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We describe several predictive control approaches for high consumption industrial furnace control. These furnaces are major
consumers in production industries, and reducing their fuel consumption and optimizing the quality of the products is one of
the most important engineer tasks. In order to demonstrate the benefits from implementation of the advanced predictive control
algorithms, we have compared several major criteria for furnace control. On the basis of the analysis, some important conclusions

have been drawn.

1. Introduction

Processes and plant constructions of thermal systems and
industrial furnaces, kilns and ovens in particular, have been
subject to both scientific and technological research for long
time [1]. This is mainly due to the process complexity of
energy conversion and transfer in thermal systems. However,
their control and supervision have recently become topics of
extensive research due to the increased computing power of
the controllers.

The overall control task in thermal processes is to drive
the process to the desired thermodynamic equilibrium and to
regulate the temperature profile through the plant. In indus-
trial operating environment, technical control specifications
involve goal and task descriptions of aims and procedures
of supervision functions. From the general systems theoret-
ical standpoint, it is the thermal systems where it became
apparent that controlled processes in the real-world plants
constitute a nonseparable, unique interplay of the three fun-
damental natural quantities: energy, mass, and information.
If the stability problem is resolved, in all thermal processes
the controller must optimize between the low consumption
and the quality of the products [2, 3]. This compromise could
be made by an experienced engineer or by an automated
program that can optimize the behavior of the whole process.

Thus, in recent years, we witness rapid utilization of control
optimization techniques in order to improve the efficiency of
the power plants. Since the technology has not evolved very
much in the recent years, these goals are mainly achieved
through the design of advanced control algorithms.

One of the most used optimization techniques in industry
is the model predictive control (MPC). This algorithm utilizes
the model of a plant in order to perform iterative predictions
and optimize the control actions over some defined horizon.
The effectiveness of this method directly depends on the
quality of the model that represents the system. On the
other hand, the implementation of linear MPC algorithms
is straightforward, but implementation of MPC based on
complex nonlinear models is still a topic of extensive research.
Different computational methods for MPC implementation
have been proposed in the recent years [4]. Most of them are
based on nonlinear or hybrid models, but a generalization of
the characteristics cannot be made, because every system has
its own specifics, and must be considered separately.

The conventional control methods for high consumption
industrial furnaces generally use linearized models [5-7] of
the plants near the operation point, but very often these plants
can be used for production of different types of products;
hence, multiple operating points are required. The standard
MPC algorithms do not provide an efficient solution to this
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FIGURE 1: Diagram of the conceptual MIMO system model for gas-
fired furnace in FZC “11 Oktomvri”

problem. That is why the engineers turn towards utilization
of switched or hybrid MPC algorithms. In this paper, we
will explain the need for the implementation of switched
and hybrid algorithms for the control of high consumption
industrial furnaces.

Here, we present several predictive control algorithms
that will be used for the optimization of high consumption
(20 MW) industrial furnace. These algorithms will predict
the system behavior on the basis of several models of the
furnace. The original model of the furnace is derived using
contemporary identification methods in [8]. Nevertheless,
in this research we needed to improve the model and to
enrich it with the variables that were ignored but have
crucial impact on the process dynamics. Here, we explain the
detailed technical description of the furnace and the process
of building hybrid model that will be used for the design of
hybrid MPC [9].

1.1. Constraints and Performance Criteria. Before we intro-
duce the hybrid model, we need to elaborate the furnace
dynamics. In this paper, we are dealing with 3-input 3-output
gas-fired furnace as presented in Figure 1. The maximum
temperature that can be achieved is 1150°Celsius when oper-
ating at full power (the valves for the burners are 100% open).

The furnace has two openings (hatches) located at the
front and the back of the furnace. When a pipe is entering
the furnace, the front hatch must be opened. Logically, when
there is a pipe exiting from the furnace, the back hatch
must be opened. The opening of these hatches introduces
a significant deviation (decreasing) of the temperature near
the hatch. Since the front hatch is located near zone 1 of the
furnace and the back hatch near zone 3 of the furnace, and
using some experimental results, we can define the influence
of the hatch opening to the global temperature throughout
the three zones of the furnace. Considering these discrete
changes in the behavior of the furnace and the nonlinearity
in the continual domain, we can conclude that linearizing the
furnace in one operating point is not acceptable for designing
of a model predictive controller.
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For that reason, several operating points of the furnace
are adopted. In this case, the linearization will be done in the
surroundings 0f 130, 390, 650, 910, and 1170 degrees Celsius. If
we chose to represent the rules for logic switching in the first
zone of the furnace, for only one of the previously defined
linearization points, then we can define a discrete automaton
for the mode selection.

1.2. Design of a Hybrid Model of the Furnace. It is obvious
that the system is both discrete and nonlinear by nature
but cannot be implemented as a discrete control system
because of the logical conditions in the transfer function
and the interconnection between the states and variables that
combine a nonaffine set for synthesis of the control system.

In this paper, we define a hybrid model of the furnace
that will incorporate the influence on both continuous and
discrete dynamics, with additional consideration for logic
and integer variables. As one of the emerging modeling
languages, HYSDEL will be used to model the industrial
furnace.

Considering that there are only 3 Boolean variables, the
automaton will have 8 states. In Figure 2, we present the
discrete automaton for the first zone of the furnace. Similar
discrete automatons are designed for the second and for the
third zones.

Of course here we do not represent the state changes when
the furnace is crossing the border between one and another
linearized model. In the discrete hybrid model, we can define
these switches as logic conditions (state 1.3 = T;.01 <
780), where as borders we can define the average temperature
between two linearization points.

1.3. Model Verification. The response of the closed loop
hybrid system is satisfactory and stabilizes the temperature
in the selected zone to 1000 degrees Celsius, in the zone near
to 200, and in the third zone to 40 degrees. A sample closed
loop system simulation is shown on Figure 3.

We can conclude that the state that we want to achieve is
not feasible but the controller still manages to stabilize near
the requested region. This only confirms the quality of the
furnace model that acts as the real furnace. The simulations
are performed with respect to active disturbances in the
systems. The complete results can be found in [9].

2. Design of the Controllers

Since we have derived several models for the plant, also we
must design controllers for each of the models that will be
optimized in a specific way. Besides the standard MPC design
and switch MPC design, here we introduce a hybrid MPC
and a hybrid multiple-model predictive controller in order to
improve the control performance of the industrial furnace.
The idea for hybrid control and some results regarding
constraints and stability have been explored in details in
(10, 11].

The results presented here show a multiple-model MPC
of piecewise affine (PWA) system [12] and the design of a
complete hybrid MPC for the temperature control of the
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FIGURE 2: Discrete automaton for state switching in the first zone of the industrial furnace [9].

furnace [13]. The results obtained here clearly justify the use of
the hybrid control algorithms over the conventional methods.
For this simulation, we have used one linear MPC, one
linear multiple-model MPC, one hybrid MPC, and one
hybrid multiple-model MPC. These controllers are tested in
equal simulation conditions, and the results are compared.

2.1. Controller Synthesis. The optimization problem of linear

MPC is known for a long time, and it is not a subject of

this paper. For the design of the controller, standard design

methods are used. Regarding the hybrid optimization, the

problem in control science is relatively new. In this case, we

have designed a cost function in the form given in (1) and (2).
Consider
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where N is the optimal control interval and x(k | ¢) represents
the state predicted at moment ¢ + k resulting from the input
u(t + k). The initial value of the system at time ¢ is x(0 | t) =
X(); Unin> Umax> Yimins Ymin> a0d X pins Xmin are hard bound on
the inputs, outputs, and states, respectively; and {x : S,x <
T} is a final target polyhedral subset of the state-space R". In
(D), 1Qxll,, = x'Qx for p = 2 and |Qxl|,, = |Qx]l for p = co.
In (1) and (2), with x(#) we represent the continuous states of
the system and with z(t) the discrete states of the system; the
inputs are denoted by u(t) and the outputs by y(¢).

We use the Hybrid Toolbox for Matlab [14] as a design
tool for the controller for the high consumption industrial
furnace. This toolbox can work with several different types
of hybrid system models (e.g., Mixed Logical Dynamical Sys-
tems, Piecewise Affine Systems, and Discrete-Time Hybrid
Automata) and presents a formal mathematical equivalence
between these models. We use HYSDEL to represent the
model of the furnace [14, 15].

In order to achieve better results, we have divided the
temperature domain of the furnace into five sections as
presented here: section; = T, € [-10,260]; section, =T, €
[260, 520]; section, = T, € [520,780]; section, = T, €
[780,1040]; sections = T, € [1040, 1300]. For each of the
sections, a linearized model for the furnace was derived near
the midpoint of the respective section (e.g., for section, the
model was linearized near T, = 910°Celsius).

MLD hybrid model generated from the HYSDEL file
for the multimodel linearized problem has 25 continuous
states, 9 inputs (4 continuous, 5 binary), and 3 continuous
outputs. The HYSDEL model has 22 continuous auxiliary
and 15 binary auxiliary variables. The optimization problem
to be solved has 118 mixed-integer linear inequalities. The
sampling time of the system is 0.5 minutes. If comparison to
the hybrid model of the furnace linearized in one operating
point whose HYSDEL representation has only 38 mixed-
integer linear inequalities, it is obvious that the complexity
of the optimization problem is significantly increased with
the introduction of multimodel linearization. This affects the
computation time of the optimization algorithm and favors
the one point linearization method for implementation if it
has satisfactory behavior.

3. Simulation Results

In order to compare the quality of the designed controllers, we
have designed equivalent simulation conditions for the four
algorithms. In this study, we will compare the linear MPC,
multiple-model MPC, hybrid MPC, and hybrid multiple-
model MPC.

The disturbance signals from the front and the back
hatches and the timing of the pipe entering in the first
zone of the furnace are graphically represented on Figure 4.
In Figure 4, the logic variable for pipes entering zone 1
is presented. The logic variables for zones 2 and 3 have
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FIGURE 3: Influence to the zones from control input 1 with respect to
the disturbances.

deterministic dependence on this value with fixed delay. In
reality, this delay is represented through the line speed of the
conveyor driving the pipes in the furnace, but this is to be
done in near future. During this simulation, a fixed delay
time of 10 minutes between zones is adopted. During the
simulation, the continuous disturbance signal has value of
15°Celsius.

The main results are presented in Figures 5, 6, and 7 where
the temperatures in the respective zones of the furnace are
presented long with the reference signal. The control signals
applied to the three control valves, respectively, are presented
in Figures 8, 9, and 10.

From the presented results, it is obvious that introducing
the hybrid control approach for high consumption industrial
furnace improves the quality of the control. The controller
leads the system faster to the referent set-point, and the steady
state error is acceptable. The hybrid MPC, one linearized
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model method, has also satisfactory results. The multiple-
model MPC also shows satisfactory results, but there is
oscillatory behavior at the reference values.

Since we have linearized models, the tracking of the
referent trajectory is best when it is near the linearization
point(s), and as the referent trajectory moves from this point
we have bigger error in the control algorithm. This is more
expressed in the hybrid controller with only one linearization
point, which is linearized near 800" degrees. In this case, it is
obvious that output tracks the reference without any problem
near this region, but if we have work plans that require a lot
of temperature changes throughout the temperature domain
of the furnace, the multimodel hybrid approach is to be
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considered. The previous remark, regarding the performance
of the controller near the linearization point, also stands for
the multimodel hybrid approach. The difference here is that
we have several models, and the difference between the set-
point and the active model cannot be very big. Logically, if
we introduce more models linearized in different operating
points we will increase the performance of the controller, but
also we will increase the complexity and the time necessary
to perform the optimization.

Regarding the control signals, on all three figures (Figures
8, 9, and 10) we can note that the hybrid controllers have
fast reaction time to the disturbances. When there is new
pipe entering in one of the zones of the furnace, the control
signal in the respective zone acts towards stabilization of
the temperature. Also, we can note that when the furnace
is operating near 800° degrees, all three controllers generate
the same control value, but if we move far from this central
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TABLE 1: Abbreviations and full meaning of the algorithm’s names.

Abbreviations Full meaning

MPC Model predictive control (usually linearized)

MM-MPC Multiple-model model predictive control

Hybrid MPC Hybrid model predictive control

Hybrid MM-MPC Hybrid multiple-model model predictive
control

linearization point, the calculated values for the control
action differ a lot.

4. Conclusion

In order to obtain real measure of the controller’s quality,
we must compare their performances. Therefore, we have
designed a complete test scenario, which defines the condi-
tions during the simulation. Of course we must keep in mind
that the proposed algorithms are specific to the problem they
address. Anyway, these differences will be explained in detail
in this chapter. In Table 1, we present the abbreviations used
to specify the algorithms along with the full names.

Discrete automaton for the furnaces states on the first
zone.

We have run several simulations for each of the con-
trollers with the same simulation conditions. During these
simulations, we have properly tuned up the controllers so
we can compare their best performances. Also during the
simulations, we have tested the robustness of the controllers
by adding small disturbances (opening of the front and
back hatches). The parameters chosen for comparison of the
controller’s performances are the settling time, the average
overshoot, the ITAE norm, the time for computation, and the
average fuel consumption.

The average values for the results obtained are summa-
rized in Table 2. We must point out that these results are
not directly implied by the behavior of the outputs presented
in Figures 5-10, but they represent a measure for the total
average values of the analyzed parameters.

Regarding the average overshoot, during our simulations
we have drawn a general conclusion that by increasing the
complexity of the controller, we can reduce the average
overshoot (if the controller is properly tuned). The second
important notice here is that the multiple-model algorithms
generate bigger overshoot than the appropriate single model
algorithms. This is a result of the errors in the prediction of
the single model controllers. On the other hand, if we look
into the ITAE norm we can conclude that the multiple-model
algorithms do have better performance than the single model
algorithms.

The average computation time increases with the com-
plexity of the algorithm. Anyway, we must mention that the
difference in the computation times is not very big; in fact the
maximal difference is only 40 ms, which is a very small value
for this kind of processes. The fuel consumption increases
with the complexity of the controller but does not always
guarantee improved control quality.
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TaBLE 2: Comparisons of the proposed MPC algorithms.

Algorithm Settling time Average overshoot ITAE norm Computation time Consumption

MPC =110 10% 160,410 =100 ms 89,887

MM-MPC =90 6% 115,357 =110 ms 97,328

Hybrid MPC =35 3% 111,770 =130 ms 100,880

Hybrid MM-MPC =35 5% 96,736 =140 ms 110,310

At the end, we can conclude that introducing techniques
for improved control in industrial plants with high con-
sumption will lead to improving the quality of the products.
Especially if we incorporate the logical and integer variables
in the optimization process we can obtain significantly
better results, because the real system do have a need for
optimization if hybrid environment.

Before we generalize these results, we must mention
that each and every problem in the process industry is
different, and the engineer must prepare a detailed study
on the problem in order to choose the best algorithm for
control. In many cases, the improvements that resulted from
implementation of an advanced control technique are very
small compared to some classical control methods, such as
PID control.

When we speak of industrial plants with high con-
sumption, these algorithms are very useful since even small
improvement in the quality/price criteria could result in
increasing the profit of the company. As a result of the imple-
mentation of these algorithms, we derive several improve-
ments in the industrial plant control:

(i) improving the quality of the final products,
(ii) reducing the settling time,
(iii) reducing the fuel consumption,

(iv) improving the robustness of the controller.

It is clear that the companies can easily benefit from the
results of the implementation of these algorithms, but, on
the other hand, the companies are reluctant to trying new
technologies, especially in the countries in development.

Some of the future research possibilities in this area
are the complete design of hybrid model of the presented
industrial furnace with high consumption. This model should
be adaptive, and by proper tuning of its parameters could be
easily modified to represent some other industrial furnaces
with similar characteristics.

The practical implementation of hybrid controllers in the
industry is not at a satisfactory level. Although in theory
the hybrid algorithms introduce big improvements, their
practical implementations until now are limited to laboratory
test-beds or simple processes.

The issue of robustness of hybrid MPC with respect to
the unmodeled disturbances in the system should also be
addressed. Since in all industrial plants we have significant
number of not modeled disturbances, research in this direc-
tion could result with significant improvements.
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