysis products for
greenland,” Journal of Climate, vol. 21, no. 9, pp. 1837–1849,
2008.

[38] A. V. Chernokulsky and I. I. Mokhov, “Comparison of global
cloud climatologies,” Current Issues of Remote Sensing of Earth
from Space, vol. 6, no. 2, pp. 235–243, 2009.

[39] J. Karlsson and G. Svensson, “The simulation of Arctic
clouds and their influence on the winter surface temperature
in present-day climate in the CMIP3 multi-model dataset,”
Climate Dynamics, vol. 36, no. 3, pp. 623–635, 2011.

[40] G. M. Stokes and S. E. Schwartz, “The Atmospheric Radiation
Measurement (ARM) Program: programmatic background
and design of the cloud and radiation test bed,” Bulletin of
American Meteorological Society, vol. 75, no. 7, pp. 1201–1221,
1994.

[41] D. Randall, J. Curry, D. Battisti et al., “Status of and outlook
for large-scale modeling of atmosphere-ice-ocean interactions
in the arctic,” Bulletin of the American Meteorological Society,
vol. 79, no. 2, pp. 197–219, 1998.

[42] J. A. Curry, P. V. Hobbs, M. D. King et al., “FIRE arctic clouds
experiment,” Bulletin of the American Meteorological Society,
vol. 81, no. 1, pp. 5–29, 2000.

[43] T. Uttal, J. A. Curry, M. G. McPhee et al., “Surface heat budget
of the arctic ocean,” Bulletin of the American Meteorological
Society, vol. 83, no. 2, pp. 255–275, 2002.

[44] J. A. Maslanik, J. Key, C. W. Fowler, T. Nguyen, and X.
Wang, “Spatial and temporal variability of satellite-derived
cloud and surface characteristics during FIRE-ACE,” Journal
of Geophysical Research D, vol. 106, no. 14, pp. 15233–15249,
2001.

[45] S. Kato, N. G. Loeb, P. Minnis et al., “Seasonal and interannual
variations of top-of-atmosphere irradiance and cloud cover
over polar regions derived from the CERES data set,” Geophys-
ical Research Letters, vol. 33, no. 19, Article ID L19804, 2006.

[46] B. E. Schutz, H. J. Zwally, C. A. Shuman, D. Hancock, and J.
P. DiMarzio, “Overview of the ICESat mission,” Geophysical
Research Letters, vol. 32, no. 21, Article ID L21S01, pp. 1–4,
2005.

[47] D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial
performance assessment of CALIOP,” Geophysical Research
Letters, vol. 34, no. 19, Article ID L19803, 2007.

[48] G. L. Stephens, D. G. Vane, R. J. Boain et al., “The cloudsat
mission and the A-Train: a new dimension of space-based
observations of clouds and precipitation,” Bulletin of the
American Meteorological Society, vol. 83, no. 12, pp. 1771–
1742, 2002.

[49] G. G. Mace, Q. Zhang, M. Vaughan et al., “A description
of hydrometeor layer occurrence statistics derived from the
first year of merged Cloudsat and CALIPSO data,” Journal of
Geophysical Research D, vol. 114, no. 8, Article ID D00A26,
2009.

[50] J. Key and R. G. Barry, “Cloud cover analysis with Arctic
AVHRR data 1. Cloud detection,” Journal of Geophysical
Research, vol. 94, no. 15, pp. 18521–18535, 1989.

[51] X. Wang and J. R. Key, “Arctic surface, cloud, and radiation
properties based on the AVHRR polar pathfinder dataset. Part
I: spatial and temporal characteristics,” Journal of Climate, vol.
18, no. 14, pp. 2558–2574, 2005.

[52] J. R. Key, The Cloud and Surface Parameter Retrieval (CASPR)
System for Polar AVHRR, Cooperative Institute for Meteo-
rological Satellite Studies, University of Wisconsin-Madison,
2002.

[53] B. A. Wielicki, B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L.
Smith, and J. E. Cooper, “Clouds and the earth’s radiant energy
system (CERES): an earth observing system experiment,”
Bulletin of the American Meteorological Society, vol. 77, no. 5,
pp. 853–868, 1996.

[54] M. D. King, Y. J. Kaufman, W. P. Menzel, and D. Tanre,
“Remote sensing of cloud, aerosol, and water vapor prop-
erties from the moderate resolution imaging spectrometer
(MODIS),” IEEE Transactions on Geoscience and Remote
Sensing, vol. 30, no. 1, pp. 2–27, 1992.

[55] P. Minnis, D. Young, S. Sun-Mack, P. W. Heck, D. R. Doelling,
and Q. Z. Trepte, “CERES cloud property retrievals from
imagers on TRMM, Terra, and Aqua,” in Proceedings of the
Remote Sensing of Clouds and the Atmosphere VIII, vol. 5235
of Proceedings of SPIE, pp. 37–48, Barcelona, Spain, September
2003.

[56] R. A. Schiffer and W. B. Rossow, “The International Satellite
Cloud Climatology Project (ISCCP): the first project of the
World Climate Research Programme,” Bulletin of American
Meteorological Society, vol. 64, no. 7, pp. 779–784, 1983.

[57] W. B. Rossow and L. C. Garder, “Cloud detection using satellite
measurements of infrared and visible radiances for ISCCP,”
Journal of Climate, vol. 6, no. 12, pp. 2341–2369, 1993.



Advances in Meteorology 15

[58] W. B. Rossow and R. A. Schiffer, “Advances in understanding
clouds from ISCCP,” Bulletin of the American Meteorological
Society, vol. 80, no. 11, pp. 2261–2287, 1999.

[59] S. A. Ackerman, K. I. Strabala, W. P. Menzel, R. A. Frey, C.
C. Moeller, and L. E. Gumley, “Discriminating clear sky from
clouds with MODIS,” Journal of Geophysical Research D, vol.
103, no. 24, pp. 32141–32157, 1998.

[60] R. A. Frey, S. A. Ackerman, Y. Liu et al., “Cloud detection with
MODIS. Part I: improvements in the MODIS cloud mask for
Collection 5,” Journal of Atmospheric and Oceanic Technology,
vol. 25, no. 7, pp. 1057–1072, 2008.

[61] S. A. Ackerman, R. E. Holz, R. Frey, E. W. Eloranta, B. C.
Maddux, and M. McGill, “Cloud detection with MODIS. Part
II: validation,” Journal of Atmospheric and Oceanic Technology,
vol. 25, no. 7, pp. 1073–1086, 2008.

[62] A. K. Heidinger, M. J. Foster, and A. T. Evan, “A naive
bayesian cloud detection scheme derived from CALIPSO and
applied within PATMOS-x,” Journal of Applied Meteorology
and Climatology. In press.

[63] A. K. Heidinger, CLAVR-x Cloud Mask Algorithm Theoretical
Basis Document (ATBD), NOAA/NESDIS/Office of Research
and Applications, Washington, DC, USA, 2004.

[64] C. J. Hahn and S. G. Warren, Extended Edited Synoptic Cloud
Reports from Ships and Land Stations Over the Globe, 1952–
1996. NDP–026C, CDIAC, Oak Ridge, Tenn, USA, 1999.

[65] C. J. Hahn, S. G. Warren, and J. London, “The effect of
moonlight on observation of cloud cover at night, and
application to cloud climatology,” Journal of Climate, vol. 8,
no. 5, pp. 1429–1446, 1995.

[66] R. Kistler, E. Kalnay, W. Collins et al., “The NCEP-NCAR 50-
year reanalysis: monthly means CD-ROM and documenta-
tion,” Bulletin of the American Meteorological Society, vol. 82,
no. 2, pp. 247–267, 2001.
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