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New Results on Monotone Dualization and
Generating Hypergraph Transversals∗

Thomas Eiter† Georg Gottlob‡ Kazuhisa Makino§

Abstract

We consider the problem of dualizing a monotone CNF (equivalently, computing all minimal
transversals of a hypergraph), whose associated decision problem is a prominent open problem
in NP-completeness. We present a number of new polynomial time resp. output-polynomial time
results for significant cases, which largely advance the tractability frontier and improve on previous
results. Furthermore, we show that duality of two monotone CNFs can be disproved with limited
nondeterminism. More precisely, this is feasible in polynomial time withO(χ(n) · logn) suitably
guessed bits, whereχ(n) is given byχ(n)χ(n) = n; note thatχ(n) = o(logn). This result sheds
new light on the complexity of this important problem.

Keywords: Dualization, hypergraphs, transversal computation, output-polynomial algorithms,
combinatorial enumeration, treewidth, hypergraph acyclicity, limited nondeterminism.

1 Introduction

Recall that the prime CNF of a monotone Boolean functionf is the unique formulaϕ =
∧

c∈S c in
conjunctive normal form whereS is the set of all prime implicates off , i.e., minimal clausesc which
are logical consequences off . In this paper, we consider the following problem:

Problem DUALIZATION

Input: The prime CNFϕ of a monotone Boolean functionf = f(x1, . . . , xm).
Output: The prime CNFψ of its dualfd = f(x1, . . . , xm).

It is well known that DUALIZATION is equivalent to the TRANSVERSAL COMPUTATION problem,
which requests to compute the set of all minimal transversals (i.e., minimal hitting sets) of a given
hypergraphH, in other words, thetransversal hypergraphTr(H) of H. Actually, these problems can be
viewed as the same problem, if the clauses in a monotone CNFϕ are identified with the sets of variables
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they contain. DUALIZATION is a search problem; the associated decision problem DUAL is to decide
whether two given monotone prime CNFsϕ andψ represent a pair(f, g) of dual Boolean functions.
Analogously, the decision problem TRANS-HYP associated with TRANSVERSAL COMPUTATION is
deciding, given hypergraphsH andG, whetherG = Tr(H).

DUALIZATION and several problems which are like transversal computation known to be com-
putationally equivalent to problem DUALIZATION (see [15]) are of interest in various areas such as
database theory (e.g. [38, 49]), machine learning and data mining (e.g., [6, 7, 12, 22]), game theory (e.g.
[26, 42, 43]), artificial intelligence (e.g., [21, 28, 29, 44]), mathematical programming (e.g., [5]), and
distributed systems (e.g., [18, 27]) to mention a few.

While the output CNFψ can be exponential in the size ofϕ, it is currently not known whetherψ can
be computed inoutput-polynomial(or polynomial total) time, i.e., in time polynomial in the combined
size ofϕ andψ. Any such algorithm for DUALIZATION (or for TRANSVERSAL COMPUTATION) would
significantly advance the state of the art of several problems in the above application areas. Similarly,
the complexity of DUAL (equivalently, TRANS-HYP) is open since more than 20 years now (cf. [3, 15,
30, 31, 33]).

Note that DUALIZATION is solvable in polynomial total time on a classC of hypergraphs iff DUAL

is in PTIME for all pairs(H,G), whereH ∈ C [3]. DUAL is known to be in co-NP and the best cur-
rently known upper time-bound is quasi-polynomial time [17, 19, 47]. Determining the complexities of
DUALIZATION and DUAL , and of equivalent problems such as the transversal problems, is a prominent
open problem. This is witnessed by the fact that these problems are cited in a rapidly growing body
of literature and have been referenced in various survey papers and complexity theory retrospectives,
e.g. [30, 34, 40].

Given the importance of monotone dualization and equivalent problems for many application areas,
and given the long standing failure to settle the complexityof these problems, emphasis was put on
finding tractable cases of DUAL and corresponding polynomial total-time cases of DUALIZATION . In
fact, several relevant tractable classes were found by various authors; see e.g. [4, 8, 9, 10, 12, 14, 15,
20, 35, 36, 39, 41] and references therein. Moreover, classes of formulas were identified on which
DUALIZATION is not just polynomial total-time, but where the conjuncts of the dual formula can be
enumerated withincremental polynomial delay, i.e., with delay polynomial in the size of the input plus
the size of all conjuncts so far computed, or even withpolynomial delay, i.e., with delay polynomial
in the input size only. On the other hand, there are also results which show that certain well-known
algorithms for DUALIZATION are not polynomial-total time. For example, [15, 39] pointed out that a
well-known sequential algorithm, in which the clausesci of a CNFϕ = c1 ∧ · · · ∧ cm are processed in
orderi = 1, . . . ,m, is not polynomial-total time in general. Most recently, [46] showed that this holds
even if an optimal ordering of the clauses is assumed (i.e., they may be arbitrarily arranged for free).

Main Goal. The main goal of this paper is to present important new polynomial total time cases of
DUALIZATION and, correspondingly, PTIME solvable subclasses of DUAL which significantly improve
previously considered classes. Towards this aim, we first present a new algorithm DUALIZE and prove its
correctness. DUALIZE can be regarded as a generalization of a related algorithm proposed by Johnson,
Yannakakis, and Papadimitriou [31]. As other dualization algorithms, DUALIZE reduces the original
problem by self-reduction to smaller instances. However, the subdivision into subproblems proceeds
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according to a particular order which is induced by an arbitrary fixed ordering of the variables. This,
in turn, allows us to derive some bounds on intermediate computation steps which imply that DUAL -
IZE, when applied to a variety of input classes, outputs the conjuncts ofψ with polynomial delay or
incremental polynomial delay. In particular, we show positive results for the following input classes:

• Degenerate CNFs. We generalize the notion ofk-degenerate graphs [50] to hypergraphs and
definek-degenerate monotone CNFsresp.hypergraphs. We prove that for any constantk, DUALIZE

works with polynomial delay onk-degenerate CNFs. Moreover, it works in output-polynomialtime on
O(log n)-degenerate CNFs.

• Read-k CNFs. A CNF is read-k, if each variable appears at mostk times in it. We show that for
read-k CNFs, problem DUALIZATION is solvable with polynomial delay, ifk is constant, and in total
polynomial time, ifk = O(log(‖ϕ‖). Our result for constantk significantly improves upon the previous
best known algorithm [12], which has a higher complexity bound, is not polynomial delay, and outputs
the clauses ofψ in no specific order. The result fork = O(log ‖ϕ‖) is a non-trivial generalization of
the result in [12], which was posed as an open problem [11].

• Acyclic CNFs.There are several notions of hypergraph resp. monotone CNF acyclicity [16], where
the most general and well-known isα-acyclicity. As shown in [15], DUALIZATION is polynomial total
time for β-acyclic CNFs;β-acyclicity is the hereditary version ofα-acyclicity and far less general. A
similar result forα-acyclic prime CNFs was left open. (For non-primeα-acyclic CNFs, this is trivially
as hard as the general case.) In this paper, we give a positiveanswer and show that forα-acyclic (prime)
ϕ, DUALIZATION is solvable with polynomial delay.

• Formulas of Bounded Treewidth.Thetreewidth[45] of a graph expresses its degree of cyclicity.
Treewidth is an extremely general notion, and bounded treewidth generalizes almost all other notions of
near-acyclicity. Following [13], we define the treewidth ofa hypergraph resp. monotone CNFϕ as the
treewidth of its associated (bipartite) variable-clause incidence graph. We show that DUALIZATION is
solvable with polynomial delay (exponential ink) if the treewidth ofϕ is bounded by a constantk, and
in polynomial total time if the treewidth isO(log log ‖ϕ‖).

• Recursive Applications ofDUALIZE and k-CNFs. We show that if DUALIZE is applied recur-
sively and the recursion depth is bounded by a constant, thenDUALIZATION is solved in polynomial
total time. We apply this to provide a simpler proof of the known result [8, 15] that monotonek-CNFs
(where each conjunct contains at mostk variables) can be dualized in output-polynomial time.

After deriving the above results, we turn our attention (in Section 5) to the fundamental computa-
tional nature of problems DUAL and TRANS-HYP in terms of complexity theory.

Limited nondeterminism. In a landmark paper, Fredman and Khachiyan [17] proved that problem
DUAL can be solved in quasi-polynomial time. More precisely, they first gave an algorithm A solving
the problem innO(log2 n) time, and then a more complicated algorithm B whose runtime is bounded
by n4χ(n)+O(1) whereχ(n) is defined byχ(n)χ(n) = n. As noted in [17],χ(n) ∼ log n/ log log n =
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o(log n); therefore, duality checking is feasible inno(logn) time. This is the best upper bound for
problem DUAL so far, and shows that the problem is most likely not NP-complete.

A natural question is whether DUAL lies in some lower complexity class based on other resources
than just runtime. In the present paper, we advance the complexity status of this problem by showing
that its complement is feasible withlimited nondeterminism, i.e, by a nondeterministic polynomial-time
algorithm that makes only a poly-logarithmic number of guesses. For a survey on complexity classes
with limited nondeterminism, and for several references see [23]. We first show by using a simple but
effective technique, which succinctly describes computation paths, that testing non-duality is feasible
in polynomial time withO(log3 n) nondeterministic steps. We then observe that this approachcan
be improved to obtain a bound ofO(χ(n) · log n) nondeterministic steps.This result is surprising,
because most researchers dealing with the complexity ofDUAL and TRANS-HYP believed so far that
these problems are completely unrelated to limited nondeterminism.

We believe that the results presented in this paper are significant, and we are confident that they will
be prove useful in various contexts. First, we hope that the various polynomial/output-polynomial cases
of the problems which we identify will lead to better and moregeneral methods in various application
areas (as we show, e.g. in learning and data mining [12]), andthat based on the algorithm DUALIZE or
some future modifications, further relevant tractable classes will be identified. Second, we hope that our
discovery on limited nondeterminism provides a new momentum to complexity research on DUAL and
TRANS-HYP, and will push it towards settling these longstanding open problems.

The rest of this paper is structured as follows. The next section provides some preliminaries and
introduces notation. In Section 3, we present our algorithmDUALIZE for dualizing a given monotone
prime CNF. After that, we exploit this algorithm in Section 4to derive a number of polynomial instance
classes of the problems DUALIZATION and DUAL . In Section 5 we then show that DUAL can be solved
with limited nondeterminism.

2 Preliminaries and Notation

A Boolean function(in short,function) is a mappingf : {0, 1}n → {0, 1}, wherev ∈ {0, 1}n is called
a Boolean vector(in short,vector). As usual, we writeg ≤ f if f andg satisfyg(v) ≤ f(v) for all
v ∈ {0, 1}n, andg < f if g ≤ f and g 6= f . A function f is monotone(or positive), if v ≤ w

(i.e., vi ≤ wi for all i) implies f(v) ≤ f(w) for all v,w ∈ {0, 1}n. Boolean variablesx1, x2, . . . , xn
and their complements̄x1, x̄2, . . . , x̄n are calledliterals. A clause(resp.,term) is a disjunction (resp.,
conjunction) of literals containing at most one ofxi andx̄i for each variable. A clausec (resp., termt)
is animplicate(resp.,implicant) of a functionf , if f ≤ c (resp.,t ≤ f ); moreover, it isprime, if there
is no implicatec′ < c (resp., no implicantt′ > t) of f , andmonotone, if it consists of positive literals
only. We denote byPI(f) the set of all prime implicants off .

A conjunctive normal form(CNF) (resp., disjunctive normal form, DNF) is a conjunction of clauses
(resp., disjunction of terms); it isprime(resp.monotone), if all its members are prime (resp.monotone).
For any CNF (resp., DNF)ρ, we denote by|ρ| the number of clauses (resp., terms) in it. Furthermore,
for any formulaϕ, we denote byV (ϕ) the set of variables that occur inϕ, and by‖ϕ‖ its length, i.e.,
the number of literals in it. We occasionally view CNFsϕ also as sets of clauses, and clauses as sets of
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literals, and use respective notation (e.g.,c ∈ ϕ, x1 ∈ c etc).
As well-known, a functionf is monotone iff it has a monotone CNF. Furthermore, all primeim-

plicants and prime implicates of a monotonef are monotone, and it has a unique prime CNF, given
by the conjunction of all its prime implicates. For example,the monotonef such thatf(v) = 1 iff
v ∈ {(1100), (1110), (1101), (0111), (1111)} has the unique prime CNFϕ = x2(x1 ∨ x3)(x1 ∨ x4).

Recall that thedual of a functionf , denotedfd, is defined byfd(x) = f(x), wheref andx is the
complement off andx, respectively. By definition, we have(fd)d = f . From De Morgan’s law, we
obtain a formula forfd from any one off by exchanging∨ and∧ as well as the constants0 and1. For
example, iff is given byϕ = x1x2∨x1(x3∨x4), thenfd is represented byψ = (x1 ∨x2)(x1∨x3x4).
For a monotone functionf , let ψ =

∧

c∈C(
∨

xi∈c xi) be the prime CNF offd. Then by De Morgan’s
law, f has the (unique) prime DNFρ =

∨

c∈C(
∧

xi∈c xi); in the previous example,ρ = x1x2 ∨ x2x3x4.
Thus, we will regard DUALIZATION also as the problem of computing the prime DNF off from the
prime CNF off .

3 Ordered Transversal Generation

In what follows, letf be a monotone function and

ϕ =
m
∧

i=1

ci (1)

its prime CNF, where we assume without loss of generality that all variablesxj (j = 1, 2, . . . n) appear
in ϕ. Let ϕi (i = 0, 1, . . . , n) be the CNF obtained fromϕ by fixing variablesxj = 1 for all j with
j ≥ i+1. By definition, we haveϕ0 = 1 (truth) andϕn = ϕ. For example, considerϕ = (x1∨x2)(x1∨

x3)(x2 ∨ x3 ∨ x4)(x1 ∨ x4). Then we haveϕ0 = ϕ1 = 1, ϕ2 = (x1 ∨ x2), ϕ3 = (x1 ∨ x2)(x1 ∨ x3),
andϕ4 = ϕ. Similarly, for the prime DNF

ψ =
∨

t∈PI (f) t (2)

of f , we denote byψi the DNF obtained fromψ by fixing variablesxj = 1 for all j with j ≥ i + 1.
Clearly, we haveϕi ≡ ψi, i.e.,ϕi andψi represent the same function denoted byfi.

Proposition 3.1 Letϕ andψ be any CNF and DNF forf , respectively. Then, for alli ≥ 0,

(a) ‖ϕi‖ ≤ ‖ϕ‖ and |ϕi| ≤ |ϕ|, and

(b) ‖ψi‖ ≤ ‖ψ‖ and |ψi| ≤ |ψ|.

Denote by∆i (i = 1, 2, . . . , n) the CNF consisting of all the clauses inϕi but not inϕi−1. For the above
example, we have∆1 = 1, ∆2 = (x1 ∨ x2), ∆3 = (x1 ∨ x3), and∆4 = (x2 ∨ x3 ∨ x4)(x1 ∨ x4). Note
thatϕi = ϕi−1 ∧∆i; hence, for alli = 1, 2, . . . , n we have

ψi ≡ ψi−1 ∧∆i ≡
∨

t∈PI (fi−1)

(t ∧∆i). (3)
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Let ∆i[t], for i = 1, . . . , n denote the CNF consisting of all the clausesc such thatc contains no literal
in ti−1 andc ∨ xi appears in∆i. For example, ift = x2x3x4 and∆4 = (x2 ∨ x3 ∨ x4)(x1 ∨ x4), then
∆4[t] = x1. It follows from (3) that for alli = 1, 2, . . . , n

ψi ≡
∨

t∈PI (fi−1)

(

(t ∧∆i[t]) ∨ (t ∧ xi)
)

. (4)

Lemma 3.2 For every termt ∈ PI (fi−1), letgi,t be the function represented by∆i[t]. Then|PI (gi,t)| ≤
|ψi| ≤ |ψ|.

Proof. LetV = {x1, x2, . . . , xn} and lets ∈ PI (gi,t). Then by (4),t ∧ s is an implicant ofψi. Hence,
somets ∈ PI (fi) exists such thatts ≥ t ∧ s. Note thatV (t) ∩ V (∆i[t]) = ∅, t and∆i[t] have no
variable in common, and hence we haveV (s) ⊆ V (ts) (⊆ V (s) ∪ V (t)), since otherwise there exists a
clausec in ∆i[t] such thatV (c) ∩ V (ts) = ∅, a contradiction. ThusV (ts) ∩ V (∆i[t]) = V (s). For any
s′ ∈ PI (gi,t) such thats 6= s′, let ts, ts

′
∈ PI (fi) such thatts ≥ t ∧ s andts

′
≥ t ∧ s′, respectively. By

the above discussion, we havets 6= ts
′
. This completes the proof. ✷

We now describe our algorithm DUALIZE for generatingPI (f). It is inspired by a similar graph
algorithm of Johnson, Yannakakis, and Papadimitriou [31],and can be regarded as a generalization.

Algorithm DUALIZE

Input: The prime CNFϕ of a monotone functionf .
Output:The prime DNFψ of f , i.e. all prime implicants off .

Step 1: Compute the smallest prime implicanttmin of f and setQ := { tmin };

Step 2: while Q 6= ∅ do begin

Remove the smallestt fromQ and outputt;

for eachi with xi ∈ V (t) and∆i[t] 6= 1 do begin

Compute the prime DNFρ(t,i) of the function represented by∆i[t];

for each termt′ in ρ(t,i) do begin

if ti−1 ∧ t′ is a prime implicant offi then begin

Compute the smallest prime implicantt∗ of f such thatt∗i = ti−1 ∧ t
′;

Q := Q ∪ {t∗}

end{if} end{for} end{for}

end{while}

Here, we say that terms is smallerthan termt if
∑

xj∈V (s) 2
n−j <

∑

xj∈V (t) 2
n−j ; i.e., as vector,s is

lexicographically smaller thant.

Theorem 3.3 AlgorithmDUALIZE correctly outputs allt ∈ PI (f) in increasing order.
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Proof. (Sketch) First note that the termt∗ inserted inQ when t is output is larger thant. Indeed,t′

(6= 1) andti−1 are disjoint andV (t′) ⊆ {x1,. . . , xi−1}. Hence, every term inQ is larger than all terms
already output, and the output sequence is increasing. We show by induction that, ift is the smallest
prime implicant off that was not output yet, thent is already inQ. This clearly proves the result.

Clearly, the above statement is true ift = tmin. Assume now thatt 6= tmin is the smallest among
the prime implicants not output yet. Leti be the largest index such thatti is not a prime implicant
of fi. This i is well-defined, since otherwiset = tmin must hold, a contradiction. Now we have (1)
i < n and (2)i+ 1 6∈ V (t), where (1) holds becausetn (= t) is a prime implicant offn (= f) and (2)
follows from the maximality ofi. Let s ∈ PI (fi) such thatV (s) ⊆ V (ti), and letK = V (ti)− V (s).
ThenK 6= ∅ holds, and sincexi+1 /∈ V (t), the termt′ =

∧

xj∈K xj is a prime implicant of∆i+1[s].
There existss′ ∈ PI (f) such thats′i = s andxi+1 ∈ V (s′), sinces ∧ xi+1 ∈ PI (fi+1). Note that
∆i+1[s] 6= 0. Moreover, sinces′ is smaller thant, by inductions′ has already been output. Therefore,
t′ =

∧

xj∈K xj has been considered in the inner for-loop of the algorithm. Sinces′i ∧ t
′ (= ti = ti+1)

is a prime implicant offi+1, the algorithm has added the smallest prime implicantt∗ of f such that
t∗i+1 = ti+1. We finally claim thatt∗ = t. Otherwise, letk be the first index in whicht∗ andt differ.
Thenk > i + 1, xk ∈ V (t) andxk 6∈ V (t∗). However, this impliestk /∈ PI (fk), contradicting the
maximality ofi. ✷

Remark 3.1 (1) The decomposition rule (4) was already used in [33].
(2) In step 1, we could generate any prime implicantt of f , and choose then a lexicographic term
ordering inherited from a dynamically generated variable ordering. In step 2, it is sufficient that any
monotone DNFτ(t,i) of the function represented by∆i[t] is computed, rather than its prime DNFρ(t,i).
This might make the algorithm faster.

Let us consider the time complexity of algorithm DUALIZE . We storeQ as a binary tree, where each
leaf represents a termt and the left (resp., right) son of a node at depthj − 1 ≥ 0, where the root has
depth 0, encodesxj ∈ V (t) (resp.,xj 6∈ V (t)). In Step 1, we can computetmin in O(‖ϕ‖) time and
initializeQ in O(n) time.

As for Step 2, letT(t,i) be the time required to compute the prime DNFρ(t,i) from ∆i[t]. By
analyzing its substeps, we can see that each iteration of Step 2 requires

∑

xi∈V (t)(T(t,i)+|ρ(t,i)|·O(‖ϕ‖))

time.
Indeed, we can updateQ (i.e., remove the smallest term and addt∗) in O(n) time. For eacht andi,

we can construct∆i[t] in O(‖ϕ‖) time. Moreover, we can check whetherti−1 ∧ t
′ is a prime implicant

of fi and if so, we can compute the smallest prime implicantt∗ of f such thatt∗i = ti−1 ∧ t
′ in O(‖ϕ‖)

time; note thatt∗ is the smallest prime implicant of the function obtained from f by fixing xj = 1 if
xj ∈ V (ti ∧ t

′) and0 if xj 6∈ V (ti ∧ t
′) for j ≤ i.

Hence, we have the following result.

Theorem 3.4 The output delay of AlgorithmDUALIZE is bounded by

max
t∈PI (f)

(

∑

xi∈V (t)

(T(t,i) + |ρ(t,i)| ·O(‖ϕ‖))
)

(5)
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time, andDUALIZE needs in total time
∑

t∈PI (f)

∑

xi∈V (t)

(T(t,i) + |ρ(t,i)| ·O(‖ϕ‖)). (6)

If the T(t,i) are bounded by a polynomial in the input length, then DUALIZE becomes a polynomial
delay algorithm, since|ρ(t,i)| ≤ T(t,i) holds for allt ∈ PI (f) andxi ∈ V (t). On the other hand, if they
are bounded by a polynomial in the combined input and output length, then DUALIZE is a polynomial
total time algorithm, where|ρ(t,i)| ≤ |ψ| holds from Lemma 3.2. Using results from [3], we can
construct from DUALIZE an incremental polynomial time algorithm for DUALIZATION , which however
might not outputPI (f) in increasing order. Summarizing, we have the following corollary.

Corollary 3.5 LetT = max{T(t,i) | t ∈ PI (f), xi ∈ V (t) }. Then, ifT is bounded by a

(i) polynomial inn and‖ϕ‖, thenDUALIZE is anO(n‖ϕ‖T ) polynomial delay algorithm;

(ii) polynomial inn, ‖ϕ‖, and‖ψ‖, thenDUALIZE is anO(n · |ψ| · (T + |ψ| · ‖ϕ‖)) polynomial
total-time algorithm; moreover,DUALIZATION is solvable in incremental polynomial time.

In the next section, we identify sufficient conditions for the boundedness ofT and fruitfully apply
them to solve open problems and improve previous results.

4 Polynomial Classes

4.1 Degenerate CNFs

We first consider the case of small∆i[t]. Generalizing a notion for graphs (i.e., monotone2-CNFs)
[50], we call a monotone CNFϕ k-degenerate, if there exists a variable orderingx1, . . . , xn in which
|∆i| ≤ k for all i = 1, 2, . . . , n. We call a variable orderingx1, . . . , xn smallest lastas in [50], if
xi is chosen in the orderi = n, n − 1, . . . , 1 such that|∆i| is smallest for all variables that were not
chosen. Clearly, a smallest last ordering gives the leastk such thatϕ is k-degenerate. Therefore, we can
check for every integerk ≥ 1 whetherϕ is k-degenerate inO(‖ϕ‖) time. If this holds, then we have
|ρ(t,i)| ≤ nk andT(t,i) = O(knk+1) for everyt ∈ PI (f) andi ∈ V (t) (for T(t,i), apply the distributive
law to∆i[t] and remove termstwhere somexj ∈ V (t) has noc ∈ ∆i[t] such thatV (t)∩V (c) = {xj}).
Thus Theorem 3.4 implies the following.

Theorem 4.1 For k-degenerate CNFsϕ, DUALIZATION is solvable withO(‖ϕ‖ · nk+1) polynomial
delay ifk ≥ 1 is constant.

Applying the result of [37] that log-clause CNF is dualizable in incremental polynomial time, we
obtain a polynomiality result also for non-constant degeneracy:

Theorem 4.2 For O(log ‖ϕ‖)-degenerate CNFsϕ, problemDUALIZATION is solvable in polynomial
total time.

In the following, we discuss several natural subclasses of degenerate CNFs.
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4.1.1 Read-bounded CNFs

A monotone CNFϕ is calledread-k, if each variable appears inϕ at mostk times. Clearly, read-k
CNFs arek-degenerate, and in factϕ is read-k iff it is k-degenerate under every variable ordering. By
applying Theorems 4.1 and 4.2, we obtain the following result.

Corollary 4.3 For read-k CNFsϕ, problemDUALIZATION is solvable

(i) with O(‖ϕ‖ · nk+1) polynomial delay, ifk is constant;

(ii) in polynomial total time, ifk = O(log(‖ϕ‖)).

Note that Corollary 4.3 (i) trivially implies that DUALIZATION is solvable inO(|ψ| · nk+2) time for
constantk, since‖ϕ‖ ≤ kn. This improves upon the previous best known algorithm [12],which is only
O(|ψ| · nk+3) time, not polynomial delay, and outputsPI (f) in no specific order. Corollary 4.3 (ii) is a
non-trivial generalization of the result in [12], which wasposed as an open problem [11].

4.1.2 Acyclic CNFs

Like in graphs, acyclicity is appealing in hypergraphs resp. monotone CNFs from a theoretical as well
as a practical point of view. However, there are many notionsof acyclicity for hypergraphs (cf. [16]),
since different generalizations from graphs are possible.We refer toα-, β-,γ-, andBerge-acyclicity as
stated in [16], for which the following proper inclusion hierarchy is known:

Berge-acyclic⊆ γ-acyclic ⊆ β-acyclic ⊆ α-acyclic.

The notion ofα-acyclicity came up in relational database theory. A monotone CNFϕ is α-acyclic iff
ϕ = 1 or reducible by the GYO-reduction [25, 51], i.e., repeated application of one of the two rules:

(1) If variablexi occurs in only one clausec, removexi from c.
(2) If distinct clausesc andc′ satisfyV (c) ⊆ V (c′), removec from ϕ.

to 0 (i.e., the empty clause). Note thatα-acyclicity of a monotone CNFϕ can be checked, and a suitable
GYO-reduction output, inO(‖ϕ‖) time [48]. A monotone CNFϕ is β-acyclic iff every CNF consisting
of clauses inϕ is α-acyclic. As shown in [15], the prime implicants of a monotone f represented by a
β-acyclic CNFϕ can be enumerated (and thus DUALIZATION solved) inp(‖ϕ‖) · |ψ| time, wherep is
a polynomial in‖ϕ‖. However, the time complexity of DUALIZATION for the more generalα-acyclic
prime CNFs was left as an open problem. We now show that it is solvable with polynomial delay, by
showing thatα-acyclic CNFs are1-degenerate.

Let ϕ 6= 1 be a prime CNF. Leta = a1, a2, . . . , aq be a GYO-reduction forϕ, whereaℓ = xi if
theℓ-th operation removesxi from c, andaℓ = c if it removesc from ϕ. Consider the unique variable
orderingb1, b2, . . . , bn suchbi occurs afterbj in a, for all i < j. For example, letϕ = c1c2c3c4, where
c1 = (x1 ∨ x2 ∨ x3), c2 = (x1 ∨ x3 ∨ x5), c3 = (x1 ∨ x5 ∨ x6) andc4 = (x3 ∨ x4 ∨ x5). Thenϕ is
α-acyclic, since it has the GYO-reduction

a1 = x2, a2 = c1, a3 = x4, a4 = x6, a5 = c4, a6 = c3, a7 = x1, a8 = x3, a9 = x5.
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From this sequence, we obtain the variable ordering

b1 = x5, b2 = x3, b3 = x1, b4 = x6, b5 = x4, b6 = x2.

As easily checked, this ordering shows thatϕ is1-degenerate. Under this ordering, we have∆1 = ∆2 =

1, ∆3 = (x1 ∨ x3 ∨ x5), ∆4 = (x1 ∨ x5 ∨ x6), ∆5 = (x3 ∨ x4 ∨ x5), and∆6 = (x1 ∨ x2 ∨ x3). This is
not accidental.

Lemma 4.4 Everyα-acyclic prime CNF is1-degenerate.

Note that the converse is not true, i.e., there exists a1-degenerate CNF that is notα-acyclic. For
example,ϕ = (x1∨x2∨x3)(x1∨x2∨x4)(x2∨x3∨x4∨x5) is such a CNF. Lemma 4.4 and Theorem 4.1
imply the following result.

Corollary 4.5 For α-acyclic CNFsϕ, problemDUALIZATION is solvable withO(‖ϕ‖ · n2) delay.

Observe that for a primeα-acyclicϕ, we have|ϕ| ≤ n. Thus, if we slightly modify algorithm DUALIZE

to check∆i = 1 in advance (which can be done in linear time in a preprocessing phase) such that such
∆i need not be considered in step 2, then the resulting algorithm hasO(n · |ϕ| · ‖ϕ‖) delay. Observe
that the algorithm in [15] solves, minorly adapted for enumerative output, DUALIZATION for β-acyclic
CNFs withO(n · |ϕ| · ‖ϕ‖) delay. Thus, the above modification of DUALIZE is of the same order.

4.1.3 CNFs with bounded treewidth

A tree decomposition (of type I)of a monotone CNFϕ is a treeT = (W,E) where each nodew ∈ W

is labeled with a setX(w) ⊆ V (ϕ) under the following conditions:

1.
⋃

w∈W X(w) = V (ϕ);

2. for every clausec in ϕ, there exists somew ∈W such thatV (c) ⊆ X(w); and

3. for any variablexi ∈ V , the set of nodes{w ∈ W | xi ∈ X(w)} induces a (connected) subtree
of T .

Thewidth of T is maxw∈W |X(w)| − 1, and thetreewidthof ϕ, denoted byTw1(ϕ), is the minimum
width over all its tree decompositions.

Note that the usual definition of treewidth for a graph [45] results in the case whereϕ is a 2-CNF.
Similarly to acyclicity, there are several notions of treewidth for hypergraphs resp. monotone CNFs. For
example, tree decomposition of type II of CNFϕ =

∧

c∈C c is defined as type-I tree decomposition
of its incident2-CNF (i.e., graph)G(ϕ) [13, 24]. That is, for each clausec ∈ ϕ, we introduce a new
variableyc and constructG(ϕ) =

∧

xi∈c∈ϕ(xi ∨ yc) (here,xi ∈ c denotes thatxi appears inc). Let
Tw2(ϕ) denote the type-II treewidth ofϕ.

Proposition 4.6 For every monotone CNFϕ, it holds thatTw 2(ϕ) ≤ Tw 1(ϕ) + 2Tw1(ϕ)+1.
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Proof. LetT = (W,E),X :W → 2V be any tree decomposition ofϕ having widthTw1(ϕ). Introduce
for all c ∈ ϕ new variablesyc, and addyc to everyX(w) such thatV (c) ⊆ X(w). Clearly, the result is
a type-I tree decomposition ofG(ϕ), and thus a type-II tree decomposition ofϕ. Since at most2|X(w)|

manyyc are added toX(w) and|X(w)| − 1 ≤ Tw1(ϕ) for everyw ∈W , the result follows. ✷

This means that ifTw1(ϕ) is bounded by some constant, then so isTw2(ϕ). Moreover,Tw1(ϕ) =

k implies thatϕ is ak-CNF; we discussk-CNFs in Section 4.2 and only considerTw2(ϕ) here. The
following proposition states some relationships between type-II treewidth and other restrictions of CNFs
from above.

Proposition 4.7 The following properties hold for type-II treewidth.

(i) There is a family of monotone prime CNFsϕ such thatTw2(ϕ) is bounded by a constant, butϕ
is notk-CNF for any constantk.

(ii) There is a family of monotone prime CNFsϕ such thatTw2(ϕ) is bounded by a constant, butϕ
does not have bounded read.

(iii) There is a family ofα-acyclic prime CNFsϕ such thatTw 2(ϕ) is not bounded by any constant.
(This is a contrast to the graph case that a graph is acyclic ifand only if its treewidth is1.)

Proof. (i): For example,ϕ = (
∨

xi∈V xi) hasTw 2(ϕ) = 1, since it has a tree decompositionT =

(W,E) withX : W → 2V defined byW = {1, 2, . . . , n},E = {(w,w+1), w = 1, 2, . . . , n− 1}, and
X(w) = {xw, yc}, w ∈W , wherec = (

∨

xi∈V xi). However, it is not an(n− 1)-CNF (but ann-CNF).
On the other hand, by Lemma 4.8, we can see that there is a family of monotone prime CNFsϕ such
thatTw2(ϕ) is not bounded by any constant, butϕ is k-CNF for some constantk.

(ii): For example, letϕ be a CNF containingn − 1 clausesci = (x1 ∨ xi), i = 2, 3, . . . , n.
Thenϕ hasTw2(ϕ) = 1, since it has a tree decompositionT = (W,E) with X : W → 2V de-
fined byW = {(ci, x1), (ci, xi), i = 2, 3, . . . , n}, E = {((ci, x1), (ci+1, x1)), i = 2, 3, . . . , n − 1} ∪

{((ci, x1), (ci, xi)), i = 2, 3, . . . , n, andX((ci, xk)) = {yci , xk}, (ci, xk) ∈ W . However, it is not
read-(n − 2) (but read-(n − 1)).

(iii): For example, letϕ be a CNF onV = {x1, x2, . . . , x2n} containingn clausesci = (xi ∨
∨

j≥n+1 xj), for i = 1, . . . , n. Thenϕ is α-acyclic. We claim thatTw 2(ϕ) ≥ n− 1. Let us assume that
there exists a treeT = (W,E) with X : E → 2V that showsTw2(ϕ) ≤ n− 2, whereT is regarded as
a rooted tree. LetTi = (Wi, Ei) be the subtree ofT induced byWi = {w ∈ W | yci ∈ X(w)}, and
let ri be its root. Consider the case in whichWi andWj are disjoint for somei andj. Suppose thatrj
is an ancestor ofri. Since|X(ri)| ≤ Tw2(ϕ) + 1 ≤ n − 1, there exists a nodexn+k ∈ V such that
1 ≤ k ≤ n andxn+k 6∈ X(ri). However, since the incident graph ofϕ contains two edges(xn+k, yci)
and(xn+k, ycj), we havexn+k ∈

⋃

w∈Wi−{ri}X(w) andxn+k ∈
⋃

w∈Wj
X(w). This is a contradiction

to the condition that{w ∈ W | xn+k ∈ X(w)} is connected. Similarly, we can prove our claim when
Ti andTj are disjoint, butrj is not an ancestor ofri.

We thus consider the case in whichWi ∩Wj 6= ∅ holds for anyi andj. SinceTi’s are trees, the
family of Wi, i = 1, 2, . . . , n, satisfies the well-known Helly property, i.e., there exists a nodew in
⋂n
i=1Wi. X(w) must contain allyci ’s. This implies|X(w)| ≥ n, a contradiction. ✷
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As we show now, bounded-treewidth implies bounded degeneracy.

Lemma 4.8 Letϕ be any monotone CNF withTw2(ϕ) = k. Thenϕ is 2k-degenerate.

Proof. Let T = (W,E) with X : W → 2V showTw2(ϕ) = k. From this, we reversely construct a
variable orderinga = a1, . . . , an onV = V (ϕ) such that|∆i| ≤ 2k for all i.

Seti := n. Choose any leafw∗ of T , and letp(w∗) be a node inW adjacent tow∗. If X(w∗) \

X(p(w∗)) ⊆ {yc | c ∈ ϕ}, then removew∗ from T . On the other hand, if(X(w∗) \X(p(w∗))) ∩ V =

{xj1 , . . . , xjℓ} whereℓ ≥ 1 (in this case, onlyX(w∗) containsxj1 , . . . ,xjℓ), then defineai+1−h = xjh
for h = 1, . . . , ℓ and updatei := n− ℓ,X(w∗) := X(w∗) \ {xj1 , . . . , xjℓ}, andX(w) := X(w) \ {yc |

c ∈ ϕ, V (c) ∩ {xj1 , . . . , xjℓ} 6= ∅ } for everyw ∈W . Let a be completed by repeating this process.
We claim thata shows that|∆i| ≤ 2k for all i = 1, . . . , n. To see this, letw∗ be chosen during this

process, and assume thatai ∈ X(w∗) \X(p(w∗)). Then, by induction on the (reverse) construction of
a, we obtain that for each clausec ∈ ∆i we must have either (a)yc ∈ X(w∗) or (b) V (c) ⊆ X(w∗).
The latter case may arise if in previous steps of the process some descendantd(w∗) of w∗ was removed
which containsyc such thatyc does not occur inw∗; however, in this caseV (c) ⊆ X(w) must be true
on every node on the path fromd(w∗) tow∗.

Now let q = |X(w∗) \ V |. Since|X(w∗) \ {ai}| ≤ k, we have

|∆i| ≤ q + 2k−q ≤ 2k.

This proves the claim. ✷

Corollary 4.9 For CNFsϕ with Tw2(ϕ) ≤ k, DUALIZATION is solvable (i) withO(‖ϕ‖ · n2
k+1)

polynomial delay, ifk is constant; and (ii) in polynomial total time, ifk = O(log log ‖ϕ‖).

4.2 Recursive application of algorithmDUALIZE

Algorithm DUALIZE computes in step 2 the prime DNFρ(t,i) of the function represented by∆i[t].
Since∆[t] is the prime CNF of some monotone function, we can recursively apply DUALIZE to ∆i[t]

for computingρ(t,i). Let us call this variant R-DUALIZE . Then we have the following result.

Theorem 4.10 If its recursion depth isd, R-DUALIZE solvesDUALIZATION in O(nd−1 · |ψ|d−1 · ‖ϕ‖)

time.

Proof. If d = 1, then∆i[tmin] = 1 holds fortmin and everyi ≥ 1. This means thatPI (f) = {tmin}

andϕ is a1-CNF (i.e., each clause inϕ contains exactly one variable). Thus in this case, R-DUALIZE

needsO(n) time. Recall that algorithm DUALIZE needs, by (6), time
∑

t∈PI (f)

∑

xi∈V (t)(T(t,i)+|ρ(t,i)| ·

O(‖ϕ‖)). If d = 2, thenT(t,i) = O(n) and|ρ(t,i)| ≤ 1. Therefore, R-DUALIZE needs timeO(n · |ψ| ·

‖ϕ‖). Ford ≥ 3, Corollary 3.5.(ii) implies that R-DUALIZE needsO(nd−1 · |ψ|d−1 · ‖ϕ‖) time. ✷

Recall that a CNFϕ is calledk-CNF if each clause inϕ has at mostk literals. Clearly, if we apply
algorithm R-DUALIZE to a monotonek-CNFϕ, the recursion depth of R-DUALIZE is at mostk. Thus
we obtain the following result; it re-establishes, with different means, the main positive result of [8, 15].
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Corollary 4.11 R-DUALIZE solvesDUALIZATION in O(nk−1 · |ψ|k−1 · ‖ϕ‖) time, i.e., in polynomial
total time for monotonek-CNFsϕ wherek is constant.

5 Limited Nondeterminism

In the previous section, we have discussed polynomial casesof monotone dualization. In this section,
we now turn to the issue of the precise complexity of this problem. For this purpose, we consider
the decision problem DUAL , i.e., decide whether given monotone prime CNFsϕ andψ represent dual
Boolean functions, instead of the search problem DUALIZATION .

It appears that problem DUAL can be solved with limited nondeterminism, i.e., with poly-log many
guessed bits by a polynomial-time non-deterministic Turing machine. This result might bring new
insight towards settling the complexity of the problem.

We adopt Kintala and Fischer’s terminology [32] and writeg(n)-P for the class of sets accepted by
a nondeterministic Turing machine in polynomial time making at mostg(n) nondeterministic steps on
every input of lengthn. For every integerk ≥ 1, defineβkP =

⋃

c (c log
k n)-P. TheβP Hierarchy

consists of the classes
P = β1P ⊆ β2P ⊆ · · · ⊆

⋃

k

βkP = βP

and lies between P and NP. TheβkP classes appear to be rather robust; they are closed under polynomial
time and logspace many-one reductions and have complete problems (cf. [23]). The complement class
of βkP is denoted byco-βkP.

We start in Section 5.1 by recalling algorithm A of [17], reformulated for CNFs and by analyzing
A’s behavior. The proof that A can be converted to an algorithm that useslog3 n nondeterministic bit
guesses, and that DUAL is thus inco-β3P, is rather easy and should give the reader an intuition of how
our new method of analysis works. In Section 5.2, we use basically the same technique for analyzing
the more involved algorithm B of [17]. Using a modification ofthis algorithm, we show that DUAL is
in co-β2P. We also prove the stronger result that the complement of DUAL can be solved in polynomial
time with onlyO(χ(n) · log(n)) nondeterministic steps (=bit guesses). Finally, Section 5.3 shows that
membership inco-β2P can alternatively be obtained by combining the results of [17] with a theorem of
Beigel and Fu [2].

5.1 Analysis of Algorithm A of Fredman and Khachiyan

The first algorithm in [17] for recognizing dual monotone pairs is as follows.

Algorithm A (reformulated for CNFs1).

Input: Monotone CNFsϕ, ψ representing monotonef , g s.t.V (c)∩V (c′) 6=∅, for all c∈ϕ, c′∈ψ.
Output: yes if f = gd, otherwise a vectorw of formw = (w1, . . . , wm) such thatf(w) 6= gd(w).

1In [17], duality is tested for DNFs while our problem DUAL speaks about CNFs; this is insignificant, since DNFs are
trivially translated to CNFs for this task and vice versa (cf. Section 2).
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Step 1:

Delete all redundant (i.e., non-minimal) clauses fromϕ andψ.

Step 2:

Check that (1)V (φ) = V (ψ), (2) maxc∈ϕ |c| ≤ |ψ|, (3) maxc′∈ψ |c
′| ≤ |ϕ|, and

(4) Σc∈ϕ 2
−|c| +Σc′∈ψ 2

−|c′| ≥ 1.

If any of conditions (1)-(4) fails,f 6= gd and a witnessw is found in polynomial time (cf. [17]).

Step 3:

If |ϕ| · |ψ| ≤ 1, test duality inO(1) time.

Step 4:

If |ϕ| · |ψ| ≥ 2, find somexi occurring inϕ orψ (w.l.o.g. inϕ) with frequency≥ 1/ log(|ϕ|+ |ψ|).
Let

ϕ0 = {c− {xi} | xi ∈ c, c ∈ ϕ}, ϕ1 = {c | xi /∈ c, c ∈ ϕ},

ψ0 = {c′ − {xi} | xi ∈ c′, c′ ∈ ψ}, ψ1 = {c′ | xi /∈ c′, c′ ∈ ψ}.

Call algorithm A on the two pairs of forms:

(A.1) (ϕ1, ψ0 ∧ ψ1) and (A.2) (ψ1, ϕ0 ∧ ϕ1)

If both calls returnyes, then returnyes (asf = gd), otherwise we obtainw such that
f(w) 6= gd(w) in polynomial time (cf. [17]).

We observe that, as noted in [17], the binary length of any standard encoding of the inputϕ,ψ to
algorithm A is polynomially related to|ϕ|+ |ψ|, if step 3 is reached. Thus, for our purpose, we consider
|ϕ|+ |ψ| to be the input size.

Letϕ∗,ψ∗ be the original input for A. For any pair(ϕ,ψ) of CNFs, define itsvolumeby v = |ϕ|·|ψ|,
and letǫ = 1/ log n, wheren = |ϕ∗|+ |ψ∗|. As shown in [17], step 4 of algorithm A divides the current
(sub)problem of volumev = |ϕ| · |ψ| by self-reduction into subproblems (A.1) and (A.2) of respective
volumes (assuming thatxi frequently occurs inϕ):

|ϕ1| · |ψ0 ∧ ψ1| ≤ (1− ǫ) · v (7)

|ϕ0 ∧ ϕ1| · |ψ1| ≤ |ϕ| · (|ψ| − 1) ≤ v − 1 (8)

Let T = T (ϕ,ψ) be the recursion tree generated by A on input(ϕ,ψ). In T , each nodeu is labeled
with the respective monotone pair, denoted byI(u); thus, ifr is the root ofT , thenI(r) = (ϕ,ψ). The
volumev(u) of nodeu is defined as the volume of its labelI(u).

Any nodeu is a leaf ofT , if algorithm A stops on inputI(u) = (ϕ,ψ) during steps 1-3; otherwise,
u has a left childul and a right childur corresponding to (A.1) and (A.2), i.e., labeled(ϕ1, ψ0 ∧ ψ1)

and(ψ1, ϕ0 ∧ ϕ1) respectively. That is,ul is the “high frequency move” by the splitting variable.
We observe that every nodeu in T is determined by aunique pathfrom the root tou in T and thus

by a unique sequenceseq(u) of right and left moves starting from the root ofT and ending atu. The
following key lemma bounds the number of moves of each type for certain inputs.

Lemma 5.1 Suppose|ϕ∗| + |ψ∗| ≤ |ϕ∗| · |ψ∗|. Then for any nodea in T , seq(a) contains at mostv∗

right moves and at mostlog2 v∗ left moves, wherev∗ = |ϕ∗| · |ψ∗|.
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Proof. By (7) and(8), each move decreases the volume of a node label. Thus, the length ofseq(u), and
in particular the number of right moves, is bounded byv∗. To obtain the better bound for the left moves,
we will use the following well-known inequality:

(1− 1/y)y ≤ 1/e, for y ≥ 1. (9)

In fact, the sequence(1 − 1/yi)
yi , for any1 ≤ y1 < y2 < . . . monotonically converges to1/e from

below. By (7), the volumev(u) of any nodeu such thatseq(u) containslog2 v∗ left moves is bounded
as follows:

v(u) ≤ v∗ · (1− ǫ)log
2 v∗ = v∗ · (1− 1/ log n)log

2 v∗ .

Sincen = |ϕ∗|+ |ψ∗| ≤ |ϕ∗| · |ψ∗| = v∗, and because of (9) it follows that:

v(u) ≤ v∗ · ((1− 1/ log v∗)log v
∗

)log v
∗

≤ v∗ · (1/e)log v
∗

= v∗/(elog v
∗

) < v∗/(2log v
∗

) = 1.

Thus,u must be a leaf inT . Hence for everyu in T , seq(u) contains at mostlog2 v∗ left moves. ✷

Theorem 5.2 ProblemDUAL is in co-β3P.

Proof. Instances such that eitherc ∩ c′ = ∅ for somec ∈ ϕ∗ and c′ ∈ ψ∗, the sequenceseq(u) is
empty, or|ϕ∗| + |ψ∗| > |ϕ∗| · |ψ∗| are easily recognized and solved in deterministic polynomial time.
In the remaining cases, iff 6= gd, then there exists a leafu in T labeled by a non-dual pair(ϕ′, ψ′). If
seq(u) is known, we can compute, by simulatingA on the branch described byseq(u), the entire path
u0, u1, . . . , ul = u from the rootu0 to u with all labelsI(u0) = (ϕ∗, ψ∗), I(u1), . . . ,I(ul) and check
thatI(ul) is non-dual in steps 2 and 3 of A in polynomial time. Since the binary length of any standard
encoding of(ϕ∗, ψ∗) is polynomially related ton = |ϕ∗| + |ψ∗| if seq(u) is nonempty, to prove the
result it is sufficient to show thatseq(u) can be constructed in polynomial time fromO(log3 v∗) suitably
guessed bits. To see this, let us represent everyseq(u) as a sequenceseq∗(u) = [ℓ0, ℓ1, ℓ2 . . . , ℓk], where
ℓ0 is the number of leading right moves andℓi is the number of consecutive right moves after thei-th left
move inseq(u), for i = 1, . . . , k. For example, ifseq(u) = [r, r, l, r, r, r, l], thenseq∗(u) = [2, 3, 0].
By Lemma 5.1,seq∗(u) has length at mostlog2 v∗+1. Thus,seq∗(u) occupies in binary onlyO(log3 v)

bits; moreover,seq(u) is trivially computed fromseq∗(u) in polynomial time. ✷

5.2 Analysis of Algorithm B of Fredman and Khachiyan

The aim of the above proof was to exhibit a new method of algorithm analysis that allows us to show
with very simple means that duality can be polynomially checked with limited nondeterminism. By
applying the same method of analysis to the slightly more involved algorithm B of [17] (which runs in
n4χ(n)+O(1) time, and thus inno(logn) time), we can sharpen the above result by proving that deciding
whether monotone CNFsϕ andψ are non-dual is feasible in polynomial time withO(χ(n) · log n)

nondeterministic steps; consequently, the problem DUAL is in co-β2P.
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Like algorithm A, also algorithm B uses a recursive self-reduction method that decomposes its
input, a pair(ϕ,ψ) of monotone CNFs, into smaller inputs instances for recursive calls. Analogously,
the algorithm is thus best described via itsrecursion treeT , whose root represents the input instance
(ϕ∗, ψ∗) (of sizen), whose intermediate nodes represent smaller instances, and whose leaves represent
those instances that can be solved in polynomial time. Like for algorithm A, the nodesu in T are labeled
with the respective instancesI(u) = (ϕ,ψ) of monotone pairs. Whenever there is a branching from a
nodeu to children, thenI(u) is a pair of dual monotone CNFs iffI(u′) for eachchild u′ of u in T is
a pair of dual monotone CNFs. Therefore, the original input(ϕ∗, ψ∗) is a dual monotone pair iff all
leaves ofT are labeled with dual monotone pairs.

Rather than describing algorithm B in full detail, we confinehere to recall those features which are
relevant for our analysis. In particular, we will describe some essential features of its recursion treeT .

For each variablexi occurring inϕ, thefrequencyǫϕi of xi w.r.t. ϕ is defined asǫϕi = |{c∈ϕ : xi∈c}|
|ϕ| ,

i.e., as the number of clauses ofϕ containingxi divided by the total number of clauses inϕ. Moreover,
for eachv ≥ 1, letχ(v) be defined byχ(v)χ(v) = v.

Let v∗ = |ϕ∗||ψ∗| denote the volume of the input (=root) instance(ϕ∗, ψ∗). For the rest of this
section, we assume that|ϕ∗|+ |ψ∗| ≤ |ϕ∗| · |ψ∗|. In fact, in any instance which violates this inequality,
eitherϕ∗ or ψ∗ has at most one clause; in this case, DUAL is trivially solvable in polynomial time.

Algorithm B first constructs the rootr of T and then recursively expands the nodes ofT . For each
nodeu with labelI(u) = (ϕ,ψ), algorithm B does the following.

The algorithm first performs a polynomial time computation,which we shall refer to as LCHECK(ϕ,ψ)

here, as follows. LCHECK(ϕ,ψ) first eliminates all redundant (i.e., non-minimal) clausesfromϕ andψ
and then tests whether some of the following conditions is violated:

1. V (ϕ) = V (ψ);

2. maxc∈ϕ |c| ≤ |ψ| and maxc∈ψ |c| ≤ |ϕ|;

3. min( |ϕ|, |ψ| ) > 2.

If LC HECK(ϕ,ψ) = true, thenu is a leaf ofT (i.e., not further expanded); whetherI(ϕ,ψ) is a dual
monotone pair is then decided by some procedure TEST(ϕ,ψ) in polynomial time. In case TEST(ϕ,ψ)

returnsfalse , the original input(ϕ∗, ψ∗) is not a dual monotone pair, and algorithm B returnsfalse.
Moreover, in this case a counterexamplew to the duality ofϕ∗ andψ∗ is computable in polynomial
time from the path leading from the rootr of T to u.

If LC HECK(ϕ,ψ) returnsfalse, algorithm B chooses in polynomial time some appropriate variable
xi such thatǫϕi > 0 andǫψi > 0, and creates two or more children ofu by deterministically choosing
one of three alternative decomposition rules(i), (ii) , and(iii) . Each rule decomposesI(u) = (ϕ,ψ)

into smaller instances, whose respective volumes are summarized as follows. Let, as for algorithm A,
ϕ0 = {c − {xi} | xi ∈ c, c ∈ ϕ}, ϕ1 = {c | xi /∈ c, c ∈ ϕ}, ψ0 = {c′ − {xi} | xi ∈ c′, c′ ∈ ψ}, and
ψ1 = {c′ | xi /∈ c′, c′ ∈ ψ}. Furthermore, defineǫ(v) = 1/χ(v), for anyv > 0.

Rule (i) If ǫϕi ≤ ǫ(v(u)), thenI(u) is decomposed into:

a) one instance(ϕ1, ψ0 ∧ ψ1) of volume≤ (1− ǫϕi ) · v(u);
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b) |ψ0| instancesI1, . . . , I|ψ0| of volume≤ ǫϕi · v(u) each. Each such instanceIj corresponds to
one clause ofψ0 and can thus be identified as thej-th clause ofψ0 with an indexj ≤ |ψ0| <

n (recall thatn denotes the size of the original input).

Rule (ii) If ǫϕi > ǫ(v(u)) ≥ ǫψi , thenI(u) is decomposed into:

a) one instance(ψ1, ϕ0 ∧ ϕ1) of volume≤ (1− ǫψi ) · v(u);

b) |ϕ0| instancesI1, . . . , I|ϕ0| of volume≤ ǫψi · v(u) each. Each such instanceIj corresponds to
one clause ofϕ0 and can be identified by an indexj ≤ |ϕ0| < v∗.

Rule (iii) If both ǫϕi > ǫ(v(u)) andǫψi > ǫ(v(u)), thenI is decomposed into:

c0) one instance of volume≤ (1− ǫϕi ) · v(u), and

c1) one instance of volume≤ (1− ǫψi ) · v(u).

Algorithm B returnstrue iff T EST(I(u)) returnstrue for each leafu of the recursion tree. This concludes
the description of algorithm B.

For each nodeu and childu′ of u in T , we label the arc(u, u′) with the precise type of rule that
was used to generateu′ from u. The possible labels are thus(i.a), (i.b), (ii.a), (ii.b), (iii.c0), and(iii.c1).
We call(i.a) and(ii.a) a-labels, (i.b) and(ii.b) b-labels, and(iii.c0) and(iii.c1) c-labels. Any arc with a
b-label is in addition labeled with the indexj of the respective instanceIj in the decomposition, which
we refer to as thej-label of the arc.

Definition 5.1 For any nodeu of the treeT , let seq(u) denote the sequence of all edge-labels on the
path from the rootr of T to u.

Clearly, if seq(u) is known, then the entire path fromr to u including all node-labels (in particular,
the one ofu) can be computed in polynomial time. Indeed, the depth of thetree is at mostv∗, and adding
a child to a node ofT according to algorithm B is feasible in polynomial time.

The following lemma bounds the number of various labels which may occur inseq(u).

Lemma 5.3 For each nodeu in T , seq(u) contains at most (i)v∗ manya-labels, (ii) log v∗ many
b-labels, and (iii)log2 v∗ manyc-labels.

Proof. (i) Let us consider rule(i.a) first. Given thatǫϕi > 0, xi effectively occurs in some clause
of ϕ. Thus |ϕ1| < |ϕ|. Moreover, by definition ofψ0 andψ1, |ψ0 ∧ ψ1| ≤ |ψ|. Thus we have
|ϕ1| · |ψ0 ∧ ψ1| < |ϕ| · |ψ|. It follows that whenever rule(i.a) is applied, the volume decreases (at least
by 1). The same holds for rule(ii.a) by a symmetric argument. Since no rule ever increases the volume,
there are at mostv∗ applications of ana-rule.
(ii) Assume that rule(i.b) is applied to generate a childt′ of node t. By condition 3 of LCHECK,
v(t) > 4. Therefore,χ(v(t)) > 2 and thusǫϕi ≤ ǫ(v(t)) < 1/2. It follows thatv(t′) < v(t)/2. The
same holds ift′ results fromt via rule (ii.b). Because no rule ever increases the volume, any node
generated after (among others)log v∗ applications of ab-rule has volume≤ 1 and is thus a leaf inT .
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(iii) If a c-rule is applied to generate a childt′ of a nodet, and sinceǫ(v(t)) > ǫ(v∗) > 1/ log v∗,
the volume ofv(t) decreases at least by factor(1 − 1/ log v∗). Thus, the volume of any nodeu which
results fromt after log v∗ applications of ac-rule satisfiesv(u) ≤ v(t)(1− 1/ log v∗)log v

∗
≤ v(t)/e by

(9); i.e., the volume has decreased more than half. Thus, anynodeu resulting from the root ofT after

log2 v∗ applications of ac-rule satisfiesv(u) ≤ v∗ ·
(

1
2

)log v∗

= 1; that is,u is a leaf inT . ✷

Theorem 5.4 Deciding whether monotone CNFsϕ andψ are non-dual is feasible in polynomial time
withO(log2 n) nondeterministic steps, wheren = |ϕ|+ |ψ|.

Proof. As in the proof of Theorem 5.2, we use a compact representation seq∗(u) of seq(u). However,
here the definition ofseq∗ is somewhat more involved:

• seq∗(u) contains allb-labels ofseq(u), which are the anchor elements ofseq∗(u). Everyb-label
is immediately followed by its associatedj-label, i.e., the label specifying which of the (many)
b-children is chosen. We call ab-label and its associatedj-label abj-block.

• At the beginning ofseq∗(u), as well as after eachbj-block, there is anac-block. The firstac-block
in seq∗(u) represents the sequence of alla- andc-labels inseq(u) preceding the firstb-label in
seq(u), and thei-th ac-block in seq∗(u), i > 1, represents the sequence of thea andc labels
(uninterrupted by any other label) following the(i− 1)-st bj-block in seq(u).

Eachac-block consists of anα-block followed by aγ-block, where

– theα-block contains, in binary, thenumberof a-labels in theac-block, and

– theγ-block contains allc-labels (single bits) in theac-block, in the order as they appear.

For example, ifs = “(i.a), (ii.a), c0 , (ii.a), c1, c0, (i.a)” is a maximalac-subsequence inseq(u),
then its correspondingac-block inseq∗(u) is “10, c0, c1, c0”, where 10 (= 4) is theα-block (stating that
there are foura-labels) and “c0, c1, c0” is theγ-block enumerating thec-labels ins in their correct order.

The following facts are now the key to the result.

Fact A. Givenφ∗,ψ∗ and a strings, it is possible to compute in polynomial time the pathr = u0, u1, . . . ,

ul = u from the rootr of T to the unique nodeu in T such thats = seq∗(u) and all labelsI(ui),
or to tell that no such nodeu exists (i.e.,s 6= seq∗(u) for every nodeu in T ).

This can be done by a simple procedure, which incrementally constructsu0, u1, etc as follows.
Create the root noder = u0, and setI(u0) = (φ∗, ψ∗) andt := 0. Generate the next nodeut+1 and

label it, while processing the main blocks (ac-blocks andbj-blocks) ins in order, as follows:

ac-block: Suppose theα-block of the currentac-block has valuenα, and theγ-block contains labels
γ1, . . . , γk. Set up countersp := 0 andq := 0, and whilep < nα or q < k, do the following.

If LC HECK(I(ut)) = true, then flag an error and halt, ass 6= seq∗(u) for every nodeu in T .
Otherwise, determine the rule typeτ ∈ {(i), (ii), (iii)} used by algorithm B to (deterministically)
decomposeI(ut).
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• If τ ∈ {(i), (ii)} andp < nα, then assignI(ut+1) thea-child of I(ut) according to algo-
rithm B, and incrementp andt by 1.

• If τ = (iii) andq < k, then incrementq by 1, assignI(ut+1) theγq-child of I(ut) according
to algorithm B, and incrementt by 1.

• In all other cases (i.e., eitherτ ∈ {(i), (ii)} andp ≥ nα, or τ = (iii) andq ≥ k), flag an
error and halt, sinces 6= seq∗(u) for every nodeu in T .

bj-block: Determine the rule typeτ ∈ {(i), (ii), (iii)} used by algorithm B to (deterministically) de-
composeI(ut). If τ = (iii), then flag an error and halt, sinces 6= seq∗(u) for every nodeu in T .
Otherwise, assignI(ut+1) thej′-th (τ.b)-child of I(ut) according to rule(τ .b) of algorithm B,
wherej′ is thej-label of the currentbj-block.

Clearly, this procedure outputs in polynomial time the desired labeled path fromr to u, or flags an
error if s 6= seq∗(u) for every nodeu in T .

Let us now bound the size ofseq∗(u) in terms of the original input sizev∗.

Fact B. For anyu in T , the size ofseq∗(u) isO(log2 v∗).

By Lemma 5.3 (ii), there are< log v∗ bj-blocks. As already noted, eachbj-block has sizeO(log v∗);
thus, the total size of allbj-blocks isO(log2 v∗). Next, there are at mostlog v∗ manyac-blocks and thus
α-blocks. Eachα-block encodes a number of< v∗ a-rule applications (see Lemma 5.3.(i)), and thus
uses at mostlog v∗ bits. The total size of allα-blocks is thus at mostlog2 v∗. Finally, by Lemma 5.3 (iii),
the total size of allγ-blocks is at mostlog2 v∗. Overall, this means thatseq∗(u) has sizeO(log2 v∗).

To prove that algorithm B rejects input(ϕ∗, ψ∗), it is thus sufficient to guessseq∗(u) for some leaf
u in T , to compute in polynomial time the corresponding pathr = u0, u1, . . . , ul = u, and to verify
that LCHECK(I(u)) = true but TEST(I(u)) = false. Therefore, non-duality ofφ∗ andψ∗ can be
decided in polynomial time withO(log2 v∗) bit guesses. Given thatv∗ ≤ n2, the number of guesses is
O(log2 n2) = O(log2 n). ✷

The following result is an immediate consequence of this theorem.

Corollary 5.5 ProblemDUAL is in co-β2P and solvable in deterministicnO(logn) time, wheren =

|ϕ|+ |ψ|.

(Note that Yes-instances of DUAL must have size polynomial inn, since dual monotone pairs(ϕ,ψ)
must satisfy conditions (2) and (3) in step 2 of algorithm A.)We remark that the proof of Lemma 5.3
and Theorem 5.4 did no stress the fact thatǫ(v) = 1/χ(v); the proofs go through forǫ(v) = 1/ log v as
well. Thus, the use of theχ-function is not essential for deriving Theorem 5.4.

However, a tighter analysis of the size ofseq∗(u) stressingχ(v) yields a better bound for the number
of nondeterministic steps. In fact, we show in the next result that O(χ(n) · log n) bit guesses are
sufficient. Note thatχ(n) = o(log n), thus the result is an effective improvement. Moreover, it also
shows that DUAL is most likely not complete forco-β2P.
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Theorem 5.6 Deciding whether monotone CNFsϕ andψ are non-dual is feasible in polynomial time
withO(χ(n) log n) nondeterministic steps, wheren = |ϕ|+ |ψ|.

Proof. In the proof of Theorem 5.4, our estimates of the componentsof seq∗(u) were rather crude.
With more effort, we establish the following.

Fact C. For anyu in T , the size ofseq∗(u) isO(χ(v∗) · log(v∗)).

Assume nodeu′ in T is a child ofu generated via ab-rule. Thej-label of the arc(u, u′) serves to
identify one clause ofI(u). Clearly, there are no more thanv(u) such clauses. Thuslog v(u) bits suffice
to represent anyj-label.

Observe that ifu is a node ofT , then any pathπ from u to a nodew in T contains at mostv(u)
nodes, since the volume always decreases by at least 1 in eachdecomposition step. Thus, the number of
a-labeled arcs inπ is bounded byv(u) and not just byv∗ (= v(r)).

For each nodeu and descendantw of u in T , let

f(u,w) =
∑

u′∈B(u,w)

log v(u′),

whereB(u,w) is the set of all nodest on the path fromu tow such that the arc fromt to its successor
on the path isb-labeled.

By what we have observed, the total size of all encodings ofj-labels inseq∗(u) is at mostf(v∗, u)
and the size of allα-blocks inseq∗(u) is at mostlog(v∗) + f(v∗, u), were the first term takes care of
the firstα-block and the second of all otherα-blocks. Therefore, the total size of allα-blocks and all
bj-blocks inseq∗(u) isO(f(v∗, u) + log(v∗)).

We now show that for each nodeu and descendantw of u in T , it holds that

f(u,w) ≤ log(v(u)) · χ(v(u)).

The proof is by induction on the number|B(u,w)| of b-labeled arcs on the pathπ from u to w. If
|B(u,w)| = 0, then obviouslyf(u,w) = 0 ≤ v(u).

Assume the claim holds for|B(u′, w)| ≤ i and consider|B(u,w)| = i + 1. Let t be the first node
onπ contained inB(u,w), and lett′ be its child onπ. Clearly,f(u,w) = f(t, w), and thus we obtain:

f(u,w) = log(v(t)) + f(t′, w)

≤ log(v(t)) + log(v(t′)) · χ(v(t′)) (induction hypothesis)

≤ log(v(t)) + (log(v(t))− log(χ(v(t)))) · χ(v(t)) (asv(t′) ≤ v(t)
χ(v(t)) , χ(v(t′)) ≤ χ(v(t)) )

= log(v(t)) · χ(v(t)) (aslog(χ(y)) · χ(y) = log y, for all y).

Thus,f(u,w) ≤ log(v(u)) · χ(v(u)). This concludes the induction and proves the claim.
Finally, we show that the total size of allγ blocks inseq∗(u), i.e., the number of allc-labels in

seq(u), is bounded byχ(v∗) · log(v∗) < log2 v∗. Indeed, assume ac-rule is applied to generate a child
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t′ of any nodet, and letv = v(t), v′ = v(t′). Sinceǫϕi > ǫ(v) andǫψi > ǫ(v), we havev′ < (1−ǫ(v))·v.
Sinceχ(v∗) > χ(v), we haveǫ(v) = 1/χ(v) > 1/χ(v∗) and thus

v′ <
(

1−
1

χ(v∗)

)

· v.

Hence, any node inT resulting afterχ(v∗) · log(v∗) applications of ac-rule has volume at most

v∗ ·
(

1−
1

χ(v∗)

)χ(v∗)·log v∗

= v∗ ·
[(

1−
1

χ(v∗)

)χ(v∗)]log v∗

≤ v∗ ·
(1

e

)log v∗

≤ 1

(cf. also (9)). Consequently, along each branch inT there must be no more thanχ(v∗) · log v∗ applica-
tions of ac-rule. In summary, the total sizes of allα-blocks, allγ-blocks, and all encodings ofj-labels
in seq∗(u) are all bounded byχ(v∗) · log v∗. This proves Fact C.

As a consequence, non-duality of a monotone pair(ϕ∗, ψ∗) can be recognized in polynomial time
withO(χ(v∗) · log v∗) many bit guesses. As already observed on the last lines of [17], we haveχ(v∗) <
2χ(n). Furthermore,v∗ ≤ n2, thuslog v∗ ≤ 2 log n. Hence, non-duality(ϕ∗, ψ∗) can be recognized in
polynomial time withO(χ(n) · log(n)) bit guesses. ✷

Corollary 5.7 ProblemDUAL is solvable in deterministicnO(χ(n)) time, wheren = |ϕ|+ |ψ|.

Remark 5.1 Note that the sequenceseq(u) describing a path from the root ofT to a “failure leaf”
with label I(u) = (ϕ′, ψ′) describes a choice of values for all variables inV (ϕ ∧ ψ) \ V (ϕ′ ∧ ψ′).
By completing it with values forV (ϕ′ ∧ ψ′) that show non-duality of(ϕ′, ψ′), which is possible in
polynomial time, we obtain in polynomial time fromseq(u) a vectorw such thatf(w) 6= gd(w). It
also follows from the proof of Theorem 5.6 that a witnessw for f 6= gd (if one exists) can be found in
polynomial time withO(χ(n) · log n) nondeterministic steps.

5.3 Application of Beigel and Fu’s results

While our independently developed methods substantially differ from those in [1, 2], membership of
problem DUAL in co-β2P may also be obtained by exploiting Beigel and Fu’s Theorem 8 in [1] (or,
equivalently, Theorem 11 in [2]). They show how to convert certain recursive algorithms that use dis-
junctive self-reductions, have runtime bounded byf(n), and fulfill certain additional conditions, into
polynomial algorithms usinglog(f(n)) nondeterministic steps (cf. [2, Section 5]).

Let us first introduce the main relevant definitions of [1]. Let ‖y‖ denote the size of a problem
instancey.

Definition 5.2 ([1]) A partial order ≺ (on problem instances) is polynomially well-founded, if there
exists a polynomial-bounded functionp such that

• ym ≺ · · · ≺ y1 ⇒ m ≤ p(‖y1‖) and

• ym ≺ · · · ≺ y1 ⇒ ‖ym‖ ≤ p(‖y1‖).
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For technical simplicity, [1] considers only languages (ofproblem instances) containing the empty
string,Λ.

Definition 5.3 ([1]) A disjunctive self-reduction (for short, d-self-reduction) for a languageL is a pair
〈h,≺〉 of a polynomial-time computable functionh(x) = {x1, . . . , xm} and a polynomially well-
founded partial order≺ on problem instances such that

• Λ is the only minimal element under≺;

• for all x 6= Λ, x ∈ L ≡ h(x) ∩ L 6= ∅;

• for all x, xi ∈ h(x) ⇒ xi ≺ x.

Definition 5.4 ([1]) Let 〈h,≺〉 be a d-self-reduction and letx be a problem instance.

• Th,≺(x) is the unordered rooted tree that satisfies the following rules: (1) the root isx; (2) for
eachy, the set of children ofy is h(y).

• |Th,≺(x)| is the number of leaves inTh,≺(x).

Definition 5.5 ( [1]) LetT be a polynomial-time computable function. A languageL is inREC(T (x)),
if there is a d-self-reduction〈h,≺〉 for L such that for allx

1. |Th,≺(x)| ≤ T (x), and

2. T (x) ≥
∑

xi∈h(x) T (xi).

Let T (x)-P denote the set of all (languages of) problems whose Yes-instancesx are recognizable in
polynomial time withT (x) nondeterministic bit guesses.

Theorem 5.8 ( [1]) REC(T (x)) ⊆ ⌈log T (x)⌉-P

We now show that Theorem 5.8, together with Fredman’s and Khachiyan’s proof of the deterministic
complexity of algorithm B, can be used to prove that problem DUAL is in co-β2P.

Let L denote the set of all non-dual monotone pairs(ϕ,ψ) plusΛ. Let us identify each monotone
pair (ϕ,ψ) which satisfies LCHECK(ϕ,ψ) but does not satisfy TEST(ϕ,ψ) with the “bottom element”
Λ. Thus, if a node in the recursion treeT has a child labeled with such a pair, then the label is simply
replaced byΛ.

Let us define the order≺ on monotone pairs plusΛ as follows:J ≺ I, if I 6= J and eitherJ = Λ

or J labels a node of the recursion tree generated by algorithm B on inputI. It is easy to see that both
conditions of Definition 5.2 apply; therefore,≺ is polynomially well-founded. In fact, we may define
the polynomialp by the identity function; since the sizes of the instances inthe recursion tree strictly
decrease on each path inT , the two conditions hold.
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Defineh as the function which associates with each monotone pairI = (ϕ,ψ) those instances
that label all children of the root by algorithmB on inputI. Clearlyh satisfies all three conditions of
Definition 5.3, and hence〈h,≺〉 is ad-self-reduction forL.

Let T be the function which to each instanceI associatesv(I)log v(I) (recall thatv(I) denotes the
volume ofI). It is now sufficient to check that conditions 1 and 2 of Definition 5.5 are satisfied, and to
ensure that Theorem 5.8 can be applied.

That item 1 of Definition 5.5 is satisfied follows immediatelyfrom Lemma 5 in [17], which states
that the maximum number of recursive calls of algorithm B on any inputI of volumev is bounded by
vχ(v) (≤ vlog v). Retain, however, that the proof of this lemma is noticeablymore involved than our
proof of the membership of DUAL in co-β2P.

To verify item 2 of Definition 5.5, it is sufficient to prove that for a volumev > 4 of any input
instance to algorithmB, it holds that

vlog v ≥ (v − 1)log(v−1) +
v

3
·
(v

2

)log v
2 , and (10)

vlog v ≥ 2(α · v)log(α·v), whereα = 1− 1/ log v; (11)

here, (10) arises from the rules(i), (ii) and (11) from rule(iii). As for (10), the child ofu from (i.a)

resp.(ii.a) has volume at mostv − 1, and there are at mostv/3 many children from(i.b) resp.(ii.b),
sincemin(|ϕ|, |ψ|) > 2 (recall thatv = |ϕ| · |ψ|); furthermore, each such child has volume≤ ǫ(v) · v ≤
1
2v. In case of (11), the volume of each child ofu is bounded by(1− ǫ(v)) · v ≤ (1− 1/ log v) · v; note
also thatvlog v monotonically increases forv > 4. To see (10), we have

(v − 1)log(v−1) + v
3 ·

(

v
2

)log v
2 ≤ (v − 1)log v + v

3 · v
log v−1

2log v−1

= vlog v · (1− 1
v
)log v + 2·vlog v

3·v

≤ vlog v · (1− 1
v
+ 2

3·v )

= vlog v · (1− 1
3·v )

< vlog v;

to show (11), note that

2(α · v)log(α·v) = 2αlog v+logα · vlog v+logα

≤ 2(1
e
· αlogα) · vlog v+logα (αlog v ≤ 1/e, by (9))

= 2
e
· (α · v)log α · vlog v

≤ 2
e
· vlog v (α · v)logα ≤ 1, i.e., log α · (log α+ log v) ≤ 0,

since−1 < log α ≤ 0 andlog v > 2

< vlog v.

We can thus apply Theorem 5.8 and conclude that the complement of DUAL is in ⌈log T (x)⌉-P, and
thus also inβ2P.

The advantage of Beigel and Fu’s method is its very abstract formulation. The method has two
disadvantages, however, that are related to the two items ofDefinition 5.5.
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The first item requires thatT (x) is at least the number of leaves in the tree forx. In order to show
this, one must basically prove a deterministic time bound for the considered algorithm (or at least a
bound of the number of recursive calls for each instance, which is often tantamount to a time-bound).
The method does not suggest how to do this, but presupposes that such a bound exists (in the present
case, this was done by Fredman and Khachiyan in a nontrivial proof). The second item requires to prove
that theT -value of any nodex in the recursion tree is at least the sum of theT -values of its children.
This may be hard to show in many cases, and does not necessarily hold for every upper boundT .

Our method instead does not require an a priori time bound, but directly constructs a nondetermin-
istic algorithm from the original deterministic algorithm, which lends itself to a simple analysis that
directly leads to the desired nondeterministic time bound.The deterministic time bound follows as an
immediate corollary. It turns out (as exemplified by the verysimple proof of Theorem 5.4) that the
analysis involved in our method can be simpler than an analysis according to previous techniques.

6 Conclusion

We have presented several new cases of the monotone dualization problem which are solvable in output-
polynomial time. These cases generalize some previously known output-polynomial cases. Further-
more, we have shown by rather simple means that non-dual monotone pairs(ϕ,ψ) can be recognized,
using a nondeterministic variant of Fredman and Khachiyan’s algorithm B [17], in polynomial time with
O(log2 n) many bit guesses, which places problem DUAL in the classco-β2P. In fact, a refined analysis
revealed that this is feasible in polynomial time withO(χ(n) · log n) many bit guesses.

While our results document progress on DUAL and DUALIZATION and reveal novel properties of
these problems, the question whether dualization of monotone pairs(ϕ,ψ) is feasible in polynomial
time remains open. It would be interesting to see whether theamount of guessed bits can be further
significally decreased, e.g., toO(log log v · log v) many bits.
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